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We document large long-run differences in average house price 

appreciation across metropolitan areas over the past 50 years and 

show they can be explained by an inelastic supply of land in some 

unique locations combined with an increasing number of high-

income households nationally. The resulting high house prices and 

price-to-rent ratios in those “superstar” areas crowd out lower-

income households. The same forces generate a similar pattern 

among municipalities within a metropolitan area. These facts 

suggest that disparate local house price and income trends can be 

driven by aggregate demand, not just changes in local factors such 

as productivity or amenities. 
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A striking feature of urban housing markets after World War II is the 

considerable dispersion across U.S. metropolitan areas and towns in long-run real 

house price appreciation rates.  In Figure 1, which plots the kernel density of 

average annual real house price growth between 1950 and 2000 for 280 U.S. 

metropolitan areas, average real house price appreciation ranged from about 0.2 

percent to over 3.8 percent per year, with an especially thick right tail of growth 

rates above 2.6 percent.1  This distribution is not an artifact of a few small areas 

that grew very rapidly.  For example, Table 1, which reports the annualized house 

price growth rates for the top and bottom ten Metropolitan Statistical Areas 

(MSAs) with populations above 500,000 in 1950, shows that San Francisco 

enjoyed an average annualized real house price appreciation rate of more than 3.5 

percent.  By contrast, Buffalo realized barely 0.5 percent average annual real price 

growth. 

These differences in long-run rates of appreciation led to an ever-widening 

gap in the price of housing between the most expensive metropolitan areas and 

the average ones.  Figure 2 plots the distribution of log mean real house values 

across metropolitan areas in 1950 and 2000.  In 1950, house prices in the most 

expensive cities were twice the national average.  By 2000, the gap had risen to 

four times the national average.  A similar evolution occurred between 1970 and 

2000 among U.S. municipalities. 

 Why house price dispersion has increased so much over such a long time span 

is not well understood.  Standard compensating differential models in urban 

economics attribute differences in house prices across markets to differences in 

the economic value to a household from living in one MSA versus another, with 

that value driven by factors such as inherent local productivity (and thus wages), 

 
1 The Census data underlying these figures is described more fully below.  All monetary amounts are in constant 2000 
dollars throughout the paper.  The 280 metropolitan areas in Figure 1 had populations of at least 50,000 in 1950.  



amenities, or fiscal policies.2  Differences across markets in the elasticity of 

housing supply also could lead to differences in capitalization into land prices.  

However, in order to extrapolate this cross-sectional logic to explain differences 

in house price growth, long-run changes in local productivity, amenities, or 

housing supply elasticities would have to match the pattern of dispersion in long-

run house price appreciation rates.  There is little empirical evidence on whether 

that is the case.3 

In this paper, we propose a simple mechanism that generates dispersion in 

long-run house price growth rates without relying on persistent changes over time 

in local fundamentals or people’s tastes over where to live.  Instead, we show that 

when households have constant preferences over location – perhaps due to cross-

sectional differences in local amenities, productivity, or fiscal policies, or to 

heterogeneity in household tastes for local features – and the supply of places to 

live is not perfectly elastic everywhere, a change in aggregate housing demand is 

manifested in different local house price growth rates and yields a changing 

composition of local resident populations.     

Locations that experience persistently high house price growth relative to 

housing unit growth are called “superstars.”  Two traits are critical to a location 

being a superstar.  There must be some inelasticity to its supply of housing.  And, 

it must be preferred by a large enough share of the population that it has excess 

demand.   

This simple mechanism yields several powerful implications.  First, 

incremental differentiation across locations can yield outsized differences in 

 
2 Rosen (1979) and Roback (1982) provide the classic formulation using wages and natural amenities.  Amenities could 
also include consumption agglomerations, such as in Waldfogel (2003), or local fiscal policy such as in Epple and Sieg 
(1999). 
3 Van Nieuwerburgh and Weill (2010) find that the dispersion in metropolitan area-level wages has been large enough to 
account for the spatial distribution in house prices from 1975-2004, but they do not link growth in wages and growth in 
house prices at the individual MSA level.  In addition, there is no evidence that amenities grow at different rates over long 
periods of time.  Natural amenities such as the weather or physical traits such as coastal location clearly do not.  
Consumption agglomerations have been estimated only in the cross-section (Waldfogel (2003)).  Nor is there any evidence 
that household valuations of a given amenity have increased (e.g., see Glaeser and Tobio (2008) on the rise of the South).   



house price growth. 4  This means that the gap in house prices between cities or 

towns can keep increasing even when the inherent value of any particular location 

is constant, the housing supply has not become more inelastic, and the 

willingness-to-pay for each location by any individual family is unchanged.  

When the number of high income families nationally grows, the number of 

households who would like to reside in any given community increases and the 

aggregate willingness-to-pay for expensive locations rises (presuming the 

distribution of households’ preferences over where to live is constant).  If the 

growth in latent housing demand for a particular location exceeds the growth in 

local housing supply due to supply inelasticity, housing rents must rise to clear the 

market, with lower-income households crowded out by higher-income 

households.    

Second, our mechanism implies that a change in the house price induces a 

change in the local income distribution.  This is in contrast to prior research which 

assumes that local productivity growth yields higher wages that are then 

capitalized into house prices.  In our model, land prices act as a clearing 

mechanism by which higher-income households crowd-out lower income 

households from a scarce location.  As the number of high income families grows 

nationally, existing residents of supply-constrained areas are outbid by even 

higher-income families, raising the price of land yet further.  This process induces 

a shift to the right in the local income distribution.   

Third, the dispersion in expected house price growth rates should yield 

differences in the price-to-rent ratio for houses.  If home buyers in superstar cities 

expect their houses to appreciate over the long run, they should be willing to pay 

 
4 Our “superstars” terminology is a nod to Rosen’s (1981) classic paper on the economics of superstars in the sense that, as 
the market becomes larger, people pay ever more for slight differences across locations.  However, in Rosen’s seminal 
work, a superstar reaps outsized rewards because an incremental improvement in quality yields large increases in market 
share.  In our model, incremental differences among locations yield an increasing house price premium for superstar cities 
despite declining market share.  As the population grows, the market for a differentiated city becomes ever more rarified.  
In that way, our model is more in keeping with scarce luxury goods than Rosen’s concept of a superstar. 



more (relative to the rental service flow), today.  Of course, in asset market 

equilibrium, superstar locations do not necessarily have higher risk-adjusted 

returns.  Rather, they are like growth stocks in the sense that higher expected 

capital gains come at the expense of lower dividend (implicit rent) yields. 

Although these implications hold qualitatively as long as housing supply is 

not perfectly elastic, the elasticity of housing supply in superstar cities – or the 

difficulty of constructing substitute locations – is a key determinant of their 

magnitudes.  If housing is easily built either in a locality or in a close substitute, 

there should be little superstar effect.  As it becomes more difficult to build new 

housing or replicate expensive cities, the excess price growth and subsequent 

shifts in the income distribution can be large. 

We use U.S. Census data from 1950-2000 at the metropolitan area and 

municipality levels to test the implications of our model.  Our main empirical 

result exploits the fact that our model predicts that a single national demand shock 

should have differential effects on metropolitan areas depending on their superstar 

status.  We report evidence confirming each of the implications just discussed.   

For example, when the aggregate number of high-income households in the 

U.S. grows, house prices in superstar MSAs increase by more than in non-

superstar MSAs, and both the average and right tail of the income distributions in 

superstar cities increase relatively more than in non-superstar cities.  We also 

allow for time-varying superstar status.  When a metropolitan area transitions to 

being a superstar, we see an acceleration in house price growth and in the right-

shift of the income distribution.  And, in the cross-section, superstar metropolitan 

areas or municipalities have higher house prices and a higher-income population.  

Overall, the superstar mechanism explains a substantial portion of the increase in 

house price dispersion over the last 50 years.   

We find that these empirical patterns also hold within a metropolitan area.  

That is, an increase in the high-income population in a metropolitan area yields 



increasing price and income dispersion across municipalities within that area, 

with price growth, income growth, and income skewness in ‘superstar suburbs’ 

outpacing those in non-superstar localities.   

We also document that house prices in superstar MSAs and municipalities 

(within an MSA) are a higher multiple of current rents.  When aggregate housing 

demand increases, those multiples expand more for superstar MSAs than for non-

superstars.    

This superstar cities mechanism is an important addition to the standard 

theories of urban housing demand growth, which include productivity shocks or 

growth in agglomerations.  Such theories typically depend on local shocks to 

housing demand, and it would be unusual for those shocks to match the 

propagation from higher to lower geographies that we find.  In addition, to the 

extent that productivity growth within a labor market area is more uniform than 

across metropolitan areas, productivity growth-based theories are less consistent 

with the house price growth dispersion across communities within a metropolitan 

area that we observe.  However, standard determinants of urban housing demand 

are likely to be what differentiates locations in the cross section, and our empirical 

evidence does not preclude them from being additional components of urban 

housing demand growth.   

Finally, we emphasize that our superstar mechanism is intended to explain 

differences in long-run trend growth rates of house prices, not short-run 

boom/bust cycles.  By definition, superstar MSAs have higher long-run trend 

house price growth rates than others, but that does not mean their house prices 

increase every year.  Superstar MSAs can and do experience considerable short-

run house price volatility, with prices that cycle around strongly positive 

appreciation trends. 

The plan of the paper is as follows.  The next section outlines a simple two 

location model that shows how heterogeneity in location preferences and supply 



elasticity combined with growing aggregate demand can combine to generate the 

patterns in the data described above.  Section II then discusses the data used in our 

analysis.  Section III reports the results.  There is a brief summary and conclusion. 

