In 1997, the average income within the top decile is 1.67 times larger than the income threshold that one needs to pass in order to enter the top decile. I.e. $b(p) = \frac{E(y|y>y_p)}{y_p} = 1.67$ if $p=0.9$. In 2006, $b(p) = 1.69$ if $p=0.9$.

Figure 7a. Pareto curves for the distribution of income: 1997 vs. 2006

Inverted Pareto coefficient (2006)

Inverted Pareto coefficient (1997)
In 1997, the average income within the top decile is 1.67 times larger than the income threshold that one needs to pass in order to enter the top decile. That is, $b(p)=E(y|y>y_p)/y_p=1.67$ if $p=0.9$. In 2006, $b(p)=1.69$ if $p=0.9$.

In 1997, the average income within the top decile is 1.67 times larger than the income threshold that one needs to pass in order to enter the top decile. That is, $b(p)=E(y|y>y_p)/y_p=1.67$ if $p=0.9$. In 2006, $b(p)=1.69$ if $p=0.9$.

Figure 7b. Pareto curves for the distribution of income (top decile)

- Inverted Pareto coefficient (2006)
- Inverted Pareto coefficient (1997)
In 1997, the average income within the top percentile is 1.75 times larger than the income threshold that one needs to pass in order to enter the top percentile. That is, \(b(p) = \frac{E(y|y>y_p)}{y_p} = 1.75 \) if \(p = 0.99 \). In 2006, \(b(p) = 1.73 \) if \(p = 0.99 \).
In 1997, the average income within the top 0.1% is 1.88 times larger than the income threshold that one needs to pass in order to enter the top 0.1%. That is, $b(p) = \frac{E(y|y>y_p)}{y_p} = 1.88$ if $p=0.999$. In 2006, $b(p)=1.82$ if $p=0.999$.

Figure 7d. Pareto curves for the distribution of income (top 0.1%)