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Abstract

There are, by now, several long term, time series data sets on important housing

& macro variables, such as land prices, house prices, and the housing wealth-to-

income ratio. However, when it comes to the long term evolution, an appropriate

and consistent theory that can be employed to think about this data and associated

research questions has still been lacking. We present a new housing & macro model

that is designed specifically to analyze the long term. The proposed model repli-

cates, with remarkable accuracy, the historical evolution of housing wealth (relative

to income) after World War II and suggests a further considerable increase in the

future. The model also accounts for the close connection of house prices to land

prices in the data.
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1 Introduction

Research on housing and macroeconomics has prospered over the last decade.1 One

outcome of this research effort is the increasing availability of long term, time series data,

such as data on house prices and land prices (Knoll, Schularick and Steger, 2016), data

on rents for dwellings (Knoll, 2016), and data on housing wealth (Piketty and Zucman,

2014a). The importance of this new data is widely discussed in the literature (Bonnet et

al., 2014; Davis, Fisher and Whited, 2014; Gennaioli, Shleifer and Vishny, 2014; Jórda,

Schularick and Taylor, 2016; Stiglitz, 2015).

Thinking about such data over the long term has appeared difficult, if not impossible,

given that an appropriate and consistent long term housing & macro model has been

lacking. The present paper aims to fill this void. We propose a Long Term Housing &

Macro Model that enables us to analyze the mechanisms that produce the stylized facts

on long term trends in house prices, land prices, the housing wealth-to-income ratio, and

the split of private wealth into housing wealth and non-residential wealth.2 We place

considerable emphasis on modelling the housing sector and land as an input factor. Our

new framework rests on three premises:

Premise 1 (Fixed Land Endowment). The overall land endowment is given by na-

ture. The total amount of land that can be used economically, therefore, is fixed in

the long run.

Premise 2 (Land Rivalry). Land that is used as an input in the production of new

houses is permanently withdrawn from alternative economic uses, unless existing

houses are demolished.

Premise 3 (Land in Housing Production). (i) A house is a bundle of the underlying

land plot and the residential structure. Setting up new housing projects requires

land as an essential input. (ii) Investments in structures do not, however, require

land as an input.

1For a recent survey, focusing on business cycle and financial markets characteristics, see Piazzesi and

Schneider (2016).
2We address stylized facts for four major advanced countries in Section 4. The ratio of housing wealth

to total private domestic wealth in 2010 was 41.9% in the US, 63.3% in Germany, 63.2% in France, and

55.6% in the UK (Piketty and Zucman, 2014a).

1



Premise 1 represents a general law of nature. This has been acknowledged by previous

researchers who model land and long run economic growth, starting with Nichols (1970).3

A sceptic may argue that land augmenting technical change, land reclamation, and land

development due to infrastructure investment can all enlarge the available amount of land.

This is indeed plausible in the short to medium term. In the long run, however, the total

amount of economically usable land is certainly fixed by nature. Increasing land scarcity

is presently (and has been for decades) compatible with rising prices of farmland and

urban residential land, as documented by Knoll et al. (2016) for 14 advanced countries,

since World War II. This view is also compatible with the findings of Saiz (2010) who

shows, by employing geographical, satellite generated data for U.S. metropolitan cities,

that residential development is effectively curtailed by the availability of suitable land.4

Premise 2 simply describes the fact that land represents a rivalrous input: a plot of land

that is underneath a house cannot, at the same time, host a manufacturing plant. As a

result, land that is employed for setting up new housing projects resembles an exhaustible

resource. Premise 3 (i) appears largely undisputed and is taken into account by existing

theories (e.g., Davis and Heathcote, 2005; Favilukis, Sydney and Van Nieuwerburgh,

2016) that are discussed in Section 5 under the label Canonical Housing & Macro Model.

Premise 3 (ii) has not yet been taken into account by existing models that treat land

as an input for residential investment. Violating Premise 3 (ii) implicitly assumes that

even replacement investments in depreciated structures (e.g., broken windows) require

land. It also implies, however, a long run inconsistency in the sense that the cumulated

amount of land devoted to the housing sector converges to infinity for time approaching

infinity. In turn, this violates Premise 1 as well. We overcome this shortcoming by

distinguishing between the extensive and the intensive margin of residential investment.

Only an enlargement of the housing stock along the extensive margin, i.e., setting up new

housing projects, requires land.

Our framework can be outlined as follows. We consider a two-sector Ramsey growth

3The popular statement "Buy land, they are not making it anymore", usually ascribed to Mark

Twain, nicely illustrates this point.
4Zoning regulations and other restrictions on land use have inhibited the utilization of additional

land in recent decades (Glaeser and Gyourko, 2003; Glaeser, Gyourko, and Saks, 2005). Moreover, Saiz

(2010) stresses the positive interaction between (exogenous) land scarcity and (endogenous) regulations,

implying that geographically constrained areas tend to be also highly regulated.
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model. There is a numeraire goods sector and a housing sector. The paper’s innov-

ative contribution is the elaborate modeling of the housing sector. The housing stock

can be expanded along the extensive margin (new housing projects), and along the in-

tensive margin (larger residential buildings). Real estate development firms purchase

non-residential land and transform it into residential land. There is land rivalry in the

sense that land devoted to real estate development is permanently withdrawn from its

alternative economic use, i.e. as an input in the numeraire goods sector. Housing services

firms set up housing projects (extensive margin) by purchasing a developed real estate

and combine it with residential buildings to produce housing services that are sold to

households. The production of housing services, at the level of a single housing project,

is characterized by decreasing returns to scale, as explained below. This creates profits

for housing services producers, which provide incentives for real estate development in

the first place, despite perfect competition. Construction firms produce residential struc-

tures (intensive margin) that represent an accumulable factor. The land price and the

house price are fully endogenous and respond to economic growth that is driven by rising

population density and technical change.

To illustrate the model’s capabilities, we show that the calibrated model replicates,

with remarkable accuracy, the historical evolution of housing wealth (relative to income)

after Word War II. We also examine its implications for the future trajectory of housing

wealth. Moreover, the model provides insights into the dynamics of non-residential wealth

(relative to income), the second major private wealth component, consisting of physical

capital and non-residential land wealth. The evolution of the wealth-to-income ratio and

its decomposition is important for at least two reasons. First, Piketty (2014) stresses that

a rising wealth-to-income ratio, assuming that the interest rate remains largely constant,

changes the functional income distribution to the advantage of capital income recipients.

Moreover, given that wealth is not uniformly distributed across the population, a rising

wealth-to-income ratio is associated with a more unequal distribution of personal income.5

5Rognlie (2015) demonstrates that the increase in the economy-wide capital income share is driven

exclusively by the housing sector. La Cava (2016) shows, employing data from Saiz (2010), that the long

run increase in the aggregate share of housing capital income is driven critically by geographical and

regulatory constraints on home building in larger US cities. Stiglitz (2015) points to the important role

of land prices in the process of rising wealth-to-income ratios and increasing inequality of wealth and

income.
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Second, the rising wealth-to-income ratio appears to be a key trigger for the surge in the

size of the finance industry, as documented by Philippon (2015). Jordá et al. (2016)

argue that the growth of finance has been closely linked to an explosion of mortgage

lending to households in the last quarter of the twentieth century. By analyzing the long

run evolution of housing wealth, the paper therefore also provides a deeper understanding

of the real and fundamental driving forces behind the process of financialization.6

Instead of providing an exhaustive overview of the theoretical literature on housing

and macroeconomics, we highlight some of the more recent contributions. Hornstein

(2008, 2009) employs a general equilibrium model to explain the surge in house prices

in the US between 1975 and 2005. Davis and Heathcote (2005) build a multi-sector

stochastic growth model with a housing sector to examine the business cycle dynam-

ics of residential investment. Favilukis et al. (2016) construct a stochastic two-sector

general equilibrium model of housing and non-housing production to explain the surge

and the subsequent decline of the price-to-rent ratio in the US housing market between

2000 and 2010. Li and Zeng (2010) employ a two-sector neoclassical growth model with

housing in order to explain a rising real house price driven by comparably slow tech-

nical progress in the construction sector. Borri and Reichlin (2016) use a two-sector,

life-cycle economy with bequests to explain the increasing wealth-to-income ratio and

wealth inequality driven by rising construction costs that result from comparably slow

technological progress in the construction sector. We depart from the previous literature

in two important respects that are related to each other. First, none of the previous

contributions rests on the assumption that Premises 1-3 hold simultaneously. Second, we

distinguish between the extensive and the intensive margin of housing production. As a

result, we are able to provide a consistent and appropriate model that can be employed

to analyze the long term.

The Canonical Housing & Macro Model, described by the previously mentioned pa-

pers, is well suited for analyzing phenomena at the business cycle frequency. However,

it appears less suited to think about long term macroeconomic developments. The main

reasons are that it does not capture rivalry between residential and non-residential land

6Gennaioli et al. (2014) show that the growth of finance can in fact be explained by a rising wealth-

to-income ratio.
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use (violating Premise 2) and leads to the long run inconsistency (by violating Premise

1 and Premise 3 (ii)), as mentioned above. Consequently, there are many important and

intrinsically long term research questions that could not be addressed so far, such as:

(1) How does a secular increase in housing demand affect the distribution of income and

wealth? (2) How do zoning regulations (targeting the extensive margin of the housing

stock) and building restrictions (targeting the intensive margin of the housing stock) af-

fect housing affordability in a growing economy? (3) How does the taxation of housing

wealth affect the dynamics of distribution of income and wealth? The Long Term Housing

& Macro Model enables us to think about such important questions and we expect that

our model will be employed in the future to address these and related research questions.

The paper is organized as follows. Section 2 presents our model. Section 3 derives

important implications and defines the general equilibrium. Section 4 demonstrates how

the model can be applied in order to understand the long term evolution of housing wealth,

land prices, and house prices. It also discusses properties of the long run equilibrium.7

Section 5 compares the Long Term Housing & Macro Model to the Canonical Housing &

Macro Model. The final section concludes.

2 The Model

Consider a perfectly competitive, closed economy in general equilibrium. Time is continu-

ous and indexed by  ≥ 0. The innovation of our macroeconomic framework is the careful
modeling of the housing sector. This sector encompasses different types of firms that in-

teract in the production of housing services. Real estate development firms purchase a

piece of land and conduct infrastructure investment to develop land for residential pur-

poses. Real estate development provides the technical and legal prerequisite to produce

housing services. It diminishes the amount of land that can be employed elsewhere in the

economy. The overall supply of land, , is exogenously fixed. Housing services firms set

up new housing projects by purchasing a developed real estate.8 They produce housing

7Throughout the paper, we use "long run" for steady state values (as time goes to infinity), whereas

"long term" refers to a time horizon that extends over several decades or even several centuries.
8Setting up one housing project requires to purchase one developed real estate.
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services by combining a developed real estate and residential buildings ("structures").

Construction firms manufacture structures by employing materials and labor.

The numeraire sector produces a final good by combining physical capital, labor, and

land. Like in standard (one-sector) models, the numeraire good can be used for (non-

residential) consumption or for physical capital investments. It can also be transformed

into materials that serve as input for building structures.

2.1 Firms

2.1.1 The Numeraire Good Sector

The non-residential ( ) sector produces a final good, chosen as numeraire, according to

a standard Cobb-Douglas production function:

 = 
 (


 )


¡



¢
(

 )
1−− (1)

where 
 , 


 and 


 denote the amounts of physical capital, labor and land employed

as input in the  sector at time , respectively. Total factor productivity (TFP) in

the  sector, 
  0, may change over time and    0 denote constant technology

parameters that satisfy  +   1. Physical capital is broadly defined to include non-

residential structures, in addition to machines, and is only employed in the  sector. The

capital resource constraint is given by 
 ≤ , where  denotes the total supply of

physical capital in terms of the numeraire good. In equilibrium 
 =  will turn out

to hold. Given that capital depreciates at rate  ≥ 0, gross physical capital investment
read as  ≡ ̇ + .

9 0 is given.

2.1.2 Housing Sector and the Characteristics of Land

There is free entry into the housing sector. Producing housing services requires to combine

activities along the extensive margin (i.e., real estate development that constitutes an ex

ante investment in the stock of houses) and along the intensive margin (i.e., producing

residential buildings that may depreciate over time). Enlarging the stock of houses along

9A dot above a variable denotes the partial derivative with respect to time.
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the extensive margin absorbs additional parcels of land that are incorporated into the

newly built houses. Real estate development, therefore, inevitably implies that land is

withdrawn from the alternative use in the  sector.

Real Estate Development (Extensive Margin) The "number" of housing projects

(houses) at time  is denoted by , a real number. This variable captures the extensive

margin of the housing stock. To set up one additional housing project (an activity that

is conducted by housing services firms) it requires one developed real estate. We use the

term "real estate development" (conducted by real estate development firms) to describe

the activity of purchasing (non-residential) land and incurring (private) infrastructure

investment that transform non-residential land into residential land. The number of land

units that must be put underneath each house is given by   0. Total land usage

in the housing sector is given by 
 = . The land resource constraint reads as


 + 

 ≤ , implying that the alternative use of land in the  sector is limited by


 ≤  − . Consistent with Premise 2 - land rivalry, only land that has not been

used in the process of real estate development can be devoted to the alternative land

use (land area  ), such as office space and land devoted to goods production, including

agriculture, manufacturing (except construction), and services (except housing).