I. Superstar Cities:  A Simple Model 

In this section, we derive five implications of the superstar cities mechanism 

that we will then take to the data.  In doing so, we sketch the underlying 

framework and provide intuition, leaving formal proofs to the appendix.   

To focus on the economic forces central to our hypothesis, we simplify the 

model to a few key elements.  One is that we consider only two locations.5  They 

differ in their elasticity of land supply.  Location A, the always-Available 

location, has perfectly elastic supply and housing is always available at a 

normalized rent of zero.  Location B has Barriers to development, and thus has a 

capacity of ( )K r  households.  That capacity can be increased if rents, r, are high 

enough to make new construction worthwhile, so ( ) 0K r  , with B having 

perfectly inelastic supply if this holds as an equality. 6 The new capacity could be 

in location B, or in new locations that are perfect substitutes for B.  Thus, ( )K r is 

finite when newly developed locations are not perfect substitutes for B or are not 

perfectly elastically supplied. 

There are N households in the economy, and each has a constant preference 

for A or B, denoted by ~ (·)ic H  on [0,1].  A higher ic  corresponds to a greater 

taste for B. It is not necessary that one location is universally “better” than the 

 
5 These locations could be metropolitan areas or towns within a given area.  If the former, the aggregate growth discussed 
below pertains to the nation; if the latter, it reflects that of the relevant metropolitan area.  
6 Epple and Platt (1998) present a more formal and extensive treatment of a similar model with multiple locations, but 
assume that land supply is perfectly inelastic in all jurisdictions. By limiting the model to two locations and allowing for 
elastic supply, we emphasize the testable empirical implications of differences in the elasticity of supply. 



other, only that enough households prefer B (for whatever reason) at zero rent to 

fully occupy it.7 

Households also vary by their inherent productivity, with type ~ (·)iw F  on 

[0, ) , and are paid a productivity wage.  We also allow for the possibility that A 

and B are differently productive in the sense that the same worker would be more 

productive in one city than the other.  A worker of type iw  produces iw  if she 

works in A, but iw   if she works in B, where 0  .  This exogenous 

difference in location productivity could be due to a variety of factors ranging 

from a production agglomeration to simple natural advantage.  Obviously, the 

special case of 0   and 1   reduces to all households being equally 

productive in either city.  We assume that i iw c , so that households of all 

abilities have the same distribution of preferences over the two cities.   

The utility for household i is denoted by iV  and is a function of being in the 

preferred location and of non-housing consumption.  Household utility in A is 

given by (1 )i i i
AV c w  , and in B, by ( )i i

B
iV c w r    . Thus, if 1ic  , the 

household would prefer location B to the exclusion of all else.  We will make the 

common simplifying assumption that there are no costs of moving, so the 

household chooses whichever location gives it the most utility: ( , )A B
i i iV max V V .  

This framework further assumes that the marginal rate of substitution between 

housing and non-housing consumption is zero and that housing can be consumed 

only in a fixed quantity.  These serve to emphasize the households' choice of 

location and are common assumptions (e.g. Sinai and Souleles (2005)). 

In choosing to live in the location where their utilities are highest, households 

trade off rental costs, their preferences for that location, their incomes, and any 

 
7 The taste parameter is intended to reflect heterogeneity in household preferences for local traits.  Examples include the 
type of amenities, weather, consumption possibilities, and location.  



productivity difference. We focus on the case where latent demand to live in B 

exceeds the space that would be available if rent were zero. If B was not fully 

occupied, it would be free and households would sort between the locations based 

only on their tastes and any productivity differences.   

Virtually all of the important implications of the superstar mechanism follow 

from the first lemma which deals with how sorting across locations occurs.   

 

Lemma 1: Conditional on an agent’s taste, ic , and the productivity differences 

between the two locations, the agent chooses to live in B if her wage, iw , is 

greater than a cutoff value ( )iw c . 

A utility maximizing agent prefers B to A when i i
B AV V : 

(1)  ( ) (1 )i i i ic w r c w     . 

Solving this expression in terms of iw , the cutoff as a function of the agent's 

wage is given by the following expression: 

(2)  

( )
( )

(1 ) 1
i

i
i

r c
w c

c






  . 

This cutoff is binding only if ( )i

r
w c





  , since for i

r
w





   the agent 

obtains negative utility from living in B and would always choose to live in A 

instead, where she is guaranteed non-negative utility. Moreover, unless r  , the 

cutoff trivially binds given [0, )iw   . 

 

Two relevant corollaries are as follows. 

Corollary 1: Conditional on her wage, iw , an agent with taste greater than a 

cutoff value ( )ic w  chooses location B. 



Inverting (2), the cutoff value is given by: 

(3)  ( )
(1 )

i
i

i

w
c w

w r 


  
 

Since the wages for agents living in B are constrained to [ , )i

r
w





  , the 

taste threshold is bounded in the following way: 
1

( ) 1
1 ic w


 


. 

 

Corollary 2: If r  , both the wage cutoff ( )iw c  and the taste cutoff ( )ic w  

are decreasing in their arguments ic  and iw , respectively, and increasing in the 

rental price r. 

This can be shown by taking the derivatives of the cutoffs with respect to their 

arguments. 

(4)  
2

( ) ( )
0

[(1 ) 1]
i

i i

dw c r

dc c




 
 

   

(5)  
2

( ) ( )
0

[(1 ) ]
i

i i

dc w r

dw w r


 
 

 
    

Due to the tradeoff in utility between non-housing consumption and location, 

agents with higher tastes for B will sort into B at a lower wage threshold.  Due to 

the curvature of wages in the utility function, agents with higher wages will sort 

into B for lower levels of intrinsic taste for the location.  Corollary 1 showed that 

r   is a necessary condition for the wage cutoff to bind.   That, plus the results 

in Lemma 1, and Corollary 1, make it evident that both ( )iw c  and ( )ic w  are 

increasing in the rent, r. 

From these basic results flow the implications of the propositions outlined 

next.   

  



Proposition 1: Rent and the average wage are higher in B than in A. 

Rent is higher in B than A as long as ( )K r    since rent is zero in A and 

greater than zero in B due to the assumption of excess demand for B.8  The 

difference in rent between B and A increases with the inelasticity of supply in B 

or of close substitutes to B.  Since only households with wages in excess of their 

cutoffs ( )iw c  are willing to pay the rent premium to live in B, and tastes are 

independent of wages, the wage distribution in B is shifted to the right relative to 

A.   

Figure 3 provides the intuition behind this result.  It plots ( )iw c  as a solid line 

in ( , )i ic w space.  Households with ( , )i ic w to the southwest of ( )iw c  will choose 

to live in A and those to the northeast will pick B.  The households in A include 

those that would prefer A even if B was free ( 0.5ic  ), and those that would 

prefer B if rent were lower but will choose A at the clearing rent.9 

 

Proposition 2: The share of households that are high income is higher in B 

than in A. 

The intuition follows directly from Proposition 1 and Figure 3.  Low-wage 

households are more likely than high-wage households to defect from B if living 

there requires paying rent.  That implies that the households remaining in B are 

 
8 This rent premium is due to the interaction of the underlying scarcity of land with heterogenous tastes for location rather 
than the cost of housing structures, which is similar across markets.  This is consistent with the literature, which shows that 
house price differences across markets are greater than construction cost differences (e.g., Gyourko and Saiz (2006)). 
9 Figure 3 assumes the wage distribution is lognormal(0,1), ic  is distributed uniform[0,1], 0  , and 1  . The 

proofs in the appendix show that our results hold for any distribution of wages or tastes, as long as they are independent, 
and for any productivity differences.  Because the B region always occupies the upper right-hand section of Figure 3, as 
long as the wage distribution is constant across the taste dimension, relatively high income households always will 
disproportionately live in B.  However, if the taste distribution is evolving, it is not necessarily distinct from the income 
distribution drivers that we consider below in our empirical work.  In that section, we report evidence that changes in the 
income distribution generate a large fraction of the empirical patterns we observe, but that does not preclude changing 
tastes from being an additional factor.  However, we consider it unlikely that changing tastes would be spuriously 
correlated with the effect of the income distribution so as to confound our estimates. 



disproportionately high-income.  As Figure 3 illustrates, households in the region 

choosing B must be weighted toward the high end of the wage distribution. 

 

Proposition 3: Aggregate population growth causes rent growth in B and the 

effect is increasing in the inelasticity of housing supply. 

Corollary 3.1: Aggregate population growth results in an increase in the 

average wage of agents choosing to live in B. 

As the population grows, the absolute number of households that prefer to live 

in B will increase because the fraction that prefers B is unchanged.  Some of the 

new households have a higher willingness-to-pay for B than some of the old 

households and, since supply in B is not perfectly elastic, rents increase to clear 

the market.  The less elastic is the supply of B, or of locations that are close 

substitutes to B, the less location B can accommodate the increased demand, and 

the more rents must rise.  A higher rent requires that a household have a higher 

wage to be indifferent between A and B, so the average wage of the households 

that are still willing to live in B is higher.   

Supply inelasticity plays an important role in determining the magnitude of 

the differences between A and B.  The proofs in the appendix show that when 

supply is nearly perfectly elastic the differences between A and B are 

infinitesimal, and as it becomes harder to bring new supply to market the 

magnitude of the superstar effect increases.  Thus, in practice, supply in B would 

have to be noticeably inelastic for there to be sizeable differences between A and 

B in rent growth and consequently their income distributions.  Similarly, since we 

can think of substitute cities for B as akin to additional supply of B, only if perfect 

substitutes for B are in completely elastic supply would we expect to see no 

superstar mechanism whatsoever.  However, large differences between B and A 

would arise only if replicating a city is difficult or there are barriers to 

construction in substitute cities. 



The case of perfectly inelastic supply of B is depicted in Figure 3 where the 

wage cutoff function w(ci)’, plotted with a dashed line, corresponds to a doubling 

of the population relative to w(ci) and an unchanged capacity of B and distribution 

of wages. Rent nearly triples, from 62 to 164, to clear the market.  A smaller 

share of the population now chooses B, and the households that do so on average 

have a higher taste for B and more income. 

 

Proposition 4: A more skewed aggregate wage distribution with a thicker 

right tail leads to higher wages and rents in B. 

If the wage distribution shifts to the right, more households will have wages in 

excess of ( )iw c and would choose B.  This increase in demand for B will be met 

with higher rent in B as long as new construction in B is not perfectly elastic.  A 

rise in rent increases ( )iw c  at every ic , but more so for low-wage households than 

for high-wage households.  The higher indifference wage crowds out relatively 

low-wage and low-taste-for-B households who will instead live in A.  The 

remaining households in B will be even more relatively high-wage than before, 

increasing the average wage of residents of B.  To the extent that B does not have 

perfectly inelastic supply, new construction will accommodate some of the new 

demand, but not enough to fully undo the increase in wages and rent.    

 The dotted line in Figure 3 shows what would happen in our example if the 

wage distribution shifted and the population doubled without a commensurate 

increase in the capacity of B.  The clearing rent rises to 277, and most lower-wage 

households are crowded out of B by the new high-wage, high-taste households. 

 

Proposition 5: An anticipated growth in aggregate population or the number 

of high income individuals in the aggregate population results in a higher price-

to-rent ratio in B than in A. 



We follow the tradition in the housing literature in presuming that in asset 

market equilibrium, house price in city m, which we denote 0
mP , equals  the 

expected present value of future rents ,t mr  plus a risk adjustment or  

(6)  0 ,0

m t
t m mP r e dt 

    

where   is the discount rate and m  is the MSA-constant risk premium (e.g., 

Meese and Wallace (1994), Sinai and Souleles (2005), Ortalo-Magné and Prat 

(2011)).  If rents grow at a constant rate so that , 0,
mg t

t m mr r e , we obtain the 

continuous-time Gordon Growth Model with an additional adjustment for risk: 

(7)  

0, ( )

0
0,

1
.mm g t

m m
m m

P
e dt

r g
  


     


 

From equation (7), it follows that the price-to-income ratio is increasing in the 

growth rate: 

(8)  

0,

2
0,

1
0.

( )
m

m m m

Pd

dg r g
 

       

By the chain rule of differentiation, 

(9)  

m m
m

dr dr dN
g

dt dN dt
 

 

In Proposition 3, we showed that mdr

dN
 is higher for location B, hence the 

growth rate of rent in B is higher than in A.  Aggregate population growth, 
dN

dt
, 

enters identically into equation (9) for locations B and A, so B Ag g . Since the 

price-to-rent ratio is increasing in the rental growth rate, there is a higher price-to-

rent ratio in B than in A. The second part of this proposition follows similar logic. 

If agents anticipate a right-ward shift in the wage distribution, then this leads to 

higher future rents per Proposition 3. Higher future rents precipitate a higher 



growth rate of rents by definition. It then follows from the previous results that a 

higher growth rate in rents leads to a higher price-to-rent ratio in B than in A. 

II. Data description 

Our primary data source is the six decennial United States Censuses taken 

between 1950 and 2000.  We obtained information on the distributions of house 

values, rents, family incomes, population, and the number of housing units at two 

levels of geographical aggregation: metropolitan areas, and Census-designated 

places, which are municipalities such as cities and towns.  All dollar values are 

converted into constant 2000 dollars using the CPI-U price index. 

The MSA data used in our empirical analysis consists of a panel of 279 areas 

that had populations of at least 50,000 in 1950 and are in the continental United 

States.10  Our metro area definition is based on 1990 county boundaries to project 

consistent metro area boundaries forward and backward through time.11  Data 

were collected at the county level and aggregated to the metropolitan statistical 

area (MSA) or primary metropolitan statistical area (PMSA) level in the case of 

consolidated metropolitan statistical areas.12  Data for the 1970-2000 period were 

obtained from GeoLytics, which compiles long-form data from the decennial 

Censuses of Housing and Population.  We hand-collected data spanning 1950 and 

1960 from hard copy volumes of the Census of Population and Housing.  Both 

 
10 Thirty-six areas with populations under 50,000 in 1950 were excluded from our analysis because of concerns about 
abnormal house quality changes in markets with so few units at the start of our period of analysis.  None of our key results 
are materially affected by this paring of the sample.  Similar concerns account for our not using data from the first Census 
of Housing in 1940.  (All individual housing trait data from the 1940 census were lost, so we cannot track any trait changes 
over time from that year.)  We did repeat our MSA-level analysis over the 1940-2000 time period.  While the point 
estimates naturally differ from those reported below, the magnitudes, signs, and statistical significance are essentially 
unchanged.  Finally, the New York PMSA is excluded from the analysis reported below because it is missing house price 
data for 1960. 
11 We use definitions provided by the Office of Management and Budget, available at 
http://www.census.gov/population/estimates/metro-city/90mfips.txt.  
12 All our conclusions are robust to aggregating to the CMSA level. 



sources are based on 100 percent population counts.  At the Census place level, 

we extracted data for 1970-2000 from the GeoLytics CD-ROMs.13   

The primary strength of using house price data from the decennial censuses is 

that it is available on a consistent basis over the half century-long period needed 

for our analysis.  The weakness is that the underlying observations are both self-

reported and not quality adjusted.  However, correlations between constant quality 

and unadjusted house price series are high over decadal-length periods.  For 

example, the correlation across house price appreciation rates for a large set of 

consistently defined MSAs in our Census data and the Federal Housing Finance 

Administration (FHFA) constant quality house price index is 0.94 in the 1980s 

and 0.87 in the 1990s. 

Income also is central to our analysis.  To categorize the distribution of 

income, we divide real family incomes into five categories that are consistent over 

time.  The income categories in the original Census data change in each decade, 

so we set the category boundaries equal to 25, 50, 75, and 100 percent of the 1960 

family income top code, and then populate the resulting five bins using a 

weighted average of the actual categories in $2000 (assuming a uniform 

distribution of families within the bins).  Since 1960 had amongst the lowest top 

code in real terms, using it as an upper bound reduces miscategorization of 

families into income bins.  This results in the following bins: We call a family 

“poor” if its income is less than $36,384 in $2000.  “Middle-poor” are those 

families with incomes between $36,384 and $72,769, “middle” income families 

have incomes between $72,769 and $109,153, “middle-rich” families lie between 

$109,153 and $145,537, and “rich” families have incomes in excess of the 1960 

 
13While states differ in the extent to which local jurisdictions control new construction or even whether they can change 
their boundaries, census-designated places provide a useful comparable sample.  The 1970 data include only 6,963 out of 
20,768 places.  (Conversations with the Census Bureau suggest that the micro data on the remaining places has been lost or 
is not readily available.)  Fortunately, these places account for more than 95 percent of U.S. population in 1970.  In 2000, 
161 million people lived in these 6,963 places, 206 million people in all places, and 281 million people in the entire U.S.  
We further limit the sample to places within a MSA.   



real topcode of $145,537.  It is important to recognize that the quartiles of the 

1960 income top code do not correspond to quartiles of the income distribution; 

there are far more families in the “poor” category than in the “rich” category.  

Thus, our choice of income bin boundaries provides more detail in the right tail of 

the income distribution. 

III. Empirical evidence 

The underlying conditions necessary for the superstar cities hypothesis to be 

true have been present in the post-WWII era.  Between 1950 and 2000, the 

number of families in U.S. metropolitan areas doubled, with the number making 

more than $140,000 in constant $2000 dollars increasing more than eight-fold 

according to the U.S. Census.   And, some metropolitan areas and local 

communities have more inelastic housing supply than others, either because of 

local regulation or geographic restrictions (e.g., Gyourko, Saiz, and Summers and 

(2008);  Saiz (2010);  Paciorek (2011)).  Given that, we now take the model to the 

data and test the five Propositions from Section I. 

A. Defining Superstar Markets 

Our first step is to define empirical proxies for the theoretical characteristics 

of superstar markets: preference for the location and inelastic supply.  We use the 

fact that demand growth has to be manifested either in price growth or housing 

unit growth to construct these variables. We measure growth in mean real prices 

and housing units at the MSA level over 20-year periods.  This window size gives 

us growth rates defined over four time periods: 1950-70, 1960-80, 1970-90, and 

1980-2000. We identify high demand MSAs by applying a simple cutoff of 

whether the sum of the price and quantity growth rates for the market is above the 

sample median.  This definition captures the idea that both inelastically-supplied 



markets with very limited new construction but high price appreciation and elastic 

markets with minimal price growth but lots of construction should be categorized 

as in high demand.  We allow the high-demand cutoff to vary over time in order 

to account for changes in the aggregate economy.  For example, a MSA is defined 

as being in high demand in 1970 if the sum of its price and housing unit growth 

rates from 1950-70 exceeds the sample median for that period.  We proxy for the 

inverse supply elasticity with the ratio of the price growth rate to the housing unit 

growth rate.  In a city with inelastic supply, demand growth is manifested more in 

price growth than in housing unit growth, so this ratio should be high. 

We define an indicator variable for superstar status (Superstar) based on 

whether a MSA is in the “high demand” category and in the top decile of the ratio 

of price growth rate-to-housing unit growth rate based on growth rates over the 

prior two decades.14  Due to the two-decade lag for computing growth rates, 1970 

is the first year for which we can define a superstar.  The sample of superstars, 

broken down by decade in Appendix Table B, includes major metropolitan areas 

that are superstars in multiple years as well as smaller MSAs that enter and exit 

superstar status.  To purge those noisy MSAs from our sample, we define the 

MSA-constant Superstari as one if the time-varying Superstarit equals one in any 

two decades between 1970 and 2000, and redefine Superstarit to equal one only 

for MSAs that are superstars for at least two decades.  However, we obtain very 

similar results when we define Superstari as those MSAs that are in the superstar 

category for one or more census years.    