Let 
 denote the price per unit of land. The costs C(̃  

 ) of increasing the

number of developed real estates (equal to the number of housing projects) in any period

 by

̇ = ̃ (2)

amounts to

C(̃  
 ) = 

 ̃

 +



2

³
̃

´2
 (3)

  0. The cost function (3) has two components. The first component, 
 ̃


 , shows

the costs associated with the purchase of ̇ units of land. The second component,


2
(̃ )

2 ≡  , gives the transformation costs (or adjustment costs) that equals the private

infrastructure investment in terms of the numeraire good to transform non-residential

land into residential land. These adjustment costs are convex in the number of newly

developed real estates per period of time, ̇ = ̃ , which makes  a state variable.
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If we assumed that  = 0, then  would turn into a jump variable, which appears

economically less plausible. 0 is given.

As will become apparent, the land requirement per house (measured by parameter

) does neither affect the long run land price nor important long run ratios, such as the

price-to-rent ratio and the different wealth-to-income ratios.10 The distinction between

the enlargement of the housing stock along the extensive margin (which requires a fixed

amount of land) and the intensive margin (which does not require land) is consistent

with Premise 3 - land in housing production. It allows us to treat the total available

amount of land as fixed (Premise 1 - land endowment) despite continuous depreciation

of the housing stock (along the intensive margin). This feature provides a key advantage

vis-à-vis the Canonical Housing & Macro Model that is important when it comes to long

term analysis, as explained in detail in Section 5.

Construction and Housing Services (Intensive Margin) Producing housing ser-

vices requires to purchase a developed real estate (i.e., setting up a housing project) and

combine it with residential buildings ("structures"). At the microeconomic level, the de-

veloped real estate represents the fixed input, whereas structures represent the variable

input in the production of housing services. The amount of housing services produced

increases with the amount of residential structures employed. However, reflecting the

developed real estate as fixed input, it increases less than proportionate with the amount

of residential structure.11 That is, the production of housing services, at the level of

single housing project, is characterized by decreasing returns to scale. Let  denote the

amount of structures per housing project at time . An amount  of structures produces

housing services  per house according to

 = 
 ()

 (4)

10It does also not affect the labor share in total income, the economy’s savings rate, and the factor

allocation in the long run. See Appendix 7.2.
11Consider two houses (single-story versus two-story), each located on a piece of land of the same size.

The two-story house produces a higher amount of housing services per period of time, but it produces less

than twice the amount of the single-story house. For instance, living in the second floor may be viewed

less convenient because both tenants and consumption goods must climb the height in everyday life.

Moreover, the available parking space and / or garden space per square meter of living space declines.

8



0    1, where 
  0 is a (possibly time-variant) productivity parameter. Total

supply of housing services is .
12 There are two admissible institutional settings de-

scribing the relationship between housing services producers and real estate developers.

First, both activities are organized within the same firm. Second, housing services pro-

ducers buy real estates from real estate developers at price  that, in equilibrium, equals

the present discounted value (PDV) of future profits accruing from a housing project.

There is a representative construction firm producing structures that are rented out

to the housing services producers. It combines materials  and labor 

 according

to a constant-returns-to-scale technology. The production of one unit of construction

materials (e.g., cement) requires one unit of the numeraire good at time .13 That is, the

extraction of construction material is implicitly assumed to require capital, labor, and

land with the same technology as in the numeraire good sector. Let   0 denote the

depreciation rate of structures (residential buildings) and

 = 
 ()

 ¡



¢1−
(5)

gross investment in structures, 0    1, where 
  0 is a (possibly time-variant)

productivity parameter. The total stock of residential structures, denoted by, therefore

evolves according to

̇ = 
 ()

 ¡



¢1−| {z }


−  (6)

with 0 given. The amount of residential buildings that is employed by all housing

services firms cannot exceed the overall stock of residential buildings, i.e.,  ≤ .

Let  denote the shadow price per unit of structures associated with constraint (6).

The house price is conceptualized as the sum of the value of a housing project ( ) and

12We abstract from heterogeneity among housing projects. This feature simplifies the analysis as we

do not have to keep track of the history of houses. This simplifying assumption is appropriate, given

that we are not interested in the size distribution of firms in the housing sector.
13As we show in the working paper version (Grossmann and Steger, 2016), the marginal rate of

transformation between materials and the numeraire good does not enter any outcome variable of interest

in the long run and is thus implicitly calibrated to unity.
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the value of the employed structure associated with a real estate (valued at  ), i.e.,
14


 ≡  +   (7)

2.1.3 Households

There is an infinitely living, representative household with intertemporal utility

 =

Z ∞

0

(log +  log) 
−d (8)

where  and  denote total consumption of the numeraire good and housing services at

time , respectively,   0 is the subjective discount rate, and   0 indicates the relative

preference for housing services.15 In equilibrium,  = .

Households supply inelastically  units of labor at time  to a perfect labor market.

The labor resource constraint is 
 +

 ≤ . We allow  to increase temporarily and

assume that it remains constant in the long run.

Households own the entire stock of financial assets, consisting of bonds that provide

firms in the numeraire sector with physical capital (), shares issued by housing services

firms ( ), and ownership claims on construction firms (

 ). The total financial

asset holding, , of the representative individual is thus given by

 =  +   +   (9)

The household supplies inelastically the non-residential land, i.e., the amount of land

not (yet) purchased by the housing sector, to the numeraire good sector. Hence, in

equilibrium, it holds that 
 =  −   0. Total private wealth, , is the sum of

financial asset holdings, , and the value of non-residential land 

 


 . Thus, according

14The house price 
 can also be viewed as an ideal price index that is implicitly defined by 

  =
  +  .
15The instantaneous utility function is a (monotonic transformation of a) linearly homogenous function,

preferences are homothetic. There exists a (positive and normative) representative consumer who owns

the aggregate wealth and articulates the aggregate demand functions (e.g. Mas-Colell, Whinston and

Green 1995, Chapter 4). Consequently, the individual distribution of assets and land does not play a

role for the evolution of aggregates.
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to (9) and (7), total private wealth may be expressed as

 ≡  + 
 


 = 

 | {z }
housing wealth

+  + 
 


| {z }

non-residential wealth

 (10)

where 
  (the house price times the number of houses) represents housing capital

and  + 
 


 captures non-residential wealth as the sum of physical capital and non-

residential land wealth. Although initial values of stocks 0, 0, 0 and 
0 are given,

total initial wealth,0 = 0 0+0 0+0+
0 


0 , is endogenous because initial asset

prices 0 , 

0 , and the initial land price, 


0 , are endogenous.

To enable a careful model calibration, it is important to account for capital income

taxation. The reason is that a tax on capital income affects the rate at which the profit

stream of firms and land returns are discounted. We assume that both capital income

and returns from land ownership are taxed at the constant rate  .
16 For simplicity, we

do not model government consumption or public investment and assume that the tax

revenue is redistributed lump sum to households.

Let , , 

 , , and  denote the wage rate, the interest rate, the rental rate of

land, the (relative) price per unit of housing services, and the lump sum transfer at time

, respectively. The intertemporal household budget constraint may then be expressed as

̇ = (1−  ) +  −  −  +  (11)

2.1.4 Sources of Economic Growth

Sectoral productivities, as described by the vector B≡ (
  


  


 ), and population

size, , may (exogenously) grow for an arbitrary long period of time but approach a

constant as  → ∞. These processes are anticipated by all agents. We think it is

appropriate to assume that population size cannot grow without bounds in an economy

with fixed land endowment. The numerical analysis below (Section 4) is based on the

assumption that  ,  and  increase for more than a century according to a logistic

16Labor income taxation would not have incentive effects and would not enter the reduced-form dy-

namic system (summarized in Online-Appendix A.2).
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function that is chosen as part of our calibration strategy (keeping  time invariant).17

One could, alternatively, allow for permanent exponential growth of  and  . In this

case, a steady state still exists, given that a specific parameter condition holds, as is

typical for multi-sector growth models.

3 Equilibrium Analysis

This section highlights important equilibrium implications that result from the decisions

of firms in the housing sector and defines the general equilibrium.

3.1 Decisions in the Housing Sector and Asset Prices

Let the rental rate of residential structures at time  be denoted by
 . The instantaneous

profit resulting from a housing project that accrues to housing services producers, noting

production function (4), depends on the amount of employed structures and is given by

 ≡ 

 ()

−
 . The necessary first order condition for profit maximization yields

the inverse demand schedule for structures which is articulated by the representative

housing services firm


 = 


 ()

−1 (12)

implying positive equilibrium profits that amount to

 = (1− )

 ()

 (13)

The representative real estate development firm maximizes, at each time , profits,

defined as the value of newly developed real estates,  ̇, minus total real estate devel-

opment costs, C.18 Thus, using (2), the representative firm solves

max
̃

 ̃

 − C(̃  

 ) s.t. (3), (14)

17Also if  and B were constant from the beginning, output would still grow as long as state variables

, ,  are below their long run levels (neoclassical convergence).
18Recall that it requires one developed real estate to set up one new housing project. Hence, the

number and the value of housing projects are identical to the number and the value of developed real

estates, respectively.
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taking the price of developed real estates,  , and the land price, 

 , as given. The

associated first order condition implies the following law of motion (with 0 given) for

the number of developed real estates:

h
̃ =

i
̇ =

 − 



 (15)

According to (15), if the value of a housing project is sufficiently large relative to the

land price (i.e., if  

  ), the number of houses is being enlarged, i.e., ̇  0.

Because the market for developed real estates is competitive, the price  will be bid up

until it is equal to the PDV of the profit stream that the representative housing services

firm can realize.19 At every date , it must therefore be true that  =
R∞



 
 −dd.

Hence, the following no-arbitrage condition must hold at each :

̇

+




= . (16)

It says that the sum of the share price growth rate (capital gains) and the dividend (per

unit of numeraire good invested) paid to the owners of housing services firms must equal

the rate of return to bonds.20 Therefore, households are indifferent between investing in

housing projects or purchasing bonds.

Construction firms rent out the entire stock of residential structures to housing services

producers by charging 
 per unit of structures. The representative construction firm

maximizes the PDV of the cash flow, defined as the difference between rental income

and the costs of gross investment,  +  . That is, the representative construction

firm solves

max
{ }∞=

Z ∞



¡

  − − 




¢

 
 −dd s.t. (6), 0 ≥ 0 given. (17)

19Notice the following analogy between our Long Term Housing & Macro Model and the horizontal

innovation model by Romer (1990). Housing services producers must, at first, purchase a developed

real estate (i.e. undertake an ex ante investment), at price  , before they can start to produce and
market housing services to generate a stream of profits {}∞=0. In the Romer (1990) model intermediate
goods firms must, at first, purchase a blueprint before they can produce intermediate goods to generate

a sequence of profits.
20Since all kinds of capital income are taxed at the same rate, tax rate  does not enter (16).
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From (17), it is easy to see (shown in Appendix 7.3) that the equilibrium rate of return

per unit of structures satisfies

̇

+





−  = , (18)

where  denotes the value of one unit of . Ruling out bubbles by imposing an ap-

propriate endpoint condition, the value per unit of structures equals the PDV of future

rental returns, accounting for the depreciation rate  of structures, i.e.,

 =

Z ∞




 

 
 −(+)dd (19)

Implied by the constant returns to scale technology (5) and perfectly competitive markets,

the value of total gross output in the construction sector must equal the total factor costs

in construction, i.e.,

 

 = + 


  (20)

Finally, denoting by 
 the rental rate of land, the price of land equals the PDV of

income from renting out one unit of land to the producers in the  sector, i.e., 
 =R∞



 
 
 −dd. Hence, the following no-arbitrage condition must hold:

̇





+






= . (21)

3.2 Definition of Equilibrium and GDP

Definition 1. A general equilibrium is a sequence of quantities, a sequence of prices,

and a sequence of operating profits of housing services producers

{
      


  


  


    }∞=0

{ 
  


  


    


  


 }∞=0 {}∞=0

for initial conditions 0  0, 0  0, 0  0 and given { 

  


  


 }∞=0 such that
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1. the representative individual maximizes lifetime utility, i.e., solves

max
{}∞=0

Z ∞

0

(log +  log) 
−d s.t. (11),  exp

µ
−
Z 

0

(1−  )d

¶
≥ 0;
(22)

2. the representative firm in the numeraire goods ( ) sector maximizes profits taking
factor prices as given (i.e., factor prices equal marginal products);

3. the representative real estate developer solves profit maximization problem (14),
taking the land price, 

 , and the price of housing projects, 

 , as given;

4. housing services producers maximize profits at each time , taking the price of hous-
ing services, , and the rental rate of structures, 


 , as given;

5. the representative firm in the construction () sector solves profit maximization
problem (17), taking the sequences of rental rate of structures {

 }∞=0 and wage
rates {}∞=0 as given;

6. there are no arbitrage possibilities from purchasing land, i.e., (21) holds;

7. the bond market, the land market, the market for structures, and the land market
clear at any , i.e.,


 =  (23)


 =  −  (24)

 =  (25)


 + 

 = ; (26)

8. the financial asset market clears at any , i.e., (9) holds, and total wealth is given
by (10);

9. the market for housing services clears at any , i.e.,

 =  = 
()

; (27)

10. the market for the numeraire good clears at any , i.e.,21

 =  +  +  + (28)

The reduced form dynamic system that results from this equilibrium definition com-

prises seven differential equations plus a set of algebraic equations.22

21Equilibrium condition (28) is redundant, according to Walras’ law. To exclude conceptual or calcu-

lation errors, we prove, in Online-Appendix A.1, that the long run equilibrium derived from conditions

1-9 fulfills condition 10.
22It is summarized in Online-Appendix A.2.
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The gross domestic product (GDP) is given by the value of total consumption, C ≡
+ , plus the value of total investment, I ≡  +  +  


 . Using (20), (27) and

(28) in  = C + I gives us the GDP as the sum of value added of all sectors:

 =  +  + 

  (29)

4 Thinking Long Term

How can we employ the model to think about the, by now available, time series data

on housing and macro over the long term? In the main text, we focus on a few selected

variables that appear particularly interesting in light of recent discussions, namely the

housing wealth-to-income ratio, the house price, and the land price.