To illustrate where MSAs fall along the dimensions that make up a superstar 

city, Figures 4 and 5 plot average real annual house price growth against housing 

 
14As shown in Section I, there can be different degrees of “superstarness,” so if a location is more preferred relative to its 
capacity and/or has less elastic housing supply, it will exhibit more pronounced superstar characteristics.  In our empirical 
analysis, we refer to only the most prominent examples as “superstars” since that lines up well with the empirical 
distribution, which has a skewed right tail, and makes the exposition more concise. However, all our key conclusions are 
robust to estimation with a continuous measure, defined as the ratio of the price growth rate to the housing unit growth rate 
for high demand MSAs or places.  
 



unit growth during the 1960-1980 and 1980-2000 periods, respectively.  Three 

regions are outlined in each figure.  Region C, below the negatively-sloped 

dashed line, corresponds to low demand as defined above (i.e., they have sums of 

price and housing unit growth rates below the sample median for the 

corresponding time period).  Among the high-demand MSAs, regions B and A 

are, respectively, above and below the 90th percentile price growth rate to quantity 

growth rate threshold (about 1.7) that we use for our binary definition of a 

superstar city. Thus, the markets in Region B are superstars because they are both 

in the high growth region and in the top decile of inelasticity of supply.  By 

contrast, MSAs in the A range also have high demand, but they have more elastic 

supply since they are closer to the X-axis and have built more new units relative 

to the real house price appreciation they experienced.   

Beyond providing snapshots of superstar status at two points in time, these 

two figures also illustrate some of the time series variation that we will exploit in 

our regression analysis.  In the face of geographic constraints or politically-

imposed restrictions on development, it seems natural that at least some high-

demand metropolitan areas would become more inelastically supplied over time 

as demand for their scarce housing units becomes larger and they begin to “fill 

up”.  This process would appear as a market moving counter-clockwise around 

the origin over time.  We do observe such evolutions.  For example, Figure 4 

shows that by 1980, San Francisco and Los Angeles qualified as superstars.  In 

1970 (which is based on data from 1950-1970), both markets were in the A range 

of the plot.  Figure 5 then shows that by the end of our sample period in 2000, 20 

more high demand MSAs filled up, also becoming superstars. 

At the Census place level, we categorize a place as a superstar if it is both 

high demand and in the top quartile of the ratio of price growth to unit growth.  

The methodology for determining which communities are “high demand” and for 



computing their supply elasticities is comparable to our MSA-level procedure.15  

However, the place data are available only from 1970 to 2000 so, after accounting 

for the two decades of lags required to compute these variables, our useable place-

level sample covers only 1990 and 2000.  

B. Results 

Propositions 1 and 2: Do Superstar cities or suburbs have different prices or 

incomes?— 

Propositions 1 and 2 state that superstar MSAs or towns should have higher 

house prices and higher average incomes.  In addition, the income distributions 

should be shifted more to the right – superstars should have relatively larger 

shares of their populations in the high-income bins and smaller shares in the low-

income bins.  We will first see if these predictions hold in the cross-section for 

MSAs, then for Census places, and then within MSAs as they change Superstar 

status.  Appendix Tables 1A and 1B report summary statistics for all variables 

used in this section. 

We estimate the following bivariate regression using our panel of 279 MSAs 

over four two-decade periods (for a total of 1,116 MSA × year observations): 

௜ܻ௧ ൌ ଵSuperstar௜ߚ ൅ δ୲ ൅ ε୧୲ 

for MSA i in year t. 16  The dependent variable, Yit, takes a variety of outcomes, 

including the log house value, log income, and the share of families in each of the 

income categories. Year dummies also are included.  Thus, the estimated 

 
15 A place is considered to be high-demand if its sum of price and housing unit growth rates exceeds that period’s median 
across all places in all MSAs.  The 75th percentile ratio of price growth rate to unit growth rate for places (2.0) is close to 
the 90th percentile for MSAs (1.7) because the distribution for places has thicker tails than for MSAs. 
16 To be faithful to the model in section I, we compare the outcomes for superstar cities to all other metropolitan areas.  In 
the model, cities with less demand than capacity are perfectly elastically supplied, whereas cities with excess demand can 
have varying supply elasticities.  We compare the high-demand, inelastic cities to both low-demand cities and high-
demand, elastic cities.  In practice, not all low-demand cities appear to have elastic supply by our measures.  This may be 
due to measurement error, or house prices being below construction cost as in Glaeser and Gyourko (2005).  However, we 
have obtained comparable results even when including a separate control for low-demand areas. 



coefficient ߚଵ measures the average difference between MSAs that ever are 

superstars and other MSAs.   

The results are reported in panel (A) of Table 2.  Superstar status is associated 

with higher average and 10th percentile house values, higher average income, a 

greater share of the MSA’s residents in the high-income categories and a lower 

share in the low-income categories.  Moreover, the point estimates are 

economically large as well as statistically significant.  For example, in the first 

column, where the dependent variable is the log of the MSA’s average house 

value, the estimated coefficient of 0.6053 for log house value (0.0729 standard 

error) implies that superstar MSAs have 60 percent higher average house values.  

The second column uses the log of the MSA’s 10th percentile house value as the 

dependent variable in an attempt to more closely reflect the changing minimum 

entry price for an MSA due to rising land values, as well as better control for 

differences in spending on the structure component of housing.  The estimated 

coefficient is even larger, 0.7844 (0.0855 standard error).17     

In the cross-section, superstar MSAs also have income distributions that are 

shifted to the right relative to other MSAs.  In column 3, average incomes are 

shown to be nearly 24 percent higher (standard error of about 3 percent) in 

superstars.  We look at other points in the income distribution in columns 4 

through 8.  The outcome variables in these columns correspond to each of the five 

income bins (y) in each MSA i in year t: ௜ܻ௧ ൌ
#	௜௡	௜௡௖௢௠௘	௕௜௡౯౟౪
#	௢௙	௛௢௨௦௘௛௢௟ௗ௦౯౟౪

.  For example, in 

column 4, we find that the mean share of households in the ‘rich’ group in 

superstar MSAs is 3.4 percentage points higher than in other MSAs.  Since the 

income distribution outcome variables in columns 4 through 8 are not in logs, in 

those columns we report the estimated elasticity (in square brackets) in addition to 

 
17 While our empirical results, in keeping with the prior literature, focus on house values, the model in section I is 
expressed in terms of rents.  We have obtained comparable results throughout this paper when using log average rent as the 
dependent variable.  



the usual point estimate.  For example, since the share of the income distribution 

that is in the “rich” category averages just 3.3 percent, the estimated effect of 

0.0339 amounts to a 101.7 percent increase in the “rich” share relative to the 

average.  In addition, we find that superstars have an 80 percent higher share 

middle-rich, 41 percent higher share middle-income, and 26 percent lower “poor” 

households.   

Panel B of Table 2 reports the analogous results using Place-level data.  In this 

case, our research design can control nonparametrically for any confounding 

unobservable factor that might vary by MSAs or across MSAs over time, using 

only variation across towns within an MSA in a given year to identify our 

estimates.18  The place-level version of our regression is: 

௞ܻ௜௧ ൌ ଵsuperstar௞ߚ ൅ δ୧୲ ൅ ε୩୧୲ 

The unit of observation is now Census place k in MSA i in year t.  Superstar 

status is determined at the place level.  MSA × year fixed effects also are 

included. 

The Place-level results in panel (B) of Table 2 exhibit very similar patterns to 

those found across MSAs.  Superstar towns in an MSA have higher house values 

and average incomes than other towns in the same MSA and year.  They also have 

income distributions that are shifted to the right.  In particular, we find that 

average house values in superstar towns are 37 percent higher (column 1) and 

incomes are 24 percent higher (column 3).  The share of the population in the top 

two income categories is substantially greater, and the fraction of the population 

in the bottom two income categories experiences an offsetting decline. 

Another approach to controlling for unobservable MSA-level characteristics is 

to see what happens when an MSA becomes a superstar.  By using the time-

 
18 For example, to the extent that productivity growth is more constant within MSAs than between them, our Place-level 
estimates, by controlling nonparametrically for MSA x year unobservables, will better control for it.  However, Moretti’s 
(2011) and Baum-Snow and Pavan’s (2011) evidence that households sort among cities differentially based on growth in 
the returns to skill underscore how difficult it is to completely reject productivity-based explanations.   



varying definition of superstar, we can include MSA-level fixed effects, thus 

controlling for unobserved differences across MSAs that could confound the 

relationship between demand, supply elasticity, and the outcome variables.  

Instead, the identification strategy measures how much the outcome variables 

change when the MSA is a superstar versus when it is not.  In the bottom panel of 

Table 2, we report estimates from the following regression equation: 

௜ܻ௧ ൌ ଵSuperstar௜௧ߚ ൅ δ୲ ൅ γ୧ ൅ ε୧୲ 

Relative to panel (A), we have added a MSA fixed effect, γ୧, and allowed 

Superstar௜௧ to vary over time, as defined in the Data section. 

We find the same pattern in within-MSA differences over time that we 

observed across MSAs.  MSAs experience increases in house prices and average 

incomes, and become more rich and less poor, when they are in the Superstar 

region.  The effect on house values and average income are smaller than in panel 

(A), but still economically large and statistically significant.   This pattern 

indicates that MSAs that become superstars had higher house prices and incomes 

than other MSAs prior to becoming superstars, and experienced an additional 

jump in house prices and average incomes after becoming superstars.  The 

coefficients on the income bins are also smaller in panel (C) than in panel (A), 

though the fundamental pattern and significance is maintained.  The share of an 

MSA’s population in the top two income categories increases by at least 90 

percent when the MSA enters the superstar region, the middle-income category 

grows by about 6 percent, and the share in the bottom two income categories falls 

between 4 and 14 percent.  

 

Propositions 3 and 4: Are superstars differently affected when the aggregate 

income distribution changes?— 

At the national/MSA levels, the model implies that when either the U.S. 

population or share of the population that is high-income increases, land prices 



should rise fastest and the local income distributions should shift to the right the 

most in superstar MSAs.  We do not try to distinguish between the effects of 

population and income share in our empirical analysis, instead combining the two 

factors into one measure: the number of high-income families.  We then look for 

empirical evidence at the national/MSA and then MSA/place levels. 

The top panel of Table 3 reports results from our national/MSA regression 

specification that relates a time-varying MSA outcome to changes in the national 

income distribution and time-invariant differences across MSAs in their superstar 

status.  Specifically, the regression equation takes the following form: 

௜ܻ௧ ൌ ଵSuperstar௜ߚ ൈ lnሺ#	Rich୲ሻ ൅ γ୧ ൅ δ୲ ൅ ε୧୲ 

for MSA i in year t.  The dependent variable, Yit, takes the usual set of outcomes.   

The first regressor interacts the time-invariant Superstar indicator with the log 

of the number of households at the national level that are in the “rich” income bin 

(ln(#Richt)).  The Superstar indicator varies across MSAs and the number of rich 

households varies over time, so the interaction varies over time within MSA.  

Thus, the estimated coefficient ߚଵ measures how changes in the number of rich 

families at the aggregate level differentially affect superstar cities relative to all 

other cities.  The MSA fixed effects (γi) control for MSA-level unobserved 

heterogeneity and the year dummies (δt) absorb influences that vary only over 

time, such as aggregate macroeconomic factors.  These fixed effects also subsume 

the uninteracted effects of supply elasticity or the aggregate number of rich 

families.19 

The results support Propositions 3 and 4.  In the first column, where the 

dependent variable is the log of the MSA-average house value, the estimated 

coefficient of 0.3943 (0.0356 standard error) indicates that house values rise by 

more in more inelastic, high demand  MSAs when the national number of rich 

 
19 We obtain similar results by taking first-differences within MSAs. 



families increases.  We observe a smaller, though still statistically significant, 

effect on the 10th percentile house value.   

To get a sense of the magnitudes, consider that between 1970 and 2000 the 

number of rich families in the U.S. grew by 160 percent.  In the first column, the 

average house values in superstar MSAs are estimated to rise by 39 percentage 

points more than in other MSAs when the number of rich families nationally 

doubles.  In actuality, mean house prices in superstar MSAs grew 75 percentage 

points more than in other MSAs, so the pressure of the growing national income 

distribution can account for more than 80 percent of the excess growth in house 

prices in Superstar cities in that specification.20  

The remaining columns of panel (A) of Table 3 address the implications of 

Propositions 2 and 3 that the rise in house prices in superstar cities should also 

affect the distribution of local incomes.  Column 3 uses the log of the mean 

income in the MSA as the dependent variable.  The estimated coefficient of 

0.1292 (0.0143) in the first row implies that doubling of the number of rich 

families in the country is associated with an 12.9 percentage point higher growth 

rate in average income in a superstar MSA.  This represents all of the actual 

difference in the growth in average income between superstar MSAs and other 

MSAs over the 1970 to 2000 period.   

Columns 4 through 8 report the estimated effects of growth in the national 

number of rich families at the various points in an MSA’s income distribution.  

These results show that when the national number of rich families increases, the 

income distribution shifts to the right more in superstar MSAs.  Relative to other 

MSAs, superstars experience a larger increase in their share of households that are 

in the highest-income categories and a bigger decline in their middle-low-income 

households.  For example, the estimated coefficient of 0.0407 (0.0022) in the first 

row of column 4 implies that a doubling of the number of rich families nationally 
 
20 160 × 0.3943 = 63.1, which is 84.1 percent of 75. 



would increase the share of households in the “rich” category for superstar cities 

by 4 percentage points more than in other MSAs.  A similar, but smaller, effect is 

found among the “middle-rich” households in column 5, and no effect is found for 

middle-income households. 

At the other end of the income spectrum, a doubling of the number of national 

rich families would yield more than a 6 percentage point excess decline in the 

share of households in the “middle-poor” category, consistent with the higher-

income households crowding out the lower-income ones.  We discern little 

differential change between superstar MSAs and other MSAs in the share of 

households in the “poor” category.21   

These results also help distinguish the superstar cities mechanism from other 

potential sources of local housing demand.  It seems unlikely that local growth 

(for example, changes in the α or β parameters from the model in Section I) would 

match the geographic pattern, timing, and linkage to the national income 

distribution of MSA price growth that is predicted by our framework.  In addition, 

potential confounding effects due to defining superstar cities based in part on 

average house price growth over the entire sample period are mitigated by directly 

controlling for the superstar nature of an MSA, thereby identifying the effect from 

the interaction of those variables with changes in the national income distribution.     

The ‘superstar suburbs’ logic implies that the number of rich families at the 

MSA level should be positively correlated with house price growth, income 

growth, and the rich share of families at the Census place level.  The place-level 

version of our regression is: 

௞ܻ௜௧ ൌ ଵsuperstar௞ߚ ൈ lnሺ#	Rich୧୲ሻ ൅ γ୩ ൅ δ୧୲ ൅ ε୩୧୲. 

 
21 Ortalo-Magné and Rady (2008) provide one possible explanation for the stickiness of low-income households—namely, 
that those who bought more cheaply in previous years simply remain in their homes.  In effect, their wealth (due to 
homeownership) rises to offset rising house prices.  Lee (2010) and Eeckhout, Pinheiro, and Schmidheiny (2010) provide 
other potential explanations based on the complementarity of low- and high-wage workers. 



The unit of observation is now Census place k in MSA i in year t.  Superstar 

status is determined at the place level, and Superstar௞ is set equal to one if the 

Census place is in the superstar region in either 1990 or 2000.  The aggregate 

growth in the number rich is measured at the MSA × year level.  Place and MSA 

× year fixed effects also are included. 

The results reported in the bottom panel of Table 3 reveal a similar pattern to 

the MSA results in the top panel.  The magnitudes on the estimated coefficients 

are attenuated, but remain statistically significant.  In sum, there is substantial 

evidence among towns within a given metropolitan area that aggregate, MSA-

level changes have disproportionate impacts on prices, wages, and the share rich 

in superstar communities that have inelastic supplies and are in strong demand.22 

 

Proposition 5: Price-to-Rent Ratios in Superstar Markets — 

Proposition 5 stated that prices would be a greater multiple of rents in 

superstar markets if growth in rents was anticipated.  The first column of Table 4 

uses the cross sectional, MSA-level specification from panel (A) of Table 2, but 

with the log of the MSA-average price-to-rent ratio as the dependent variable.  

The estimated coefficient of 0.3145 from the first row indicates that, on average, 

prices are a 31 percent larger multiple of rents in superstar MSAs.  Column 2 

repeats the cross-section analysis at the Census place level, with MSA × year 

fixed effects.  We find that superstar suburbs have a 26 percent higher price-to-

rent ratio than other towns.  This pattern persists when MSAs transition to 

superstar status (Column 3).  In the years that MSAs are superstars, their price-to-

 
22 One drawback of this level of geography is that our place-level data date only to 1970, which makes it more difficult to 

assess within-town changes over time.  Because ( / )
ki

P Q   requires two lagged decades to construct, we observe only 

one change per Census place – between 1990 and 2000.  Essentially, we are estimating whether the change in the left hand 
side variable between 1990 and 2000 is related to the growth in the number of rich families in the “parent” MSA over that 
time period.  Because each of the 279 “parent” MSAs experienced different rates of growth in the number of rich families 
between 1990 and 2000, we have plenty of variation to identify the effects on the Census places within those MSAs.  We 
also have applied the measure of superstar status defined over the 1990-2000 period to the entire 1970 to 2000 sample, 
with consistent results. 



rent ratios are 27 percent greater than in the years when they are not superstars.  

The last two columns of Table 4 relate changes in the price-to-rent ratio at the 

MSA or Place levels to changes in the number of “rich” households at an 

aggregate geography.  In both cases, when the number of “rich” households 

increases, the price-to-rent ratio goes up by more in superstar MSAs or Places.   

It is worth underscoring that this result is consistent with standard asset 

market equilibrium.  Homeowners in superstar markets do not necessarily obtain a 

higher return; instead, they receive a higher expected capital gain at the expense 

of a lower current yield.  In that way, superstar markets are like growth stocks in 

the equity investment universe. 

C. Ex ante versus ex post definitions of Superstar status 

As a robustness check, we redefined our proxy for superstar status using ex 

ante MSA characteristics rather than ex post realizations of price and quantity 

growth.  The model in Section I implies that it is a combination of supply 

inelasticity and high demand for the location that defines superstar status.  Our ex 

ante definition of an inelastically supplied MSA is one that is in the top decile of 

Saiz’s (2010) topography-based measure of the difficulty of building.  We have 

two approaches to defining “high-demand” based on ex ante data.  For one, we 

denote the top third of MSAs ranked by the sum of their price and housing unit 

growth in the pre-sample period of 1950-1970 as high-demand.  In the other, we 

denote the top third of MSAs ranked by their mean January temperature as high-

demand.  Including our baseline definitions, we had two proxies for the elasticity 

of supply and three proxies for high demand.  We replicated all the MSA-level 

specifications using each of the six combinations of these definitions, with the 

exception of Panel C of Table 2.  Since neither the Saiz elasticity measure nor the 



ex ante high-demand proxies are time-varying, we could not use combinations of 

these variables to estimate the effect of changing superstar status. 