Piketty and Zucman (2014b) document the long term evolution of the wealth-to-

income ratio, while the long term evolutions of the aggregate real land price and the

aggregate real house price have been investigated by Davis and Heathcote (2007) and

Knoll et al. (2016). The long term surge in real asset prices and wealth (relative to

income) after World War II is of macroeconomic importance as it has the clear potential

to unfold first order distributional consequences. For instance, rising land prices point to

a modern version of Ricardo’s (1817) famous principle of scarcity.23 While Ricardo was

mainly concerned with agricultural land and the production of corn to feed a growing

population, societies in modern times are to a larger extent confronted with the need

for residential investments to meet the increasing demand for housing services under the

constraint of scarce land.

Thinking long term requires two ingredients: First, a model that allows for the de-

termination of a consistent steady state (Section 4.1). Second, a model that can also be

employed to trace the evolution of the variables under study over time (Section 4.2).

23Ricardo (1817) argued that, over the long term, economic growth benefits landlords disproportion-

ately, as the owners of the fixed factor. Since land is unequally distributed across the population, Ricardo

reasoned that market economies would produce rising inequality (see also Piketty, 2014).
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4.1 Long Run Equilibrium

According to Proposition 1 in Appendix 7.2, a long run equilibrium (steady state) typ-

ically exists, is unique and characterized by zero growth rates of all stock variables.24

Here we highlight only a few selected steady state implications.

Define by  ≡  the population density and by  ≡   the labor-to-land

ratio in the  sector. The long run land price, ∗, and the long run house price, ∗,

read as25

∗ =
(1− − )

∗

µ


∗ + 

¶ 
1−
( )

1
1−
¡
 ∗¢ 

1−  (30)

∗ =
 (1− − )

³


∗+

´ 
1−
( )

1
1−
¡
 ∗¢ 

1−
³

1
1− +



∗

´
∗ + 

 (31)

where the long run real interest rate is given by ∗ = 
1− and the long run labor-to-land

ratio in the  sector, ∗, is proportional to, but independent of TFP parameters, such

as  .26 Thus, both ∗ and ∗ depend positively on population density, mirroring

Ricardo’s (1817) principle of scarcity.

We follow Piketty (2014) and Piketty and Zucman (2014a, 2014b, 2015) and employ

the net domestic product (NDP) as aggregate income in the denominator to report

wealth-to-income ratios (Appendix 7.1). NDP equals GDP net of depreciation,  =

 − − . Housing wealth is given by  . The long run housing wealth-

to-income ratio, H ≡ 


, is given by:

H∗ =

³
1 + (1−)

∗

´h
∗ +  +

³
∗+


+ 

´
∗+

∗+(1−) + (1− )
i

h
∗ +

³
∗+


+ 

´
∗+

∗+(1−) + (1 + (1− )) 
i ¡
1 + 1



¢
(∗ + )



(32)

Importantly, H∗ neither depends on population density, , nor on TFP parameters.

Appendix 7.2 (Steady State Properties) and Appendix 7.3 (Proofs) demonstrate that this

24Online-Appendix A.3 provides a complete analytical steady state characterization.
25Throughout, superscript (*) denotes long run equilibrium values of endogenous variables.

26In Appendix 7.3, we show that  ∗ = 
∗+

 ++ ∗+(1−)
∗+

(1−)(∗+)
1−−

∗+
 ++ ∗+(1−)

∗+
(1−)



.
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property applies, in the long run, to all interesting ratios of endogenous variables, such

as the non-residential wealth-to-income ratio, N ≡ +


, the NDP-to-GDP ratio,




, the labor share in GDP, 


, the investment rate, I


, and the ratio of total

housing consumption to total housing wealth, 


(i.e., the inverse of the house price-

to-rent ratio). The same holds for the long run allocation of labor and land, characterized

by the fractions ,  , , and  . These steady state properties imply

that we can assess, say, the long run housing wealth-to-income ratio without knowing

 (the ratio of the population size to the amount of economically usable land) or TFP

levels in the long run.27

4.2 Transitional Dynamics - Post World War II

The calibrated Long Term Housing & Macro Model is solved numerically. Appendix 7.4

describes the calibration strategy and documents the data sources. We trace the historical

evolution of the housing wealth-to-income ratio, the house price, and the land price after

WorldWar II and provide projections until the year 2100. The numerical analysis employs

the relaxation algorithm to solve the model for transitional dynamics (Trimborn, Koch

and Steger, 2008). This technique allows us to calculate exact numerical solutions for the

transitional dynamics implied by the non-linear differential equation system.28

4.2.1 The Experiment

The macroeconomic, model-based experiment — conducted separately for France, Ger-

many, UK and the USA — can be described as follows: First, we feed country-specific

population growth, as reported by Piketty and Zucman (2014b), into the model.29 We

also feed in country-specific time paths for TFP parameters 
 and 

 according to a

27Long run implications of the calibrated model for a variety of interesting variables are presented in

Online-Appendix A.4.
28This procedure is extended to analyze sizeable transitions that are driven by large shocks in state

variables and substantial exogenous movements in population size and TFP levels, which is appropriate

for the period after World War II. The relaxation algorithm is implemented in Mathematica and the

code is available upon request.
29For US, UK and France, we normalize land size to unity. We account for the German reunification

by raising land size in the year 1990 by 40 percent along with the observed increase in population size.
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logistic function, such that, given the observed (exogenous) increases in population size

and endogenous capital accumulation, implied aggregate income growth rates between

1955 and 2010 coincide with the actual growth rates, reported by Piketty and Zucman

(2014b).30 That is, economic growth is driven by exogenous population growth, exoge-

nous technical progress, and endogenous capital accumulation. Growth is transitory, but

may extend over several centuries. Second, initial state variables are set to match initial

wealth-to-income ratios. Specifically, 0 and 0 are set such that the model-based initial

housing wealth-to-income ratio, H
0 , matches the respective empirical value in 1955,

assuming identical proportional deviations from the initial steady state (given 0, 

0

and 
0 ) for both  and . Similarly, 0 is set such that model-based non-residential

wealth-to-income ratio, N
0 , matches the respective empirical value in 1955.31 We let

the simulation run from 1955 until 2100 to yield country-specific time paths for H


for that time period.

4.2.2 Housing Wealth-to-Income Ratio

Figure 1 displays the evolution of the housing wealth-to-NDP ratio, H
 , for France,

Germany, UK, and the US, over time. The solid (blue) lines display the model-based time

paths, whereas the dotted (red / purple) lines represent the empirical data.32 Overall,

the model matches the empirical series quite accurately, given that only information

about initial state variables, population growth and aggregate income growth enters the

experiment and the calibration of the model (described in Appendix 7.4) does not rely

on housing wealth. There are, of course, deviations between the empirical data and the

30To capture the evidence that real construction costs have slightly risen over time, we assume that the

increases over time in  amount to 80 percent of the growth in  . As TFP parameter  concerns the

transformation of structures per house into housing services, it does not help to match observables. We

thus capture productivity improvements in the housing sector solely by increases in  and normalize

 = 1.
31These initial state variables are specified as percentage of the initial long run equilibrium values,

∗0 , ∗0 , ∗0 , that would result for initial population size and productivity levels, 0, 
0 , 


0  Starting

out of steady state appears especially plausible for European economies shortly after World War II.
32Empirical data are displayed as decadal averages to smooth out business cycle fluctuations. The last

five entries (in purple color) represent interpolations between the 2005 decadal average and the actual

value in 2010.
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results of the model. The strongest deviation can be observed for Germany that starts

in 1955 with H
1955 ≈ 065 and in recent times shows H

2005 ≈ 219, whereas the model
implies H

2005 ≈ 333. Given H
1955 ≈ 065, Germany starts with the lowest value of the

housing stock, which appears reasonable with respect to war destructions during World

War II.33 The model economy then builds up the housing stock quite rapidly, despite

convex (quadratic) land transformation costs. The model-based values nearly match the

empirical observations in 2005 for FRA and UK. For the US, the empirical value in 2005

is about H
2005 ≈ 218, while the model implies H

2005 ≈ 250, a deviation of about

15 percent. The long run value is the same for every economy, given that we assume a

unique capital income tax rate of   = 02, and amounts to about 410 percent. The model

therefore gives us, for the first time, a notion about the long run housing wealth-to-income

ratio and the specific trajectory that converges to this asymptotic value.34

In a similar fashion, one can investigate the evolution of non-residential wealth (rel-

ative to income) over time, N
 .35 The Long Term Housing & Macro Model therefore

enables us to analyze the major private wealth-to-income ratios, as discussed by Piketty

(2014) and Piketty and Zucman (2014a, 2015), within a unifying theoretical model of

different wealth components.

33Piketty and Zucman (2014b) report war destructions of about 50 percent for the housing stock and

about 27 percent for physical capital.
34Recall that population growth and / or TFP growth affects the transition to the steady state values,

but not the steady state values itself. Online-Appendix A.5 demonstrates that also the time path of the

housing wealth-to-income ratio changes very little if we assume that the amount of economically usable

land changes over time.
35To save space, the analysis is relegated to Online-Appendix A.6. In addition, Online-Appendix A.4

reports the split of non-residential wealth between physical capital, , and non-residential land wealth,
 , in the long run.
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Figure 1. Housing wealth (relative to NDP) from 1955 until 2100.

Notes. (1) Dotted line: empirical series (red: linear interpolation between decadal averages

starting in 1955 until 2005; purple: linear interpolation between the 2005 value and the actual

2010 value). Solid (blue) line: implied series resulting from the calibrated Long Term Housing

& Macro Model. (2) Country specific parameters: 0 and 0 are set such that model-based

and empirical values for

0 0

 0
coincide, assuming the same proportional deviations from the

initial steady state. 0 is set such that model-based and the empirical values for
0+


0 


0

 0

coincide. Population grows according to a logistic function in line with empirical population

growth. TFP parameters 
 and 

 increase over time according to logistic functions such

that GDP grows in accordance with empirical data between 1955 and 2010, given (exogenous)

population growth and (endogenous) capital accumulation. Data are taken from Piketty and

Zucman (2014b). Land size is normalized to  = 1 except for Germany where  = 14 after

the reunification in 1990. (3) Common parameters:  = 028,  = 069,  = 09,  = 038,

 = 022, = 0015, = 007, = 0025,  = 02,  = 1,  = 100.
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4.2.3 Land Prices and House Prices

The model-based explanation for the evolution of housing wealth (relative to income)

provided above has an important correlate, namely the evolution of land prices and house

prices. The factor land plays a prominent role. Given that the overall land endowment is

fixed (Premise 1) and that land represents a rivalrous factor (Premise 2), land is becoming

scarcer and more expensive as the economy grows. Our analysis thus suggests that the

price channel of increased land valuations plays a critical role in the process of pushing

wealth-to-NDP ratios up over time. Rising land prices push the house price up and this

price channel triggers an increase in the ratio of housing wealth to NDP, H
 .36

Figure 2 displays the evolution of the land price, 
 , and the house price, 


 , as

implied by the calibrated Long Term Housing & Macro Model, assuming that the labor

force grows, in total, by a factor of 1.72 and TFP parameters 
 and 


 rise by a factor

of 2.7 and 2.16 between 1955 and 2010, respectively. These are average values across

France, UK, and the US.37 The model yields an overall increase in the land price by a

factor of 7.5 and an overall increase in the house price by a factor of 3.4 between 1955 and

2010. This pattern is largely consistent with the empirical data. Considering averages

across France, UK and the USA yields a growth factor of 5.2 for land prices and a growth

factor of 3.2 for house prices between 1955 and 2010 (Knoll et al., 2016). Hence, the

calibrated model is consistent with an additional important stylized fact, namely that

the land price increases by more than the house price and therefore explains the major

share of the surge in house prices.38

36In addition, the ratio of non-residential wealth to NDP, N
 , rises in the process of economic

growth, because it contains a sizable land wealth component, 
 


 . See Online-Appendix A.6.

37We compare the implications of the calibrated model in Figure 2 with the imputed land prices

provided in Knoll et al. (2016). As the German house price index in part relies on residential land

prices, implying that imputed land prices cannot be calculated, Germany is excluded.
38Davis and Heathcote (2007) show that the price of residential land has increased considerably more

than house prices during 1975-2005 in the US (almost fourfold), whereas the costs of structures have

increased only slightly. Focusing on 14 countries between 1950 and 2012, Knoll et al. (2016) demonstrate

that 80 percent of the increase in house prices can be attributed to rising land prices and only 20 percent

to rising construction costs.
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Figure 2. Land prices and house prices ("average economy"): Calibrated Long Term

Housing & Macro Model.

Notes: Evolution of the land price, 
 , and the house price, 


 , as resulting from the

model (1955 values = 1).  increases, in total, by a factor of 1.72, while 

 and 


 increase

by a factor of 2.7 and 2.16, respectively, according to logistic functions. State variables (, 

and ) start below their (conditional) steady state, the proportional deviations are averaged

across FRA, UK, and the US, according to Figure 1. Other parameters as for Figure 1.

5 Canonical Housing & Macro Model

We finally sketch and discuss the canonical macroeconomic model with a housing sector,

as it has been recently employed, among others, in Davis and Heathcote (2005), Hornstein

(2009), Iacoviello and Neri (2010), Li and Zeng (2010), Favilukis et al. (2016), and Borri

and Reichlin (2016). The goal is to highlight the major differences between the Canonical

Housing & Macro Model and our Long Term Housing & Macro Model.
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5.1 Setup

The economy is perfectly competitive and comprises two sectors. The numeraire ( )

sector combines capital, 
 , and labor, 


 to produce a final output good according to

 = 


¡




¢ ¡



¢1−
 (33)


  0, 0    1. Notice that land does not enter the  technology. The numeraire

good can be either consumed or invested. The housing sector produces housing services

that are sold to households. Housing services per period of time, , are proportional to

the stock of houses , i.e.,  =  with   0. Without loss of generality we set  = 1.

The production of houses employs a fixed amount of (additional) land together with a

variable amount of structures. The fixed amount of residential land becomes exogenously

available each period. The stock of houses accumulates according to ̇ =  − ,

where  denotes gross investment and   0 the depreciation rate of the housing

stock. Gross additions to the housing stock are described by a constant-returns to scale

technology,

 = 
 


 ̄

1− (34)

  0, 0    1, where  is the amount of structures that are combined with a fixed

quantity of (additional) land, ̄, which is inelastically supplied each period. Residential

structures (a flow) are produced according to

 = 


¡




¢ ¡



¢1−
 (35)

  0, 0    1, by combining capital,  , and labor,  . Consequently, the

evolution of the housing stock  is described by

̇ = ̃


¡




¢ ¡



¢(1−)
̄1−| {z }

=

− , (36)
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where ̃
 ≡ 



¡



¢
. The exogenous and time-invariant supply of (additional) resi-

dential land, ̄, used as specific factor in housing production, is supposed to capture the

idea that "a constant quantity [...] of new land/permits suitable for residential develop-

ment is available each period" (Favilukis et al., 2016). Davis and Heathcote (2005) point

to the "declining relative returns to agricultural use" (p. 756) as a potential source of

new land.39

Households maximize utility and firms maximize profits. Intertemporal utility of the

representative consumer is again given by (8). Let  denote the value per unit of  at

time . Total wealth is equal to the value of financial assets, comprising physical capital

and housing wealth, i.e.,

 =  =  +   (37)

where0  0 and0  0 are given. Again, let  denote the rate of return of financial as-

sets,  the wage rate, 

 the land rent, and  the price of housing services, respectively.

Household wealth then accumulates according to

̇ =  +  +
 ̄ −  −  (38)

The resource constraints (holding with equality in equilibrium) are given by


 +

 ≤  (39)


 + 

 ≤  (40)

and market clearing in the numeraire good sector requires

 =  +  =  + ̇ +  (41)

 for this economy is the sum of value added of the numeraire good sector, , the

39The canonical model could alternatively be interpreted as a model with two consumption goods, one

flow good and one durable (capturing something else than house capital) that is produced by making

use of an intermediate product and a specific factor that could as well be viewed as specific labor (like

in the Ricardo-Viner model).
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housing services sector, , and the construction sector (building new houses with value

 

 ).

40

 =  +  +  

  (42)

5.2 Comparison with the Long Term Housing & Macro Model

The Canonical Housing &Macro Model, due to its lean structure, represents an attractive

and important analytical tool to study a large set of research questions in the business

cycle context.41 We argue, however, that this approach is less suited for the long term

analysis. The Long Term Housing & Macro Model, on the other hand, is a bit more

complex, but appropriate when it comes to research questions that focus on longer time

horizons. We now highlight the major differences between the two models.

5.2.1 Land Availability and Land Allocation

Canonical Housing & Macro Model The quantity of (additional) land that is em-

ployed every period in the housing sector, ̄, is an exogenous and time invariant flow

variable. Land is not used elsewhere in the economy. That is, there is no endogenous

land allocation and non-residential land as a wealth component is not accounted for. This

automatically implies that the amount of land allocated to the housing sector does not

change along the transition. What may change along the transition to the steady state

is the quantity of complementary factors: 
 and 

 .

Long Term Housing & Macro Model The economy-wide amount of land is fixed

stock variable. Land can be either employed in the  sector (
 ), or in the housing

sector (
 = ). The quantity of land allocated to the housing sector is time-varying

and endogenous. This difference in the land allocation (exogenous and time-invariant vs.

40Alternatively, one can define GDP according to its use:  =  +  +  +   , which is
implied by (42), according to (41) and  = .
41In Online-Appendix B we summarize its dynamic system and derive analytical results for the long

run equilibrium.
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endogenous and time-varying) has important implications for the evolution of the land

price, as explained below.

5.2.2 Cumulated Amount of Land Absorbed by a Stationary Housing Stock

Canonical Housing & Macro Model Let us assume a stationary steady state with

a positive and constant housing stock and a positive depreciation rate   0. The

cumulated amount of land that is incorporated in the housing sector converges to infin-

ity as time goes to infinity. This is not compatible with Premise 1 (fixed overall land

endowment) above and may be labelled long run inconsistency.

Long Term Housing & Macro Model Let us assume a stationary steady state

with a positive and constant housing stock and a positive depreciation rate of residential

buildings   0. The cumulated quantity of land that is incorporated in the housing

stock is 
 = , a finite number, even for time approaching infinity. Hence, the Long

Term Housing &Macro Model is consistent with Premise 1 and the long run inconsistency

is avoided.

5.2.3 Extensive and Intensive Margin of Housing Production

Canonical Housing &Macro Model The housing stock is a one-dimensional object.

It appears appropriate to interpret an increase in the housing stock as an increase along

the extensive margin because this process requires land. The alternative interpretation

would imply that there is a single house that is enlarged continuously upwards.

Long Term Housing & Macro Model The housing stock can be enlarged along

the extensive margin (increasing the number of houses) and along the intensive margin

(increasing the size of the typical houses). Only the enlargement along the extensive

margin requires land as an input (Premise 3).

The distinction between the extensive and intensive margin has three advantages: (i)

It allows us to avoid the long run inconsistency of the canonical model that land input
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goes to infinity when there is depreciation of residential structures. (ii) It enables a

distinction between a change of the housing stock either along the extensive margin (e.g.,

through real estate development or a natural disaster) or along the intensive margin (e.g.,

through a depreciated stock of structures or investment in structures). (iii) It enables us

to distinguish the effects of regulations targeting the extensive margin of the housing stock

(zoning regulations) and the intensive margin (building restrictions) within model-based

policy evaluations.

5.2.4 Land Price Dynamics

To illustrate a major difference between the two models in the determination of the land

price, which is important for our analysis of the previous section, we ask the following

question: How does the land price evolve in response to a destruction in the housing

stock?

Canonical Housing & Macro Model Given that land input is a (time-invariant)

flow, the land price, 
 , equals the competitive land rent, 


 , i.e., 


 = 

 = 

̄

(Davis and Heathcote, 2005; Favilukis et al., 2016). Suppose that the initial housing stock

is below the steady state level, 0  ∗. As a consequence, the economy allocates a large

amount of capital,
 , and labor, 


 , to the construction sector. This construction boom

implies that the housing stock is built up. As the economy converges to the steady state,

the construction boom diminishes, implying that capital and labor are being reallocated

to the  sector. Because the time-invariant flow of land, along the transition to the steady

state, is combined with less and less 
 and 

 , the marginal productivity of land,


̄
, declines.42 Moreover, the price of housing services, , declines too as the supply

in the housing market is being enlarged. Taken together, the land price 
 = 


̄

unambiguously decreases along the transition to the steady state, as illustrated in Figure

3 (a).

42Recall that gross residential investments may be expressed as:  = ̃


¡



¢ ¡

¢(1−)

̄1− .
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Figure 3. Evolution of the land prices in response to housing stock destruction: Canon-

ical Housing & Macro Model and Long Term Housing & Macro Model.

Notes: Panel (a): Canonical Housing & Macro Model, initial housing stock 0= 08
∗,

set of parameters:  = 0025,  = 07, = 0015, = 007,  = 04,  = 05,  = 022,

 = ̄ = 

= = 1. Panel (b): Long Term Housing & Macro Model: 0= 08

∗ and

0= 08
∗; Panel (c): Long Term Housing & Macro Model: 0= 08

∗ and 0= ∗; Panel

(d): Long Term Housing & Macro Model: 0= ∗ and 0= 08
∗; Panels (b) - (d): set of

parameters other than initial states as in Figure 2 except = =  = 1.

Long Term Housing & Macro Model Each unit of land can be either permanently

incorporated in a house or can be employed for an infinite sequence of periods in the 

sector. The equilibrium land price, excluding bubbles, equals the PDV of an infinite land

rent earned in the  sector: 
 =

R∞



 
 
 −dd.

Figure 3 (b) shows that the land price increases along the transition to the steady state

in response to a destruction of the housing stock in both dimensions, the intensive and the

extensive margin. To understand why, first, suppose the number of houses  is initially

below its steady state level (0  ∗), given the amount of structures. Then there is

initially more land available for the alternative use in the  sector (Premise 2) than in
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the long run. A high 
 implies that its marginal product 


 =




and thus land price


 are low early on. This triggers off a construction boom, implying that (i) labor is

reallocated to the construction sector and (ii) physical capital is temporarily decumulated

(a standard implication of multi-sector models with multiple state variables). That is,

non-residential land, 
 , is initially combined with a small amount of complementary

factors, 
 and 

 , again implying that 

 is low. As more and more land is used,

however, to build houses, 
 is diminished over time by real estate development (Premise

2). This leads to increasing land scarcity. Consequently, both 
 =




and thus the

land price 
 increase over time, as shown in Figure 3 (c). (As the construction boom

diminishes over time, also labor returns to the  sector and the physical capital stock

accumulates to its steady state level.) Both mechanisms cannot arise in the canonical

model because there is neither an alternative use of land nor can land become scarcer over

time. Second, suppose that the amount of structures  is initially lower than its steady

state level (0  ∗), for a given number of houses. In this case, due to decreasing

returns in the production of housing services, the inverse demand for structures, 
0 , is

high initially. Again, this triggers off a construction boom that drives up the land price

over time, as shown in Figure 3 (d), invoking similar mechanisms as for Figure 3 (c).

5.2.5 Housing Wealth and Non-Residential Wealth

Canonical Housing & Macro Model Housing wealth is given by  . This

wealth component comprises the cumulated quantity of land that is incorporated in

the housing stock, similarly to the Long Term Housing & Macro Model (both residen-

tial land and structures included). The non-residential wealth-to-NDP ratio is given by

N
 = K

 = 


. That is, land outside the housing sector, i.e., the value of

non-residential land, is missing (i.e., 
 


 ≡ 0).

Long Term Housing & Macro Model Residential land, 
 = , enters housing

wealth, 
  =   +  , since land is incorporated in houses. Non-residential
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land, 
 , enters non-residential wealth, that in total is given by  + 

 

 . This

matches the assignment of land in the different wealth components according to national

accounting. The Long Term Housing & Macro Model also endogenizes the split between

non-residential wealth into the two components physical capital and non-residential land

wealth.43

Models that do not capture land as an input in the non-residential sector ( sector)

cannot adequately attribute rising non-residential wealth to rising land prices associated

with land scarcity. Rising land prices are, however, of central importance for both the

evolution of housing wealth and the evolution of non-residential wealth.

6 Summary

We have presented a novel housing & macro model that is specifically designed to think

about long term, time series data on housing and macro variables. The model rests on

three premises: (1) fixed overall land endowment; (2) land rivalry between non-residential

and residential production; (3) land as an essential input in housing production along the

extensive margin (setting up new housing projects), but not along the intensive margin

(investing in residential buildings).

To illustrate the model’s capabilities, we have applied the model in order to analyze the

housing wealth-to-income ratio in four industrialized economies. The model replicates,

with remarkable accuracy, the historical evolution of housing wealth (relative to income)

after World War II and suggests a further considerable increase. The model also accounts

for the close connection of house prices to land prices in the data. The analysis points to

the fundamental importance of land for understanding the dynamics of wealth. In line

with recent empirical studies, it therefore provides a modern formalization of Ricardo’s

(1817) principle of land scarcity, which states that economic growth primarily benefits

the owners of the fixed factor land.

43In standard macroeconomic models without explicit land considerations,  is interpreted to capture

physical assets including land. This generally appears inappropriate, as land is non-accumulable (Premise

1).
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There are many important research questions on the long term macroeconomics of

housing, such as those mentioned in the introduction, that could not be discussed so far.

We hope that the analytical framework developed in this paper will be applied to address

these and related research questions.

7 Appendix

7.1 Wealth-to-Income Ratios

We first define wealth-to-income ratios. We use fraktur (or Gothic) scripture with super-

script GDP and NDP to denote wealth-to-GDP and wealth-to-NDP ratios, respectively.

The housing wealth-to-GDP ratio is denoted by H
 (speak "fraktur ") and may

be expressed as

H
 ≡ 

 


=

  +  


=

 −


 (43)

The non-residential wealth-to-GDP ratio, denoted by N
 , is the sum of the ratio of

physical capital to GDP, K
 ≡ 


, and the ratio of the value of non-residential land

(farm land and other productive, non-residential land property) to GDP ("non-residential

land wealth-to-GDP ratio"), Z
 ≡ 

 


, i.e.,

N
 ≡  + 

 




= K

 + Z
  (44)

The total (private) wealth-to-GDP ratio, W
 , reads as

W
 ≡ 


= H

 +N
  (45)

To calculate wealth-to-NDP ratios fromwealth-to-GDP ratios, we divideH
 , K

 ,

Z
 , N

 ,W
 by the ratio of net income to gross income ("NDP-to-GDP ratio"),

 ≡ 


. We denote wealth-to-NDP ratios by H
 ≡ H


, K

 ≡ K


, Z

 ≡
Z


, N

 ≡ N



, W

 ≡ W



.
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7.2 Steady State Properties

This section provides analytical results for the long-run equilibrium. We omit the time

index  in the remainder of this Appendix.