In Table 5, we report the estimated coefficients corresponding to the two 

combinations that used only the three new ex ante definitions.  The alternative 

definitions yield lower estimates than in our baseline results, but they remain 

economically and statistically meaningful.  The estimates from the specifications 

corresponding to panel (A) of Table 2 are reported in the top panel of Table 5.  

Each row corresponds to a different construction of Superstar status.  Superstar 

MSAs exhibit higher house prices – about the same magnitudes as in Table 2 – 

and a right-shift in the income distribution that is about half the magnitude of that 

reported in Table 2.  The bottom panel of Table 5 estimates the effect of growth in 

the national number of rich households on the newly-defined Superstar MSAs, 

akin to panel (A) of Table 3.  These estimates are typically 40 to 50 percent lower 

in magnitude than in our baseline estimates, but they are still economically and 

statistically significant.  For example, in the first row of the bottom panel, the 

estimated coefficient in the regression of log house value on the interaction of 

Superstar status with the log number of rich households nationally is 0.2685 

(0.0361).  This estimated coefficient implies that the 160 percent increase in the 

national number rich between 1970 and 2000 would yield a 43 percent increase in 

house prices in Superstar cities, or about 57 percent of the actual growth.  In the 

third column, the estimated coefficient of 0.0836 (0.0144) corresponds to a 13 

percent greater increase in log mean income for Superstar MSAs over the same 

time period. 

IV. Conclusion 

This paper argues that much of the growing dispersion in house prices in the 

post-WWII era is the consequence of aggregate population growth and the 



skewing of incomes nationally interacting with preferences for location and 

differences in local supply conditions.  This combination of conditions has 

generated an important economic and social phenomenon.  Because high house 

prices disproportionately crowd out lower-income potential residents, the 

evolution of entire metropolitan areas into superstars influences the way we 

spatially organize our society.  Mere population growth forces residency in 

preferred cities and towns effectively to be auctioned off to the highest bidder, 

with existing landowners in those places benefitting from the rise in prices.  In 

contrast to the standard urban growth analysis, the house price growth in superstar 

cities that we describe is not due to an increasing service flow or greater 

productivity.     

Although our analysis does not rule out a role for other factors such as 

persistent differences in local productivity, we provide empirical evidence at the 

MSA and Census Place geographies that is consistent with the superstar cities 

mechanism described above being one of the key forces in effect.  Our data 

suggests that as much as two-thirds of the growth in dispersion in house prices, 

and almost all of the growth in dispersion in average incomes, between superstar 

MSAs and others over the 1970-2000 period can be explained by the increase in 

high-income households at the national level. 

Our framework also helps us understand the conditions under which widening 

dispersion in house prices may or may not continue.  For the superstars 

mechanism to be operative, metropolitan areas must be differentiated and in 

limited supply, and there must be growth in aggregate housing demand.  If cities 

that are close substitutes to a superstar city can be created, the superstar location 

effectively has a higher supply elasticity and the superstar effect would be 

smaller.  Similarly, an increase in the elasticity of supply in a superstar city itself 

also would attenuate its excess price growth.  Our results imply that despite 

increasing prices over the last 50 years, close substitutes to superstar cities have 



either failed to arise or have not grown fast enough to fully offset the superstar 

effect.   

Our model does suggest two other factors that could affect the superstar 

mechanism.  First, household preferences could shift significantly away from a 

superstar location.  Second, Superstar cities are sensitive to changes in aggregate 

demand.  When housing demand increases, superstar cities and suburbs achieve 

disproportionate growth in house prices and changes in their income distributions.  

When housing demand contracts, the opposite should be true.  The Great 

Recession reminds us that aggregate growth can falter substantially, both in terms 

of income increases and household formation.  It is the waxing and waning of 

these factors which seem most likely to determine whether superstar cities 

maintain the same high long-run house price growth over the next 50 years as 

they did over the previous five decades. 

  



APPENDIX: Proofs of Propositions 1-4: 
 
Proposition 1: Rent and the average wage are higher in B than in A. 

Proof. Let ( )BE w  denote the average wage in B. By the law of iterated 

expectations, the average wage in B is given by: 

(1)  ( ) [ [ | ( )]]i i
B

iE w E E w w w c   

The innermost calculation [ | ( )]i i iE w w w c  gives the expected wages for all 

agents whose wages exceed the threshold ( )iw c . 

(2)  
0

( )

[ | ( )] ( | ( ))

( )

1 ( ( ))i

i i i i i i i i

i i
iw c

i

E w w w c f w w w c w dw

w f w
dw

F w c





  







  

 Taking the expectation over all possible thresholds ( )iw c  gives the mean wages 

of all agents whose wages and decision rule results in them optimally sorting into 

B: 

(3)  
1

0 ( )

( )
( ) [ [ | ( )]] ( )

1 ( ( ))i

i i
i i i i i iw

B

c
i

w f w
E w E E w w w c dw h c dc

F w c

 
     

    

We now make use of the fact that rents are higher in B than in A. In particular 

rents in B are r and rents in A are set to zero. To show that mean wages are higher 

in B, it suffices to show that [ ]BE w  is an increasing function of rents, 

[ ]
0

BdE w

dr
 . Before continuing with the next step of the proof, introduce the 

following simplification in our notation ( )iw c w . By the Fundamental Theorem 

of Calculus, we obtain the following result: 



(4) 

1 1
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1 1

20 0

[ ] ( ) ( )
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( ) ( )
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The inequality introduced in the second step of this computation comes from the 

fact that [ , )iw w   is bounded below by 0w   and the wage cutoff is increasing 

in the rental price 0
w

r

    
 (Corollary 2). 

 

Proposition 2: The share of individuals that are high income is higher in B than 

in A. 

Proof. Without loss of generality we fix a level of wealth Hw  such that agents 

with earnings i Hw w  are considered to be high income individuals. The share of 

high income individuals in B, ,H BS  is given by: 

(5)  
1

, 0
[ ( | ( ))] ( | ( ))H B i H i i i H i i i iS E Prob w w w w c Prob w w w w c h c dc        

The conditional probability in equation (5) is given by: 

 

( ( , ))
, if   ( , )

1 ( )( | ( ))

0, else

i H
i H

i H i i

Prob w max w w
w max w w

F wProb w w w w c

      
  

 

First we define ( )H Hc c w . By Corollary 2, ( ) ( )i H i Hc c w c w c   . By 

Corollary 1, ( ) ( ( ))H H Hw c w c w w  . We use these derived taste cutoffs to 

rewrite the conditional probability as: 



 

1 ( )
, if   

1 ( )( | ( ))

1, if   

H
i H

i H i i

i H
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F wProb w w w w c

c c
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We use this result to simplify the expression in equation (5) for ,H BS : 

(6)  

1

, 0

1 ( )
( ) ( )

1 ( )

( )

H

H

c
H

H B i i i ic

H

F w
S h c dc h c dc
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In the second to the last step we use the fact that 1 (1) ( )H Hc w w c   . In the 

final step, we use (1)
r

w





 . 

For the second part of the proof, we compute ,H AS , the share of high income 

individuals in city A, which is given by the following expression: 

(7)  
1

, 0
[ ( | ( ))] ( | ( ))H A i H i i i H i i i iS E Prob w w w w c Prob w w w w c h c dc        

The conditional probability in equation (7) is given by: 
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By Corollary 2, ( ) ( )H i i H i iw w w c c c w c     , which reduces to Hic c . 

Rewriting the conditional probability we obtain: 
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Comparing ,H BS , the share of high income individuals in B from equation (6) 

with  ,H AS , the share of high income individuals in A from equation (8), we find 

that there is a weakly greater share of high income individuals in B than in A: 

(9)  , ,( )H A H H BS H c S   

When 0Hc  , or equally 
1H

r
w








 this inequality in  is strict and , ,H A H BS S . 

If 
1H

r
w








 then by Lemma 1 everyone in B is classified as high income since 

H

r
w





 . Consequently , 1H BS   and the inequality is again strict. 

 

Proposition 3: Aggregate population growth causes rent growth in B and the 

effect is increasing in the inelasticity of housing supply. 

Proof. First let N be the aggregate population and BN  be the number of agents 

living in B. We then define a binary variable iD  such that 1iD   if individual i 

lives in B and 0iD   if individual i lives in A. The number of agents living in B 

is then given by [ ]B iN N E D  . The proof proceeds in two steps. First we solve 

for  E D  using the law of iterated expectations, i.e. [ ] [ [ | ]]E D E E D c  and set 

that equal to the capacity in B at the equilibrium rental rate r . Second, we 

differentiate this expression with respect to r  and solve out for 
r

N




 in order to 

show that it is positive. 

(10) [ | ] [ ( )] 1 ( ( ))i i i iE D c Prob w w c F w c     

Now by the law of iterated expectations: 

(11)  

1 1 1

0 0 0
[ ] [ | ] ( ) [1 ( )] ( ) 1 ( ) ( )i i i i i i iE D E D c h c dc F w h c dc F w h c dc         



Hence the number of individuals living in B is given by: 

(12)   1

0
1 ( ) ( ) ( )i iN F w h c dc K r    

Differentiating equation (12) with respect to r yields: 
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0 0
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Rearranging this equation into the desired form: 
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The manipulation in the second line above comes inserting the definition of 

equation (12). The change of integration limits in the third line come from the 

assumption that ( )f w  has support on [0, )w  . Setting 
1

( ) 0
1i iw c c


  


. 