Proposition 1. (Existence) Suppose that

 ≡ 

1− 
− (1− )

1− 
 0 (A1)

holds. Then there exists a unique, non-trivial long run equilibrium in which  =  

fulfills

 ∗  

∙
=





¸
 (46)

Assumption (A1) holds for any reasonable calibration of the model. The allocation

of labor and land is characterized by fractions  ≡ ,  ≡  , z ≡ , and

z ≡  . Equilibrium property (46) is equivalent to z ∗   ∗ and z∗  ∗. The

share of land devoted to the housing sector, z , exceeds the share of labor devoted to the

housing sector, ∗, whereas the opposite holds in the rest of the economy. The housing

sector is endogenously land-intensive, whereas the rest of the economy is labor-intensive.

We next define the "house-price-to-rent ratio" as the ratio of the price of one house

with  units of structures put on  units of land to the cost of renting  units of housing

services produced with the same amount of structures, . Formally,

p≡



=

 + 


 (47)

Note that p is also equal to the ratio of house capital,  , to housing expenditure, .

Proposition 2. (Prices). Under (A1), in long run equilibrium,

(i) the interest rate is given by

∗ =


1−  
; (48)
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(ii) the price for housing services, ∗, is decreasing in , , increasing in ,  ,

and independent of ;

(iii) the wage rate, ∗, is decreasing in , independent of , , , and increasing

in  ;

(iv) the house price-to-rent ratio is

p∗ =
1 + (1−)

∗

∗ + 
; (49)

(v) the return to land, ∗, the land price, ∗, and the house price per land unit,

∗, are increasing in ,  , and are independent of , , .

The Keynes-Ramsey rule implies that the long run after-tax interest rate equals the

subjective discount rate, (1−  ) 
∗ = . An increase in population density, , means

that labor becomes more abundant and land becomes scarcer, in turn lowering the wage

rate and raising both the return per unit of land and its price. Consequently, since the

housing sector is land-intensive, the price for housing services rises with. An increase in

TFP of the  sector,  , raises output of the numeraire good for a given factor allocation,

thus increasing the relative long run price for housing services, ∗. It also transmits into

higher (long run) factor returns, ∗, ∗, like in standard one-sector models. Higher

productivity parameters in the housing sector (increase in  or ) lower the price of

housing services. While the direct effects of productivity improvements on the long run

wage rate, ∗, are positive, there is a counteracting and balancing effect on the value

of the marginal product of labor in the construction sector through a decrease in the

price for housing services. Thus, ∗ as well as the long run return to land, ∗, remain

unchanged. In the long run, the land price and the house price change proportionally to

the rental rate of land, ∗, when population density or TFP parameters change.

Proposition 3 (Factor allocation). Under (A1), in long run equilibrium, the

factor allocation as characterized by z ∗ = 1 − z∗ and ∗ = 1 −  ∗ is independent of

, B, .
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Proposition 4 (Wealth-to-GDP ratios and NDP-to-GDP ratio). Under (A1),

in long run equilibrium, the housing wealth-to-GDP ratio is

H∗ =
∗∗

 ∗
=

1 + (1−)
∗

∗ +
³
∗+


+ 

´
∗+

∗+(1−) + (1 + (1− )) 
 (50)

the physical-capital-to-GDP ratio is

K∗ =
∗

 ∗
=



∗ +  +
(∗+ [1+(1−)])(∗+(1−))

∗+


+

 (51)

the non-residential land wealth-to-GDP ratio is

Z∗ =
∗ ∗

 ∗
=

1− − µ
1 + ∗+(1−)

∗+
∗++(1−)

∗+


+

¶
∗
 (52)

and the NDP-to-GDP ratio is

∗ =
 ∗

 ∗
=

1 + 1


1 +


1

+ 

∗+

(∗+)

∗+(1−) + (1−)
∗+

 (53)

Thus, H∗, K∗, Z∗ and ∗ are independent of , B, .

Corollary 1. Under (A1), in long run equilibrium, the non-residential wealth-to-GDP

ratio, N∗ = K∗+Z∗, the total wealth-to-GDP ratio,W∗ = H∗+N∗,

and wealth-to-NDP ratios H∗, K∗, Z∗, N∗, W∗ are independent of

, B, .

Recalling H∗ = H∗
∗ , we obtain (32) in the main text from (50) and (53).

Proposition 4 and Corollary 1 reflect the result that the long run factor allocation is

independent of population density, , and technology parameters, B and  (Proposition

3). An increase in population density, , changes the marginal product of labor and the

return to land equally in the housing sector and the  sector, leaving the factor allocation
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unchanged. Moreover, reflecting homothetic preferences, changes in technological para-

metersB and  do not induce structural change and leave the factor allocation unaffected

as well.

Proposition 5 (Long run amount of structures and housing consumption).

Under (A1), in long run equilibrium,

(i) the amount of structures per unit of land, ∗, is increasing in ,  , , ,

and independent of ;

(ii) the amount of housing services per capita, ∗, is increasing in  , , ,

and decreasing in , .

Since the long run land allocation, i.e., z∗ = ∗, is independent of population

density, , and productivity parameters, B, according to Proposition 3, the number of

houses per unit of land, ∗, is independent of  and B as well. Thus, an increase

in  or B means that more structures are built per unit of land, e.g., houses become

"higher" rather than more numerous in more densely populated and in more advanced

regions, reflecting the opportunity costs of land in its alternative use in the  sector.

Technological progress therefore implies that the amount of housing services increases as

well. That would also hold if on each unit of land more houses could be built (decrease

in ). Finally, because of decreasing returns in transforming structures on a piece of

land into housing services, the per capita amount of housing services is decreasing in

population density.

Define  ≡  +  as the contribution of the housing sector (housing services

and residential construction) to GDP. We finally consider the labor share in total income,

L ≡ 


, the land income share in the housing sector, I ≡ , and the investment

(and savings) rate of the economy, s ≡ I


. Note that s can be decomposed into a

non-residential and residential (housing) investment rate, denoted by s ≡ 


and

s ≡ +


, respectively, i.e.,

s =
 +  + 


= s + s  (54)
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Proposition 6. (Factor income shares and investment rates) Under (A1), in

long run equilibrium, the labor share in total income is

L∗ =
∗
 ∗

=
 + ∗+(1−)

∗+
(1−)

∗+


+

1 + ∗+(1−)
∗+

∗+(1+(1−))
∗+


+

 (55)

the land income share in the housing sector is

I∗ =
1− 

1 + (1−)
∗+

 (56)

and the economy’s total investment rate is

s∗ = 1− ∗ (57)

Thus, L∗, I∗ and s∗ are independent of , B, . The non-residential investment rate,

s∗, and the residential investment rate, s∗, are independent of , B,  as well.

7.3 Proofs

Proof of Proposition 1 (Existence). We first calculate the partial equilibrium by

examining the supply side only, i.e. we take the (relative) price for housing services ()

as well as the interest rate () as given. Then we turn to the demand side.

The current-value Hamiltonian of the representative construction firm associated with

optimization problem (17) together with the necessary first-order conditions can then be

expressed as

H ≡  − −  + 
h


¡

¢1− − 

i
 (58)

∙
H


=

¸
− 1 + 

µ




¶1−
= 0 (59)

∙
H


=

¸
−  + (1− )

µ




¶

= 0 (60)
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∙
−H




=

¸
− +  = ̇ −   (61)

Note that (18) follows from (61).

The typical final output firm maximizes profits given by

Π = 
¡


¢ ¡

¢
( )1−− − ¡ + 

¢
 −  −  (62)

Using  = , the necessary first-order conditions are

∙





=

¸
−1 ¡

¢
( )1−− =  +   (63)

∙




=

¸


¡

¢−1

( )1−− =  (64)

∙
(1− − )




=

¸
(1− − )

¡

¢
( )−− =   (65)

Combining (63) and (64), leads to

 =






 + 
  (66)

Substituting (66) into (63) and (65), we obtain

 = 

µ


 + 

¶ 
1−
( )

1
1−

µ




¶1−−
1−

 (67)

 = (1− − )

µ






 + 

¶µ




¶+

 (68)

respectively. Setting ̇ = 0 in (15) implies, for the long run,

 =   (69)

Substituting (13) into (16) and using ̇ = 0, we have

 =
(1− )


 (70)
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Setting ̇ = ̇ = 0 in (21) and (18), respectively, we obtain, for the long run,

 =



 (71)

 =


 + 
 (72)

Setting ̇ = 0 in (6) and using  = , we have

 =


¡

¢1−


 (73)

Next, combine (59) with (72) to obtain

 = 

µ


 + 

¶ 1
1−

 (74)

Now substitute (73) into (12) to find

 = 

Ã


¡

¢1−



!−1

 (75)

Substituting (75) into (74) yields a useful expression for  :

 =
¡

¢(1−)

1−

Ã


¡


¢1− ¡

¢

 + 

! 1
1−

 (76)

Combining (60) with (72) and (74) we obtain

 = (1− )


1−

µ


 + 

¶ 1
1−

 (77)

Substituting (75) into (77) leads to

 = (1− )


1−

µ


 + 

¶ 1
1− ¡


¢ 
1−
¡


¢ 1−
1− 

(−1)
1− ¡


¢−1

 (78)
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Substituting (76) into (78) gives us a useful expression for :

 = (1− )


1−

µ


 + 

¶ 1
1− ¡


¢ 
1−

µ




¶ 1−
1−

 (79)

Combining (79) with (67) leads to




=

(1− )
1−
1− 


1−
³


+

´ 1
1− ¡


¢ 
1− ∙


³


+

´ 
1−
( )

1
1−

¸ 1−
1−

µ




¶ 1−−
1−

1−
1−

≡ Φ

µ



  B

¶
 (80)

Note that Φ is increasing as a function of   . Moreover, Φ is strictly concave as a

function of   if and only if (A1) holds. Substituting (70) and (71) into (69), we

obtain

[ =] (1− ) =   (81)

Inserting (73) and (68) into (81), we get

(1− )



Ã


¡

¢1−



!

=
 (1− − )

1−

µ




1

 + 

¶µ




¶+

 (82)

Substituting (67) and (78) into the right-hand side and left-hand side of (82), respectively,

yields

(1− )
(1−)
1− ¡


¢1−

(1− ) ()


1−
³



+

´ 1
1−
()


1−
¡


¢ 1−
1−

=
 (1− − )






 (83)

Now substitute (76) into (83) to find




= ()




 with (84)

() ≡ (1− − ) (1− )

(1− )( + )
 (85)
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Finally, combine the right-hand sides of (80) and (84) to obtain a unique, nontrivial

solution for  =   that is given by

 =

⎛⎜⎜⎝


1−
³



+

´ 
1− ¡


¢ 1
1−

³
1−


´(1−)
1−

³


+

´ 
1−
( )

1
1−
³
(1−−)

1−
´ 1−
1−

⎞⎟⎟⎠
1


≡ ̃ ( B) (86)

According to (84) and   = ̃ ( B), we have




= ()̃ ( B) (87)

Next, using  =  and  = () ,  + =  and  =  − we

obtain




=

1

 [1− ()]

µ
1− 

̃ ( B)

¶
 (88)

z =



=

1

1− ()

µ


̃ ( B)
− ()

¶
 (89)




=
1



̃ (B)


− 1
1− () ̃

 (B)


 (90)

From  = () ,  =  and (88), we also have




=

()

1− ()

Ã
̃ ( B)


− 1
!
 (91)

Thus, as   = 1− , we obtain




=

1

1− ()

Ã
1− ()

̃ ( B)



!
 (92)

This closes the supply side analysis.

According to (27) and (70), we can write for the long run:

 =
(1− )


 (93)
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Moreover, combining (12) with (27), we have  = . Combining  = , (72)

and (73) we thus find that for the long run:

 =


 + 
=



 + 
 (94)

Using (66), (93) and (94) in (9) leads to long run total asset value:

 =






 + 
+
(1− )


+



 + 
 (95)

Next, substituting (73) into condition (27) and using (76) gives us

 = 
¡


¢ 1
1−

¡

¢ 
1−

µ




1



¶(1−)
1−

µ


 + 

¶ 
1−

 (96)

The total tax revenue that is redistributed to households reads as

 =   (97)

As  = +  , we have ̇ = ̇+ ̇ + ̇ . In steady state, ̇ = ̇ = 0,

thus, ̇ = ̇.

According to (8) and (11), the current-value Hamiltonian for the household optimiza-

tion problem (equilibrium condition 1 in Definition 1) is given by

H ≡ log +  log +  [(1−  ) + +  −  − ]  (98)

where  is the multiplier (co-state variable) associated with financial asset holding, .

Necessary optimality conditions are H = H = 0 (control variables), ̇ =

− H (co-state variable), and the corresponding transversality condition. Thus,

 =
1


 (99)




=  (100)
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̇


= − (1−  ) (101)

Combining (99) and (100), we have

 =



 (102)

whereas combining (99) and (101) yields the Keynes-Ramsey rule

̇


= (1−  ) −  (103)

We seek for a steady state without long run growth. Setting ̇ = 0 in (103) gives us

the long run interest rate

∗ =


1−  
 (104)

Combining (102) and (11) with ̇ = 0 and using (97) we obtain

µ
1


+ 1

¶
 =  +  (105)

Substituting  = +  into (105) and using (95) and  =  leads to

µ
1


+



 + 

¶
 = 

µ






 + 
+ 

¶
+  (106)

Inserting (67) into (68) leads to

 = (1− − )

µ


 + 

¶ 
1−
( )

1
1−

µ




¶ 
1−

 (107)

By substituting (67), (96) and (107) into (106) we obtain

µ
1


+



 + 

¶




¡


¢ 1
1−

¡

¢ 
1−

µ




1



¶(1−)
1−

µ


 + 

¶ 
1−

µ




¶− 
1−

=

µ


 + 

¶ 
1−
( )

1
1−

∙


 + 
+ 

µ



− 1
¶
+ 1− 

¸
 (108)
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Substituting   = ̃ ( B), (87) and (90) into (108) and recalling the defini-

tion of  in (A1) implies, for the long run,

³
1

+ 

∗+

´³
1− ̃ (∗∗B)



´ ¡
∗

¢ 1
1−

¡

¢ 
1−

³
(∗)


´(1−)
1−

³


∗+

´ 
1−


1−
1−

³
(∗) ̃

 (∗∗B)


− 1
´
̃ (∗ ∗B)

=

µ


∗ + 

¶ 
1−
( )

1
1−

⎡⎣ ∗

∗ + 
+

(∗)
³
1− ̃ (∗∗B)



´
(∗) ̃

 (∗∗B)


− 1
+ 1− 

⎤⎦  (109)

Substituting (85) and (86) in (109) we find that the long run price for housing services,

∗ ≡ ̃∗(∗B), is implicitly given by

̃ (∗ ∗B) =


(∗)
≡  ∗ with () ≡

1

+ 

+
+ +(1−)

+
(1−)
(+)

1

+ 

+
+ 1−

1−−
+(1−)

+

 (110)

We have ̃ (0 ∗B) = 0, lim→∞ ̃ ( ∗B)→∞ and ̃


 0, according to (86) and

(A1). Thus, ∗  0 exists and is unique. Moreover, is easy to show that () ∈ (() 1)
if and only if ()  1, which holds for all  according to (A1).44 Thus, also (46) holds

under (A1). This concludes the proof. ¥

Proof of Proposition 2 (Prices). Part (i) follows from (104). Using (86) and

applying the implicit function theorem to (110) confirms part (ii). To prove parts (iii)-

(v), first use (67) to find

∗ = 

µ


∗ + 

¶ 
1−
( )

1
1−
¡
 ∗¢− 1−−

1−  (111)

44Use that ()  1 is equivalent to



1− 
− (1− )

1− 



(1−)
1− + | {z }

1

 0
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Moreover, recall from (71) that

∗ =
∗

∗
with ∗ = (1− − )

µ


∗ + 

¶ 
1−
( )

1
1−
¡
 ∗¢ 

1−  (112)

according to (107). Next, use (4), (12), (104), (70) and (72) in (47) to confirm (49).

Combining (70) and (121) and using (4) yields

∗∗ =
∗

1− 
 (113)

Using (49) and (113) in ∗ = ∗∗p∗, we obtain

∗ =
 (1− − )

³


∗+

´ 
1−
( )

1
1−
¡
 ∗¢ 

1−
³

1
1− +



∗

´
∗ + 

 (114)

Using that, according to (110),  ∗ is independent of B and proportional to  confirms

parts (iii)-(v). This concludes the proof. ¥

Proof of Proposition 3 (Factor allocation). Combining (89) and (91) with (110),

we obtain

z ∗ =
 ∗


=

(∗)− (∗)
1− (∗)

[= 1− z∗] (115)

∗ =
∗


=

(∗)
1− (∗)

1− (∗)
(∗)

[= 1−  ∗] (116)

respectively. Recalling (104) as well as the definitions of () and () in (85) and (110),

respectively, concludes the proof. ¥

Proof of Proposition 4 (Wealth-to-GDP ratios and NDP-to-GDP ratio).

According to (88) and (110), we have

∗


=

1− (∗)
 [1− (∗)]

 (117)

Using (29), we can write the housing wealth-to-GDP ratio, the physical capital-to-GDP
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ratio, and the non-residential land-wealth-to-GDP ratio as

H =



=

p

1 + 


+ 



 (118)

K =



=




1 + 

+ 






 (119)

Z =



=





1 + 

+ 






 (120)

respectively. According to (69) and (71), in the long run,

∗ =
∗

∗
 (121)

Substituting the expression for ∗ as given by (112) into (113) leads to

∗∗ =
 (1− − )

1− 

µ


∗ + 

¶ 
1−
( )

1
1−
¡
 ∗¢ 

1−  (122)

According to (1), (4) and (66), we have




=


³




+

´ ³




´+







 (123)

Moreover, using the definitions of () and () in (85) and (110), respectively, we find

(∗)− (∗)
1− (∗)

=
1− − 

1− 

³
1

+ 

∗+

´
(∗ + )

∗ + (1− )
 (124)

Substituting (111), (115), (117), (122) and  ∗ ∗ =  ∗ into (123), and using (124),

we get

 ∗

∗∗∗
=

³
1

+ 

∗+

´ ¡
∗ + 

¢
∗ + (1− )

(125)
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in long run equilibrium. Moreover,




=









 (126)

Substituting (111), (116) and (117) into (126) and using (104),  =  and (∗) as

given by (85), we obtain

∗∗

∗∗∗
=
(1− )

∗ + 
 (127)

Using (49), (125) and (127) in (118) confirms (50).

According to (63), (64), (65) and  = (1− ), we have




=



 + 
 (128)




=



1− 
 (129)




= 1− −  (130)

Using that ∗ = ∗∗, in long run equilibrium,

∗ ∗

 ∗
=
1− − 

∗
 (131)

Substituting (125), (128), (129) and (131) in (119) and (120), respectively, and using

(85), (116) and (124) confirm (51) and (52).

Finally, in the long run, investment equals depreciation. Thus, in the long run, NDP

equals consumption expenditure,  ∗ = C∗. The ratio of consumption expenditure to
GDP can be written as

∗ =
 ∗

 ∗
=

C∗
 ∗

=
∗ + ∗∗

 ∗
=

∗
∗∗ + 1

1 +  ∗
∗∗∗ +

∗∗
∗∗∗

 (132)

Using (102), (125) and (127) in (132) confirms (53). This concludes the proof. ¥

Proof of Corollary 1. Results immediately follow from Proposition 4, (44) and
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(45). ¥

Proof of Proposition 5 (Long run amount of structures and housing con-

sumption). Inserting (76) into (73) and using (87), (117) and (110) implies that the

long run equilibrium amount of structure per unit of land is given by

∗


=
1− ()

1− (∗)

µ
(∗)




(∗)

¶ 1−
1−

µ
∗

(∗ + )1−

¶ 
1− ¡


¢ 1
1−  (133)

According to (86) and (110), we have

∗ =
µ



(∗)

¶(1−)
³


∗+

´(1−)
1− ¡


¢ 1−
1−

³
(1−−)

1−
´1−


³



∗+

´ ³
1−


´(1−) (134)

Substituting (134) into (133) and using the definition of  in (A1) yields

∗


= (∗)1−+ 

1−
¡

¢ 
1− , where (135)

() ≡

³


1−
´(1−)

1−
³


+

´ 
1−
³
()



´ 1−
1−

[1− ()]
³
1−−
1−



+

´(1−)
1−

[1− ()]()1−+

1−

 (136)

According to (27) and  = , the consumption of housing services per capita is given

by




=






µ




¶

=

µ




¶1−




µ




¶

 (137)

Using (117) and (133) in (137), we obtain

∗


= (∗)

µ
1− (∗)

(1− (∗))

¶1− 
¡

¢ ¡


¢ 
1−

1−+ (1−−)
1−

 (138)

Parts (i) and (ii) follow from (135) and (138), respectively, using that (∗), (∗) and

(∗) are independent of , B and . This concludes the proof. ¥

Proof of Proposition 6 (Factor income shares and investment rates). Using
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(29), we have

L =



=




1 + 

+ 






 (139)

Using (116) and (129) together with (85), (104) and (110) in (139) confirms (55). More-

over, using  = +  , we have

I =



=



+ 
 (140)

For the long run, according to (140), we can write

I∗ =
∗z∗

∗∗∗

+ ∗∗

 (141)

where we used z = ,  =  and  = . Using (111), (112), (113), (115),

(116) and (117) in (141) and employing (85) confirms (56). Finally, since total investment

is equal to capital depreciation in the long run, I∗ = ∗ + ∗∗,

s∗ =
I∗

 ∗
= 1−  ∗

 ∗
 (142)

confirming (57). Note that ̇ = 0 implies ∗ = ∗; thus, ∗ = ∗
∗ = K∗,

confirming its claimed properties by recalling Proposition 4. Finally, recall ∗ = ∗−∗.
This concludes the proof. ¥

7.4 Calibration

The set of country-specific, time-invariant parameters comprises the capital income tax

rate,  , and the initial conditions, 0, 0 and 0. The set of country-specific, time-

varying parameters comprises the population density, , and TFP parameters,  and

 . (We normalize  = 1.) The remaining parameters are viewed as being general and

set to match the relevant empirical characteristics of the US economy. The calibration

strategy does not assume that the US currently is in long run equilibrium.

According to (102), the marginal rate of substitution between the two consumption
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goods equals the relative price,  = . Data on housing expenditures for the US

indicate that the ratio of households’ housing expenditures to total consumption expen-

ditures,



C =


 + 
=



1 + 
 (143)

is quite stable over time for the period 1960-2012 and equals, on average, about 18 percent

(Knoll et al., 2016). The value is very close to the average values for the UK, France and

Germany. Setting the expression in (143) to 0.18 suggests  = 022.

We next turn to depreciation rates ( and ). For the housing sector (residential

structures), Hornstein (2009, p. 13) suggests, by referring to data from the US Bureau of

Economic Analysis (2004), that  = 0015. The depreciation rate of physical capital,  ,

can be inferred from the definition of gross investment in physical capital,  = ̇+,

i.e.,

 =



− ̇


 (144)

We assume that, off-steady state, physical capital investment is 10 percent of the physical

capital stock,  = 01.45 Assuming that the average annual growth rate of physical

capital, ̇, was about three percent (the sum of the long term GDP per capita growth

rate of two percent and the population growth rate of one percent), we arrive at  = 007,

according to (144).46

Turning to concavity parameters of the production function in the  sector, we start

by noting that  equals, in equilibrium, the expenditure share for labor in the  sector,

i.e.,  =   , according to (64). Recall that  = +  is the value-added of

the housing sector (housing services and residential construction). According to (29), we

45The average ratio of US non-residential investment to GDP for the period 1969-2014 amounts to 12.6

percent (Bureau of Economic Analysis, 2015a, Tab. 1.1.10), with little variation over time. Consequently,

suppose s =  = 0126. According to Piketty and Zucman (2014b, Tab. US.6c), in the US,
the non-residential wealth-to-NDP ratio was N ≈ 2 (e.g., in the period 1960-2010, 1970-2010 or
1980-2010). Unfortunately, the data does not allow us to decompose non-residential wealth into physical

capital and land. Accounting for depreciation, it is reasonable to assume that the physical capital-

to-GDP ratio, K  K = N − Z , is somewhere between 100-150 percent. Assuming

K = 126, we arrive at  = sK = 01.
46The value also seems reasonable according to the evidence on depreciation rates for 36 manufacturing

sectors, reported in House and Shapiro (2008).
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can thus write  =  +. Using   = 1−  ,  =  −, and recalling that

the labor share in GDP is L = 


, we get

 =
(1− )L

1− 


 (145)

According to Bureau of Economic Analysis (2015b), the average value-added of the hous-

ing sector and (residential and non-residential) construction as percentage of GDP in

the period 1998-2001 (prior to the housing boom) in the US was, on average, 9.1 per-

cent and 4.4 percent, respectively. In our model,  is the value-added of residential

construction. The ratio of residential to total investment in structures during 1998-2001

was 61 percent (calculated from Bureau of Economic Analysis, 2015c), which suggest a

value-added of residential construction relative to GDP, 



, of 061×44 = 27 percent.

Thus, we set 


to 91 + 27 ≈ 12 percent. According to Henderson (2015, Tab. 2.1),
the US employment share in construction decreased from 4.8 percent in 2004 (before the

financial crises) to 4.1 percent in 2014 (after the financial crises). Taking an intermediate

value of 4.5 percent and multiplying it by the fraction of residential investment in total

investment in structures (61 percent), we arrive at  = 0045× 061 = 0027. According
to Karabarbounis and Neiman (2014, "CLS KN merged"), the corporate US labor share

in total income was pretty stable in the period 1975-2008, only recently declining in a

more pronounced way. The average value for the period 1975-2012 was 62 percent. Using




= 012,  = 0027 and L = 062, we arrive at  = 0973 × 062088 ≈ 069,

according to (145).

According to (4), (13) and (27), the ratio of housing services producers’ profits to their

revenue is 

= 1 − . We approximate  with the average for the period 1995-2006

of "output of housing services" minus costs minus the "current surplus of government

enterprises" (mostly mortgage finance agencies) and divide it by the "output of housing

services" (a measure for ).47 We arrive at  = 09.

47The data is taken from http://www.bea.gov/national/pdf/output_rip_facq.pdf. Mayerhauser and

Reinsdorf (2007) provide a discussion.

51



We next derive the numerical value of the output elasticity of materials in the con-

struction sector, . Combining the first-order condition with respect to labor in the

construction sector (60) with (5), we have  = (1−) . Using  = L ,

we obtain

 = 1− 


= 1− L


 (146)

Recalling 


= 0027, L = 062, and  = 0027, we obtain  = 038.