Since 0
dK

dr
  by assumption (i.e. higher capacity is offered for a higher market 

clearing rent, and 0
w

r





 by Corollary 2, we obtain 0

dr
r

dN
N

 . In particular, 

dr
r

dN
N

 is decreasing in the elasticity of supply 
dK

K
dr

r
. 

 

Corollary 3.1: Aggregate population growth results in an increase in the average 

wage of agents choosing to live in B. 

Proof. The wage cutoff for living in B is increasing with aggregate population 

growth, i.e. 
( )

0
(1 ) 1

i i

i

dw c c dr

dN c dN
 

 
. This follows from the fact that 0

dr

dN
   



and the minimum taste cutoff for agents living in B is 
1

1minc





, both of which 

are shown in Proposition 3. The proof that 
[ ]BE w

N




 follows via a similar 

computation to the one in equation (4), with N taking the place of B. 

 

Proposition 4: A more skewed aggregate wage distribution with a thicker right 

tail leads to higher wages and rents in B. 

Proof. Let F(w) and G(w) denote two non-identical wage cdfs  with common 

support [0, )w  , where F(w) first order stochastically dominates G(w). First 

order stochastic dominance of F over G captures the fact that F has a thicker right 

tail than G, i.e. ( ) ( )i i i ia a
f w dw g w dw

 
   iw  and ( ) ( )i i i ia a

f w dw g w dw
 

   

for some iw . Let [ ]B
FE w  denote the expected wage of individuals in B under the 

wage distribution F, and [ ]B
GE w  the expected wage of individuals in B under the 

wage distribution G. We now show that [ | ] [ | ] [0,1]B B
F i G i iE w c E w c c   , which 

implies [ ] [ ]F G
B BE w E w . As in Proposition 3, we define a binary variable iD  

such that 1iD   if individual i lives in B and 0iD   if individual i lives in A. 

Taking the conditional expectation of D under the wage distributions F and G 

yields [ | ] 1 ( ( ))F i iE D c F w c   and [ | ] 1 ( ( ))G i iE D c G w c  . By first order 

stochastic dominance of F over G, [ | ] [ | ]F i G iE D c E D c . Moreover, by the 

intermediate value theorem ˆ ( ) [0, ( )]i iw c w c   such that 

ˆ( ( )) ( ( )) ( ( ))i i iF w c G w c G w c  . Using this result in concert with the definition of 

the conditional wage functions given in equation (3) we complete the proof as 

follows: 
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Since [ ] [ ] 0B
F

B
GE w E w  , it follows directly that [ ] [ ]F G

B BE w E w . We now 

show that Fr , the equilibrium rent under the wage distribution F(w) is greater than 

Gr , the equilibrium rent under the wage distribution G(w). Using the result in 

equation (12), the equilibrium rents Fr  and Gr  are given by: 

(15)   1

0
( ) 1 ( ) ( )F i iK r N F w h c dc     

(16)   1

0
( ) 1 ( ) ( )G i iK r N G w h c dc     

Applying the first order stochastic dominance condition to equation (16) we 

obtain: 
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Since ( )K r  is an increasing function of r, ( ) ( )F G F GK r K r r r   . This 

completes the second part of Proposition 4. 



Appendix Table A1: MSA Summary Statistics 
Variable Mean Standard deviation 

MSA time-invariant characteristics (N=279):   
Average Annual Real House Price Growth,  
   1950-2000  

1.57 0.56 

Average Annual Housing Unit Growth,  
   1950-2000  

2.10 0.98 

Average Annual Real Income Growth,  
   1950-2000  

1.82 0.35 

Ever a “superstar” 0.075 0.264 

Ever “low demand” 0.738 0.440 

MSA time-varying characteristics (N=1,116):   

Average 20-year Real House Price Growth 1.50 1.04 

Average 20-year Housing Unit Growth 2.10 1.20 
Average 20-year house price growth + housing 
unit growth 

3.60 1.86 

Average ratio of 20-year price growth to 20-
year unit growth 

0.869 1.148 

Real house value 111,329 54,889 

Average price/average annual rent 17.00 3.99 

Year # “superstars”  

1970 0  

1980 2  

1990 21  

2000 20  

Income Distribution Mean Standard deviation 

Share of an MSA’s population that is “rich” 0.033 0.021 

Share “middle-rich” 0.035 0.024 

Share “middle” 0.129 0.043 

Share “middle-poor” 0.400 0.050 

Share “poor” 0.402 0.095 

National number “rich”   

1970 1,571,136  

1980 1,312,103  

1990 2,611,178  

2000 4,098,324  
 



  
Appendix Table A2: Place Summary Statistics  

Variable Mean 
Standard 
deviation 

Place time-invariant characteristics 
(N=3,788): 

  

Avg. Real House Price Growth (1970-
2000) 

0.015 0.011 

Avg. Housing Unit Growth (1970-2000) 0.017 0.019 

Avg. Real Income Growth (1970-2000) 0.007 0.007 

Ever a “superstar” 0.220  0.414 

Ever “low demand” 0.618 0.486 

Place time-varying characteristics: (1990-2000; N=7,576)) 
Average 20-year Real House Price 
Growth 

0.015 0.017 

Average 20-year Housing Unit Growth 0.016 0.021 
Average 20-year house price growth + 
housing unit growth 

0.031 0.028 

Mean real house value 156,736 125,401 

10th Percentile house value 90,757 79,123 

Average price/average annual rent 17.76 7.60 

Year # “superstars”  

1990 653  

2000 580  

Income Distribution (1990-2000) Mean 
Standard 
deviation 

Share of an place’s population that is 
“rich” 

0.061 0.035 

Share “middle-rich” 0.069 0.030 

Share “middle” 0.174 0.041 

Share “middle-poor” 0.372 0.039 

Share “poor” 0.323 0.085 

MSA number “rich”   

1990 26,789 36,031 

2000 39,582 49,513 



 

Appendix Table B: Superstar MSAs by year 

City name 1970 1980 1990 2000 

Albany   X X 
Allentown   X  
Atlantic City   X  
Baltimore   X  
Bellingham X    
Bergen-Passaic   X X 
Boston   X X 
Bremerton X    
Detroit    X 
Dutchess County   X X 
Enid  X   
Glens Falls   X  
Hartford   X  
Jersey City   X X 
Lewiston   X  
Los Angeles  X X  
Louisville    X 
Middlesex-Somerset-
Hunterdon 

  X  

Nassau-Suffolk County   X X 
New Haven   X X 
New London   X X 
Newark   X X 
Oakland   X X 
Orange County   X  
Philadelphia   X X 
Pine Bluff X    
Pittsfield   X X 
Portland   X  
Providence   X X 
Reading   X  
Salinas   X X 
San Francisco  X X X 
San Jose   X X 
Santa Barbara-Santa Maria   X X 
Santa Cruz   X X 
Springfield, MA   X X 
Trenton   X X 
Ventura   X  
 
Notes: 241 MSAs that are never superstars are excluded from the table.  Rows shaded in grey correspond to MSAs that 
achieve superstar status in two or more decades.  This subset of MSAs are defined as superstars in our regression analysis.  
The empirical results are robust to defining all MSAs in this table as superstars.  Expanding the definition yields slightly 
lower magnitudes of the estimated coefficients and slightly larger standard errors, but the results remain economically and 
statistically significant. 
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Table 1: Real annualized house price growth, 1950-2000, 

Top and Bottom 10 MSAs with 1950 population>500,000 
 

Top 10 MSAs by Price Growth 
Annualized growth rate, 1950-2000 

Bottom 10 MSAs by Price Growth 
Annualized Growth Rate, 1950-2000 

San Francisco 3.53 San Antonio 1.13 

Oakland 2.82 Milwaukee 1.06 

Seattle 2.74 Pittsburgh 1.02 

San Diego 2.61 Dayton 0.99 

Los Angeles 2.46 Albany (NY) 0.97 

Portland (OR) 2.36 Cleveland 0.91 

Boston 2.30 Rochester (NY) 0.89 

Bergen-Passaic (NJ) 2.19 
Youngstown-

Warren 
0.81 

Charlotte 2.18 Syracuse 0.67 

New Haven 2.12 Buffalo 0.54 

Population-weighted average of the 48 MSAs in this sample: 1.71 

 
  



 
 

Table 2: MSA and Place-level differences in superstar MSAs 
 

Left-hand-side variable: Log House 
Value 

Log 10th 
Percentile 

House Value 
Log mean 

income 

Share of families in the ____ category 

Rich Middle-rich Middle Middle-poor Poor 

(A) Pooled MSA cross-sections, Year fixed effects: 

Superstari   
[Relative to the mean 
of the LHS variable] 

0.6053 
(0.0729) 

0.7844 
(0.0855) 

0.2360 
(0.0308) 

0.0339 
(0.0058) 
[1.017] 

0.0284 
(0.0039) 
[0.804] 

0.0524 
(0.0066) 
[0.405] 

-0.0094 
(0.0061) 
[-0.023] 

-0.1053 
(0.0137) 
[-0.262] 

Adj. R2 0.4162 0.3149 0.4605 0.4151 0.5952 0.3584 0.1177 0.1969 

Mean of LHS:  11.54 10.64 10.84 0.033 0.035 0.129 0.400 0.402 

(B) Pooled Place cross-sections, MSA × year fixed effects: 

Superstark   
[Relative to the mean 
of the LHS variable] 

0.3668 
(0.0225) 

0.2723 
(0.0163) 

0.2448 
(0.0118) 

0.0759 
(0.0032) 
[1.231] 

0.0167 
(0.0015) 
[0.257] 

-0.0006 
(0.0022) 
[-0.004] 

-0.0427 
(0.0028) 
[-0.114] 

-0.0493 
(0.0047) 
[-0.148] 