The long run interest rate, ∗ = 
1− , plays an important role for long run asset prices,

including the land price. Albeit not modelled here explicitly, the return to equity contains

a risk premium; also, ownership of firms and land is at risk of devaluation because of

natural disaster, environmental damage or expropriation by government action. Thus,

we shall set the subjective discount rate at a value that is in the middle or at the upper

end of the typical range used in calibration exercises,  = 0025. (For numerical long run

implications, shown in Online-Appendix A.4, we compare results for  = 002 vis-à-vis

 = 003.)

The capital income tax rate is reported in Piketty and Zucman (2014b). It slightly

fluctuates over time. Considering average tax rates between 1970-2010, for Germany this

gives us   = 018, for France   = 019, and for the US   = 022. The capital tax rate

for the UK is not available in Piketty and Zucman (2014b). According to the OECD tax

database (2015), the net top statutory dividend tax rate "to be paid at the shareholder

level, taking account of all types of reliefs and gross-up provisions at the shareholder

level" is similar in the US and the UK. Capital tax rates may thus be viewed as similar

in the four considered countries and around 02. As we cannot predict future changes in

tax rates, we employ   = 02 for all displayed transitional dynamics.

According to Propositions 2-6, the amount of land per house, , does not affect the

factor allocation, factor prices, wealth-to-income ratios, income shares and investment

rates in the long run. We set the arbitrary value  = 1. Similarly, the cost parameter 

(residential land development costs) does not have an impact on the long-run equilibrium.

It does, however, affect the speed of -dynamics along the transition. We set  = 100.
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Finally, we need to specify . We relate to the evidence by Rognlie (2015, Fig. 6),

who decomposes the net capital share of corporate sector value-added in the US into

the return on equipment, structures, land, and pure profits (time series since 1950).

He reports that pure profits fluctuate around zero, whereas the land income share is

fluctuating around 0.04. The US corporate sector incorporates the housing sector. Thus,

the land income share, , is the average of the land income share in the non-residential

sector,   = 1−− (according to (65)), and the land income share in the housing
sector, I = . Consequently,  is given by

(1− − )

µ
1− 



¶
+ I




=  (147)

According to (56), the long run land income share in the housing sector is, for  = 09,

 = 038,  = 0015 and ∗ = 0031 (implied by  = 0025, and   = 02), given by

85 percent. Using I = 0085 together with  = 069 and 


= 012 in (147) suggests

 = 028 for  = 004.
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Online-Appendix A:
Long Term Housing & Macro Model

In Online-Appendix A.1, we invoke Walras’ law as consistency check of the analyt-

ical derivation of the long run equilibrium. Online-Appendix A.2 summarizes the dy-

namic system, whereas Online-Appendix A.3 summarizes long run equilibrium values.

These two sets of information form the basis for the numerical implementation. Online-

Appendix A.4 discusses steady state implications for the various wealth-to-income ratios

in the model. Online-Appendix A.5 shows that the evolution of the housing wealth-

to-income ratio is rather insensitive to the amount of available land. Online-Appendix

A.6 displays transitional dynamics of the non-residential wealth-to-income ratio for the

calibrated model.

A.1 Consistency Check Using Walras’ Law

We show that the market for the numeraire good clears in long run equilibrium, i.e.,

 =  +  + holds in steady state (market for numeraire good clears, according

to equilibrium condition 10 in Definition 1, and ̇ = ̇ = ̇ = 0). Recall the following

definitions hold.

 =


1− 
− (1− )

1− 
 (148)

 =

1

+ 

+
+ +(1−)

+
(1−)
(+)

1

+ 

+
+ 1−

1−−
+(1−)

+

 (149)

 =
(1− − ) (1− )

(1− )( + )
 (150)

 =

³


1−
´(1−)

1−
³


+

´ 
1− ¡ 



¢ 1−
1− (1− )

³
(1−−)
(1−)(+)

´(1−)
1−

(1− )1−+

1−

 (151)

 =



 (152)
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In steady state, the following relationships hold (we suppress superscript (*)):

 =






 + 
  (153)




=



 + 
 (154)

 = 

µ


 + 

¶ 
1−
( )

1
1−
³ 


´1−−
1−

 (155)

 =



 (156)




=

(1− )

(1− )
= 1− 


(157)

=⇒ 


=

1

1− 
− 

1− 

1


 (158)




= 

µ
1− 

(1− )

¶1− 
¡

¢ ¡


¢ 
1−

1−+ (1−−)
1−

 (159)

 =

µ




¶(1−)
³


+
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
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³
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1−
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´(1−)  (160)




=

1− 

(1− )
 (161)
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¡

¢(1−)
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We first derive

 −  − 


=




− 


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Rearranging further, we obtain
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

¶ (1−)
1− 1− 

− 
(164)
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For  =  +  + to hold, this must be equal to




=

¡

¢(1−)

1−

Ã
( )
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1−
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
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! 1
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´
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µ
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(1− )( + )

¶ 1−
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
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Recall that  is implicitly defined by

1− − 

1− 

µ
1


+



 + 

¶
1− 

− 
=

 + (1− )

 + 
 (166)

The market for the numeraire good thus clears if

 + (1− )

 + 

=

µ
 (1− − ) 

(1− )( + )

¶ 1−
1− µ 

1− 
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1− 1− 
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1



µ
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¶ 1−
1−

µ


1− 

¶(1−)
1−

µ
 + 



¶ (1−)
1− 1− 

− 

⇐⇒
µ
1− − 

1− 

¶(1−)
1−

=

µ

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1−

µ
 + 



¶(1−)
1−

⇐⇒
µ
1− − 

1− 

¶(1−)
1−

=

µ
(1− − ) 

(1− )( + )
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1− µ + 



¶(1−)
1−

 (167)

which holds. ¥

A.2 Dynamic System

The Long Term Housing & Macro Model is fully described by seven differential equa-

tions plus a set of static equations. The differential equations read as:
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̇ = 
¡

¢1− −  (168)

̇ =
 − 


 (169)

̇ =  + −  −  (170)

̇ =  [(1−  ) − ]  (171)

̇ =  −  (172)

̇ =
¡
 + 

¢
 −  (173)

̇ =  −  (174)

where 0, 0, 0 are given. The set of static equations is given by:

 +  =   +  =   =  +  +  +   (175)

 =



  =   =  (176)

 = (1− )


1−
¡


¢ 1
1−   =  (1− − )

µ






 + 

¶µ




¶+

 (177)

 = −1  = (1− ) (178)

 = 



=







 + 





=

µ
1



¶ 1
1−

 (179)µ
 + 



¶µ




¶1−
= 

µ




¶1−−
 (180)

In total, there are 21 equations and 21 endogenous variables: , ,  ,  , , ,

 , ,  , ,  ,  ,  ,  , , , , ,  ,  , .

A.3 Steady State Values
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According to Section 7.3, we can summarize long run values as follows.

∗ =


1−  
 (181)

 ∗ = 
(∗)− (∗)
1− (∗)

 ∗ =
 −  ∗


 (182)

∗ = 
(∗) [1− (∗)]
[1− (∗)](∗)

  ∗ = − ∗ (183)
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∗ + 
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∗ = (1− − )

µ


∗ + 
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( )
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¶ 
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 (185)

∗ =
∗

∗
 ∗ =

∗

∗
 (186)
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∗ = (∗)1−+ 
1−

¡

¢ 
1−  (188)

∗ =
∗

∗  ∗ = (∗) ∗ = ∗∗

∗ =
∗∗


 (189)

∗ = ∗ (190)

∗ =
∗∗

(∗ + )∗  ∗ = (∗ + )  (191)

∗ =
¡
∗

¢ 1
1− ∗ (192)

∗ =




∗ ∗

∗ + 
 (193)

 ∗ = ∗ + ∗∗ + ∗∗ + ∗ ∗ (194)
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where we used definitions

 =


1− 
− (1− )
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 0 (195)
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1−

 (198)

A.4 Long-Run Implications for Wealth-to-Income Ratios

Table A.1 shows (in percent) long run implications for wealth-to-NDP ratios as re-

sulting from the calibrated Long Term Housing & Macro Model, assuming alternative

subjective discount rates, , and capital income tax rates,  .

The annual average of the housing wealth-to-NDP ratio, H , in the 2000s was 217

percent in the US with a peak of 254 percent in 2006 before the financial crisis.48 In

the UK, Germany and France, H was 271 percent, 217 percent and 285 percent in

the 2000s, respectively. The calibrated model under   = 02 implies the long run value,

H∗, to be 357 percent for  = 003 and 478 percent for  = 002.49 Our analysis thus

suggests that, in the longer run, the US housing capital will rise considerably above the

pre-crisis level if the capital income tax rate remains similar.

Maintaining   = 02, the implied non-residential wealth-to-NDP ratio is N
∗ =

349 percent for  = 003 and to N∗ = 440 percent for  = 002. About three quar-

ters are attributed to physical capital and one quarter to non-residential land wealth.

In the 2000s, N was 249 percent in the US, 241 percent in the UK, 139 percent in

Germany, and 190 percent in France. The implied future increase from current levels

48With respect to stylized facts on wealth-to-income ratios, we again refer to the data provided by

Piketty and Zucman (2014b).
49Recall that H∗ = 41 for  = 0025 (Figure 1).
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partly reflects the growing importance of land scarcity in the process of economic devel-

opment. However, as discussed in more detail in Online-Appendix A.6, the fact that we

do not distinguish rural and urban land may contribute to an unrealistically high long run

non-residential land wealth-to-NDP ratio, Z∗. Without further amendments, if the

current tax system remains in place, the implied long run wealth-to-NDP ratio,W∗,

is in the range from 706 to 918 percent, depending on the subjective discount rate, .

The sensitivity of long run wealth-to-GDP ratios to  is rooted in the fact that the PDV

of asset values, particularly land that does not depreciate, is heavily dependent on the

rate at which future returns are discounted.

   H∗ K∗ Z∗ N∗ W∗

0.02 0.15 498 320 136 456 954

0.03 0.15 374 274 88 361 735

0.02 0.2 478 313 127 440 918

0.03 0.2 357 267 82 349 706

0.02 0.25 457 306 119 425 882

0.03 0.25 340 259 76 335 676

Table A.1. Long run implications for wealth-to-NDP ratios.

Notes: All values are expressed in percent. Results are based on the following set of pa-

rameters:  = 028,  = 069,  = 09,  = 038,  = 022, = 0015, = 007. Recall

H∗=∗∗
∗ , K

∗= ∗
∗ , Z

∗=∗ ∗
∗ ,N

∗=K∗+Z∗,W∗= ∗
∗ =

H∗+N∗.

Table A.1 also displays the sensitivity of wealth-to-income ratios with respect to

capital income taxation. We start with lowering   to 15 percent. As the long run

interest rate, ∗, is slightly reduced, the implied wealth-to-NDP ratios increase somewhat.

The implied housing wealth-to-NDP ratio, H∗, now becomes almost 500 percent for

 = 002 and associated long run wealth-to-NDP ratio, W∗, is 954 percent without

amending non-residential land wealth. These values may be considered as upper bounds.
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Raising   to 25 percent,  = 003 implies that H∗ is 340 percent, which may be

considered as lower bound.

According to Table A.2, the implied long-run labor share in income, L∗, is about 60

percent. It does neither critically depend on  nor on  . Comparing it for the latest

available year, the labor income share was 57.2 percent in the year 2012 in the US and 62.1

percent in 2011 in the UK (Karabarbounis and Neiman, 2014, "CLS KN merged"). For

  = 02, the implied long run employment fraction in residential construction, 
∗, is 4.9

and 3.9 percent for  equal to three and two percent, respectively. It is slightly decreasing

in   and somewhat higher than the recent US value of 2.7 percent used for calibrating

the model. The result is associated with a higher stock of structures, , in the long run

compared to the current (off steady state) one, in line with our prediction of a rising H.

A high construction labor employment share copes with the constant depreciation rate

of structures,  , given a high value of . The implied long run fraction of land devoted

to the housing sector in the economy, z∗, is about 36-37 percent.

   L∗ ∗ z∗ s∗ s∗ s∗

0.02 0.15 60.3 5.1 36.0 22.3 17.4 4.9

0.03 0.15 59.7 4.1 36.9 19.4 15.5 3.9

0.02 0.2 60.2 4.9 36.1 21.9 17.1 4.8

0.03 0.2 59.6 3.9 37.0 18.9 15.1 3.8

0.02 0.25 60.1 4.7 36.3 21.4 16.8 4.6

0.03 0.25 59.5 3.8 37.1 18.4 14.8 3.6

Table A.2. Long run implications for labor income share, net capital income shares,

allocation variables, and investment rates.

Notes: All values are expressed in percent. Results are based on the following set of pa-

rameters:  = 028,  = 069,  = 09,  = 038,  = 022, = 0015, = 007. Recall

L∗= ∗
∗ , 

∗=∗

, z∗=∗


, s∗= I∗

∗ , s
∗= ∗

∗ , s
∗= ∗+∗∗

∗ .

For   = 02, the long run investment rate for the baseline calibration, s
∗, is 18.9 and

21.9 percent for  equal to three and two percent, respectively, and may be compared to
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the US gross private domestic investment rate of 16.5 percent for the year 2014 (Bureau

of Economic Analysis, 2015a). For the period 1969-2014, the average ratio of US non-

residential investment to GDP, a measure for s , was 12.6 percent, which approximately

also was the average value of the 1970s, 1980s, 1990s and 2000s (Bureau of Economic

Analysis, 2015c, Tab. 1.1.10). The value is somewhat lower than the long run value

for s∗ that is implied by our model. The implied long run residential investment rate,

s∗ = s∗ − s∗, is in the range of 36 to 49 percent.

A.5 Evolution of Housing Wealth-to-Income under Expansion

of Land

Figure A.1 shows the evolution of housing wealth (relative to income) under two dif-

ferent scenarios. The solid line shows the case of a fixed land endowment, i.e.,  = 

The dashed line assumes that  increases over time by a factor of 2. This captures the

case where the amount of economically usable land increases over time. The difference

for the time path of the housing wealth-to-income ratio is minor. The reason is that

there are opposite quantity and price effects. Under scenario " = " the number of

housing projects  changes only slightly, but the house price 
 increases substantially.

Under scenario " increases", the number of housing projects rises substantially, but the

house price 
 increases by less compared to scenario " = ".
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Figure A.1. Housing wealth to income (NDP) over 140 years under alternative assump-

tions on land endowment.

Notes. The economy starts in a steady state. The solid line shows the evolution of H

in the case of a fixed land endowment; the dashed line shows the case where the amount of

economically usable land increase over time, i.e.,  increases by a factor of 2. , 

 and


 increase by a factor of 2 according to logistic functions. Other parameters:  = 028,

 = 069,  = 09,  = 038,  = 022, = 0015, = 007, = 1,  = 0025,  = 02,

 = 1,  = 100.

A.6 Non-Residential Wealth

We finally report the implications of the experiment sketched in Section 4.2.1 for

non-residential wealth.

Figure A.2 displays the evolution of non-residential wealth relative to NDP,N
 , for

the four countries under consideration. The dotted (red / purple) lines show the empirical

data, whereas the solid (blue) lines display the model-based time paths. The match is

less close compared to the housing wealth-to-income ratio (Figure 1). In particular, for

Germany the model implies a strong increase, whereas the data show a moderate U-

shaped development. Also for France the model implies a somewhat faster increase in

non-residential wealth, relative to income, compared to empirical data. This is due to

two reasons: First, Germany starts with the lowest value of physical capital (relative to

the steady state), which again appears reasonable with respect to war destructions during

World War II (N
1955 ≈ 105 percent). The model economy builds up the capital stock

quite rapidly. This implication would be different, if one assumed (convex) adjustment

costs for physical capital − a feature that we left out for simplicity, reflecting our focus
on housing capital. The same feature would improve the picture for France that starts

with only a slightly higher value than Germany (N
1955 ≈ 127 percent). In 2005 the

empirical value is about 190 percent, while the model displays a value of about 255

percent. The match is much better for the U.K. and the U.S. Second, the Long Term

Housing & Macro Model rests on one simplifying assumption that is important when
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it comes to non-residential wealth. It does not distinguish between urban and rural

land. That is, there is one single region that hosts both production and housing. This

region should in fact be interpreted as predominantly urban, given that about 70 to

80 percent of the population in advanced countries lives in cities. Therefore, the Long

Term Housing & Macro Model values the entire non-residential land, which comprises

non-residential urban and non-residential rural land in reality, at the urban land price.50

Given the large urbanization rates in advanced countries, this land valuation bias affects

housing wealth to a much lesser extent than non-residential wealth. As a result, the

non-residential wealth-to-income ratio, N
 , is overestimated due to an overvaluation

of (non-residential) land, 
 


 .
51
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Figure A.2. Non-residential wealth (relative to NDP) from 1955 until 2100.

50The same criticism applies, of course, to any other one-regional macro model with production and

housing. The issue of land heterogeneity and associated land price differentials has already been brought

up in the context of macroeconomics and housing by Sachs and Boone (1988).
51A simple possibility to amend this valuation bias is to value non-residential land, 

 , at an adjusted

land price ̄
 that is a weighted average price of land across urban and rural regions (assuming a price

wedge between the two regions). It can be represented as ̄
 = 

 with 0    1.
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Notes. See Figure 1.

Additional Reference

Sachs, Jeffrey and Peter Boone (1988). Japanese Structural Adjustment and the

Balance of Payments, Journal of the Japanese and International Economics 2, 286-327.
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Online-Appendix B:
Canonical Housing & Macro Model

In Online-Appendix B.1, we characterize analytically the long run equilibrium of the

canonical model. In Online-Appendix B.2, we invoke Walras’ law as a consistency check

of the analytical derivation of the long run equilibrium. In Online-Appendix B.3, we

summarize the dynamical system of the canonical model.

B.1 Long Run Equilibrium

Define  ≡ ,  ≡  ,  ≡ ,  ≡  ,  ≡ ,  ≡ 

and ̄ ≡ ̄. Thus, (39) and (40) can be written as  +  =  and  +  = 1,

respectively.

Proposition B.1. In the canonical model, (i) the long run allocation of labor,

(∗  ∗), is independent of both new land per capita, ̄, and productivity parameters

,  , ; (ii) the long run capital-labor ratio (∗) is independent of ̄, , , and

increasing in  .

Proof of Proposition B.1. Denote by  the price of structures. Moreover, define

 ≡ ,  ≡  . Profit maximization in the  and  sector then implies



µ




¶1−
= 

µ




¶1−
=  +   (199)

(1− )

µ




¶

= (1− )

µ




¶

=  (200)

Combining (199) and (200) implies

 =


1− 



 + 
 (201)

 =


1− 



 + 
 (202)
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Thus, using resource constraints  +  =  and  +  = 1, we obtain

 =


 + 

µ


1− 
 +



1− 
(1− )

¶
 (203)

Moreover, according to (199), (200) and resource constraints, we find

 =
(1− )

³
−
1−

´
(1− )

³




´  (204)

 = (1− )

µ
 − 

1− 

¶

 (205)

The current-value Hamiltonian of the representative housing firm associated with its

profit maximization problem together with the necessary first-order conditions can be

expressed as

H ≡  −  − + 
£
̄1− − 

¤
 (206)

∙
H


=

¸
−  + 

µ
̄



¶1−
= 0 (207)

∙
H

̄
=

¸
− + (1− )

µ


̄

¶

= 0 (208)

∙
−H




=

¸
− +  = ̇ −   (209)

Substituting (35) into (207) and (208), we have

 = 
̃



µ
̄

() ()1−

¶1−
 (210)

 = (1− )̃

Ã¡

¢ ¡


¢1−

̄

!

 (211)
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respectively, where we used ̃ = (). Combining (204) and (210) leads to

 =
(1− )

³
−
1−

´
(1− )̃ ̄1−

¡

¢1−(1−)
()

 (212)

Setting ̇ = 0 in (36) we get

 =
̃



¡

¢ ¡


¢(1−)

̄1− (213)

Using  = , analogously to (102) and (103), utility maximization of the representative

household yields

 =



 (214)

̇


=  −  (215)

In long run equilibrium, again, ̇ = 0 implies ∗ = . Using ̇ = 0 in (209) we find

 = ( + )  (216)

Moreover, setting ̇ = 0 in (38) and using (214),  = , (37) and (216) leads to

 +  + ̄ =

µ
 + (1 + )



¶
 (217)

Substituting (203), (205), (211), (212) and (213) into (217), we get

 =

£
 + (1− )

¤
(1− )

(1− )( + )
£
 + (1 + )

¤
+  (− )

≡ ∗ (218)

This confirms part (i) of Proposition B.1.

Substituting (205) into (203) leads to

 =
(1− )

 + 

µ


1− 
 +



1− 
(1− )

¶µ
 − 

1− 

¶

 (219)
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Substituting  = (1−)
¡
 

¢
from (200) into (202) and using  = ∗ we obtain

 =  −  =

µ


 + 

¶ 1
1−
(1− ) ≡  ∗ (220)

Substituting (220) into (219) and using  = ∗ yields

 =

µ


 + 

¶ 1
1−
µ
( − )∗

(1− )
+ 1

¶
≡ ∗ (221)

Thus, in view of (218), also part (ii) of Proposition B.1 is confirmed. ¥

Proposition B.2. In the canonical model, (i) the long run house price, ∗, is

decreasing in new land per capita, ̄, increasing in  , and decreasing in  and ;

(ii) the long run stock of houses per capita, ∗, is increasing in , ,  , and ̄.

Proof of Proposition B.2. Substituting (205) into (201), we obtain

 =


1− 

(1− ) 

 + 

µ
 − 

1− 

¶

 (222)

Next, substitute (222) into (212) and (213) and use both (220) and  = ∗ to find

 =
(1− )1−

¡

¢ 1−
1− 

(1−)
1−

(1− )1−̃

µ
1

 + 

¶−
1−

µ
∗

̄

¶1−
≡ ∗ (223)

 =
̃



µ


1− 

¶

(1− )

1−

µ


 + 

¶ 
1− ¡

∗
¢

̄1− ≡ ∗ (224)

respectively. Parts (i) and (ii) are confirmed by (223) and (224), respectively. ¥

Let housing-wealth-to-GDP ratio be defined by

H ≡ 

 +  + 
 (225)

Proposition B.3. In the canonical model, a change in , ,  , and ̄ do not
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affect (i) the long run housing-wealth-to-GDP ratio, (ii) the capital to GDP ratio, (iii)

the labor share in GDP, (iv) the savings rate.

Proof of Proposition B.3. The "house-price-to-rent ratio" in the canonical model

is p=

 . Using ̇

 = 0 in (209), the long run value of the house-price-to-rent ratio is

given by

p∗ =
1

 + 
 (226)

Using ∗∗ =  +  , the definition of GDP in (42),  = 
¡

¢ ¡


¢1−

from

(33), and long run relationship  =  in (225), we obtain

H∗ =
∗∗¡




¢∗
+ ∗∗ + ∗

³




´∗ = 1
 ( ∗)( ∗)1−

∗∗ +  + 2
 (227)

Using (223) and (224), we have

∗∗ =
(1− )

¡

¢ 1
1−

(1− )

µ


 + 

¶ 
1−

∗ (228)

According to (220), (228) and  ∗ = 1− ∗, we obtain


¡
 ∗
¢ ¡

 ∗
¢1−

∗∗
=
(1− )

1− 

1− ∗

∗
 (229)

Using (229) in (227) and recalling (218) confirms the part (i).

Using (42), the long run capital to GDP ratio, denoted by N∗, can be written as

N∗ =
∗¡




¢∗
+ ∗∗ + ∗

³




´∗ = ∗
∗∗

 ( ∗)( ∗)1−

∗∗ +  + 2
 (230)

Combining (221) and (228) implies

∗

∗∗
=



(1− )( + )

µ
 − +

(1− )

∗

¶
 (231)

Using (229) and (231) in (230) and recalling (218) confirms the part (ii). Using (42), the
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long run labor share in GDP can be written as

L∗ =
∗¡




¢∗
+ ∗∗ + ∗

³




´∗ = ∗
∗∗

 ( ∗)( ∗)1−

∗∗ +  + 2
 (232)

Using  = 1−  in (200) and (220), we have

∗ = (1− )( )
1

1−

µ


 + 

¶ 
1−

 (233)

Combining (233) and (228) implies

∗

∗∗
=
(1− )

∗
 (234)

Using (229) and (234) in (232) and recalling (218) confirms the part (iii).

Finally, to prove part (iv), according to (42), the long run savings rate can be rewritten

as

s∗ = 1−
¡



¢∗
+ ∗

¡



¢∗¡



¢∗
+ ∗∗ + ∗

³




´∗ = 1− ¡
1

+ 1
¢
( + )

 ( ∗)( ∗)1−

∗∗ +  + 2
 (235)

where we divided both nominator and denominator by ∗∗ and used (214), ()∗ = ∗

and ∗∗ =  +  to derive the second equation. Using (229) in (235) and recalling

(218) concludes the proof. ¥

B.2 Consistency Check Using Walras’ Law

We show that the market for the numeraire good clears in long run equilibrium, where

̇ = ̇ = 0. That is, it has to hold that

 ∗


=

∗


+ 

∗


 (236)

Since  = 
¡

¢ ¡


¢1−

,  =  (recall (214) and  = ) and  = ,
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we have to check if 
¡
 ∗
¢ ¡

 ∗
¢1−

= ∗∗ + ∗, i.e.,


¡
 ∗
¢ ¡

 ∗
¢1−

∗∗
=

∗

∗
+

∗

∗∗
 (237)

Substituting (221), (228), (229) and ∗∗ =  +  into (237) it should hold that:

(1− )
¡
1− ∗

¢
(1− )∗

=
 + 


+


³



+

´ 1
1−
³
(−)∗
(1−) + 1

´
(1−) 

1− ( )
1

1−
(1−)

³
1

+

´ 
1−

∗
 (238)

being equivalent to

∗ =

£
 + (1− )

¤
(1− )

( + )
£
(1− )( + ) + (1− )

¤
+ ( − )

 (239)

It is easy to show that

( + )
£
(1− )( + ) + (1− )

¤
+ ( − )

= (1− )( + )
£
 + (1 + )

¤
+  (− )  (240)

Thus, (218) and (239) coincide. ¥

B.3 Dynamic System

̇


=  −  (241)

̇ = + +̄ −  −  (242)

̇ = ̃
¡


¢ ¡

¢(1−)

̄1− −  (243)

̇


+




=  +   (244)

 =



 (245)

 =  +  (246)

77



 + =  (247)

 +  =  (248)

 =


1− 



 + 
 (249)

 =


 + 

µ


1− 
 +



1− 

¡
− 

¢¶
 (250)

 = (1− )

µ
 −

− 

¶

 (251)

 =
(1− )

³
−

−
´

(1− )̃̄1−

¡

¢1−(1−)
()

 (252)

 = (1− )̃

Ã¡


¢ ¡

¢1−

̄

!

 (253)

Recall that ̃ = (). Initial state variables are 0 =  and 0 =  and

0 = 0 + 0 0 (notice that 0 is a jump variable). These are 13 equations and 13

endogenous variables:                   .
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