Adj. R2 0.4766 0.6804 0.3795 0.2535 0.4258 0.4040 0.2779 0.4381 

Mean of LHS:  11.72 11.16 11.01 0.062 0.065 0.166 0.375 0.332 

(C) MSA panel, MSA and year fixed effects: 

Superstarit   
[Relative to the mean 
of the LHS variable] 

0.4427 
(0.0304) 

0.2744 
(0.0511) 

0.1224 
(0.0127) 

0.0325 
(0.0021) 
[0.977] 

0.0316 
(0.0020) 
[0.895] 

0.0082 
(0.0032) 
[0.063] 

-0.0543 
(0.0062) 
[-0.136] 

-0.0180 
(0.0081) 
[-0.045] 

Adj. R2 0.8679 0.8311 0.9121 0.8203 0.8683 0.8948 0.7046 0.8584 

 
Notes: In Panels (A) and (C), the number of observations is 1,116, for four decades (1970-2000) and 279 MSAs. In Panel (B), the sample period is 1990-2000 and covers 3788 Census Places over two 
decades (N=7,576).  Standard errors are in parentheses. Standard errors are clustered by MSA in panel (A).  The specification in panels (A) and (B) is ௜ܻ௧ ൌ ଵSuperstar௜ߚ ൅ δ୲ ൅ ε୧୲, where the superstar 
variable is not time-varying and is defined at the MSA level in panel (A) and the Place level in panel (B).  In panel (C), the specification is ௜ܻ௧ ൌ ଵSuperstar௜௧ߚ ൅ δ୲ ൅ γ୧ ൅ ε୧୲, where the superstar 
variable is defined at the MSA level and varies over time.  The means of the left-hand-side variables in panel (C) are the same as in panel (A). 

  



 
 

 
Table 3: How Changes in the Aggregate Number of Rich Households Differentially Affect Superstar MSAs and Places 

 

Left-hand-side variable: Log House 
Value 

Log 10th 
Percentile 

House Value 
Log mean 

income 

Share of families in the ____ category 

Rich Middle-rich Middle Middle-poor Poor 

(A) MSA panel, MSA and year fixed effects: 

Superstari  × log(# Richt)   
[Relative to the mean 
of the LHS variable] 

0.3943 
(0.0356) 

0.1992 
(0.0578) 

0.1292 
(0.0143) 

0.0407 
(0.0022) 
[1.222] 

0.0310 
(0.0023) 
[0.877] 

-0.0003 
(0.0036) 
[-0.002] 

-0.0624 
(0.0069) 
[-0.156] 

-0.0090 
(0.0091) 
[-0.022] 

Adj. R2 0.8555 0.8277 0.9110 0.8336 0.8591 0.8940 0.7060 0.8577 

Mean of LHS:  11.54 10.64 10.84 0.033 0.035 0.129 0.400 0.402 

(B) Pooled Place cross-sections, MSA × year and Place fixed effects: 

Superstari  × log(# Richkt) 
[Relative to the mean 
of the LHS variable] 

0.1565 
(0.0126) 

0.0972 
(0.0226) 

0.0857 
(0.0114) 

0.0292 
(0.0031) 
[0.473] 

-0.0009 
(0.0023) 
[-0.014] 

-0.0116 
(0.0040) 
[-0.070] 

0.0016 
(0.0056) 
[0.004] 

-0.0182 
(0.0056) 
[-0.055] 

Adj. R2 0.8123 0.6439 0.5804 0.4447 0.3689 0.3644 0.3412 0.4056 

Mean of LHS:  11.72 11.16 11.01 0.062 0.065 0.166 0.375 0.332 

 
Notes: In Panel (A), the sample period is 1970-2000 and covers 279 MSAs over four decades (N=1116).  In Panel (B), the sample period is 1990-2000 and covers 3788 Census Places over two decades 
(N=7,576). Standard errors are in parentheses.  In Panel (A), the specification is ௜ܻ௧ ൌ ଵSuperstar௜ߚ ൈ lnሺ#	Rich୲ሻ ൅ γ୧ ൅ δ୲ ൅ ε୧୲, where an indicator variable for an MSA ever being a “superstar” 
during the entire 1970-2000 period is interacted with the log national number of families in the “rich” category.  In Panel (B), the specification is ௜ܻ௧ ൌ ଵSuperstar௞ߚ ൈ lnሺ#	Rich୲ሻ ൅ γ୧୲ ൅ δ୩ ൅ ε୧୩୲, 
where an indicator variable for a Census Place ever being a “superstar” during the 1990-2000 period is interacted with the MSA’s log number of families in the “rich” category.  In both panels, the 
uninteracted variables are subsumed by the fixed effects. 

 
 



 
 

Table 4: Price-to-Rent Ratio Results 
 

Table #: 2A 2B 2C 3A 3B 

Variation 
Pooled 
Cross 

Section 

Pooled 
Cross 

Section 

Within-
MSA 

changes 

National 
# Rich 

MSA 
# Rich 

Geography MSA Place MSA MSA Place 

Superstari  
0.3145 

(0.0437) 
0.2661 

(0.0196) 
   

Superstarit    
0.2717 

(0.0216) 
  

Superstark  ×  
log(# Richit) 

   
0.2222 

(0.0253) 
0.1229 

(0.0143) 

Fixed effects: Year 
MSA × 

year 
MSA, year MSA, year 

MSA × 
year, place 

Adj. R2 0.4030 0.2867 0.7936 0.7754 0.6639 

N 1,116 7,576 1,116 1,116 7,576 
 
Notes: The left-hand-side variable is the log average price/rent ratio. 

 
 



 
 

Table 5: Robustness to alternative definitions of Superstar 
 

Construction of 
Superstari 

Log House 
Value 

Log 10th 
Percentile 

House Value
Log mean 

income 

Share of MSA families in the ____ category 

Rich Middle-rich Middle Middle-poor Poor 

(A) Right-hand-side variable: Superstari (corresponds to Panel (A) of Table 2) 

Saiz supply 
elasticity +  
January temp 

0.5101 
(0.0965) 

0.6349 
(0.1264) 

0.1023 
(0.0381) 

0.0174 
(0.0054) 
[0.524] 

0.0134 
(0.0045) 
[0.380] 

0.0198 
(0.0092) 
[0.153] 

-0.0182 
(0.0049) 
[-0.045] 

-0.0325 
(0.0187) 
[-0.081] 

Saiz supply 
elasticity + price 
growth 1950-70 

0.5690 
(0.0886) 

0.7539 
(0.1091) 

0.1196 
(0.0373) 

0.0185 
(0.0055) 
[0.556] 

0.0145 
(0.0045) 
[0.411] 

0.0230 
(0.0092) 
[0.178] 

-0.0097 
(0.0069) 
[-0.024] 

-0.0464 
(0.0186) 
[-0.115] 

Fixed effects: Year Year Year Year Year Year Year Year 

(B) Right-hand-side variable: Superstari  × log(# Richkt) (corresponds to Panel (A) of Table 3) 

Saiz supply 
elasticity +  
January temp 

0.2685 
(0.0361) 

0.1093 
(0.0568) 

0.0836 
(0.0144) 

0.0239 
(0.0024) 
[0.717] 

0.0144 
(0.0024) 
[0.407] 

-0.0043 
(0.0035) 
[-0.033] 

-0.0168 
(0.0070) 
[-0.042] 

-0.0171 
(0.0089) 
[-0.043] 

Saiz supply 
elasticity + price 
growth 1950-70 

0.3026 
(0.0367) 

0.1217 
(0.0580) 

0.0938 
(0.0147) 

0.0253 
(0.0025) 
[0.760] 

0.0159 
(0.0025) 
[0.451] 

-0.0018 
(0.0036) 
[-0.014] 

-0.0156 
(0.0072) 
[-0.039] 

-0.0239 
(0.0091) 
[-0.059] 

Fixed effects: MSA, year MSA, year MSA, year MSA, year MSA, year MSA, year MSA, year MSA, year 

Mean of LHS:  11.54 10.64 10.84 0.033 0.035 0.129 0.400 0.402 
 

Notes: Number of observations is 1,116, for four decades (1970-2000) and 279 MSAs.  Standard errors are in parentheses.  The specification in the first panel is 
௜ܻ௧ ൌ ଵSuperstar௜ߚ ൅ δ୲ ൅ ε୧୲, where the superstar variable is defined at the MSA level and is not time-varying.  The specification in the second panel is ௜ܻ௧ ൌ ଵSuperstar௜ߚ ൈ
lnሺ#	Rich୲ሻ ൅ γ୧ ൅ δ୲ ൅ ε୧୲, where an indicator variable for an MSA ever being a “superstar” during the entire 1970-2000 period is interacted with the log national number of 
families in the “rich” category.  The uninteracted variables are subsumed by the fixed effects.  Marginal effects relative to the mean of the LHS variable are in square brackets. 



 
 

Figure 1: Density of 1950-2000 Annualized Real House Price Growth Rates 
Across MSAs with 1950 population > 50,000 

 
 

Figure 2: Density of Mean House Values Across MSAs (1950 vs. 2000) 
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Figure 3: Sorting between locations A and B as population increases and  
the wage distribution shifts 

 
Notes: 0; 1.    Tastes are distributed uniform (0,1).  ( ) 0K r   and capacity in B is 0.33N.  Rent is computed 

in equilibrium based on Appendix Equation 12.  For ( )iw c  and ( ) 'iw c , wages are distributed lognormal (0,1).  

( ) 'iw c corresponds to the case when N doubles and capacity in B is unchanged. ( )iw c  corresponds to the case when 

N has doubled and wages are distributed lognormal (0.7,0.9). 
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Figure 4: Real annual house price growth versus unit growth, 1960-1980 

 
 
 

Figure 5:  Real annual house price growth versus unit growth, 1980-2000 
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