Age, Luck, and Inheritance

Jess Benhabib Shenghao Zhu*
New York University
May 6, 2008

Abstract

We present a mechanism to analytically generate a double Pareto distribution of wealth in a continuous time OLG model with optimizing agents who have bequest motives, are subject to stochastic returns on capital and have uncertain lifespans. We disentangle, roughly, the contribution of inheritance, age and stochastic rates of capital return to wealth inequality, in particular to the Gini coefficient. We investigate the role of the fiscal and redistributive policies for wealth inequality and social welfare.

*We would like to thank Matthias Kredler, Henry P. McKean, Thomas Sargent, Sam Schulhofer-Wohl, Gianluca Violante, Zheng Yang and seminar participants at The Third Federal Reserve Bank of New York/Philadelphia Workshop on Quantitative Macroeconomics for their helpful comments and suggestions.
1. Introduction

Age, luck and inheritance all play a significant role in the accumulation of wealth. Households accumulate wealth as they age. Rates of return vary across households and over time depending on the luck of the draw. And some agents start their economic life with large inheritances. We develop a dynamic model of wealth distribution with utility-optimizing agents to understand the well-known features of empirical wealth distributions: skewness to the right and heavy tails. We provide analytic solutions and then calibrate to match the U.S. distribution. We then decompose the Gini coefficient to isolate the effects of age, luck and inheritance. Finally we study the effects of capital and estate taxes on steady state inequality and welfare.

Our analysis is based on Benhabib and Bisin (2006) who also investigate the impact of intergenerational transmission and redistributive policies on the wealth inequality. In a model with one riskless asset Benhabib and Bisin (2006) find that wealth inequality induced by inheritance accounts for just a little less than a third of the size of the Gini coefficient in the U.S. in 1992. We introduce a risky asset into the model to better identify the contributions of the stochastic rate of return, of age, and of inheritance to the inequality of wealth.

Wealth distribution displays right skewness and a heavy upper tail in different countries and times. Atkinson and Harrison (1978) document the heavy upper tail of the wealth distribution in Britain during 1923-1972. Wolff (1995) presents the percentage share of net wealth held by the richest 1% of wealth holders in U.S. during 1922-1989, which ranges from 19.9% to 36.7%. Using the data of Survey of Consumer Finances in the U.S. in 2001, Wolff (2004) computes the Gini coefficient of wealth, 0.826. The top 1% of population holds 33.4% of the wealth in the U.S. Using the richest sample of the U.S., the Forbes 400, during 1988-2003 Klass et. al. (2006) find that the top end of the wealth distribution obeys a Pareto law with an average exponent of 1.49. Dragulescu and Yakovenko (2001) present the 1996 data of the personal total net wealth in the U.K. and find

1 At least until 65, or retirement; see Rodriguez, Diaz-Gimenez, Quadrini and Rios-Rull (2002), chart 10.
2 Intergenerational transfers also play an important role in the aggregate capital accumulation. Kotlikoff and Summers (1981) find that intergenerational transfers account for the vast majority of the aggregate U.S. capital formation and that in the absence of intergenerational transfer the U.S. capital stock would reduce 70% of the amount of transfer wealth. See also Gale and Scholtz (1994) for more moderate findings on this topic. For an account of the the role of inheritance on the Forbes 400 see Elwood et al. (1997) and Burris (2000).
that the high-end tail follows a power law with exponent of 1.9. Hegyi, Neda and Santos (2007) show that the Pareto index in a rank/frequency plot is 0.92 for the top wealth family of Hungarian in 1550.\(^3\) Sinha (2006) investigates the data of higher-end tail of the wealth distribution in India between the years 2002-2004 and finds that the resulting rank distribution seems to imply a power-law tail for the wealth distribution, with a Pareto exponent between 0.81 and 0.92.

A standard mechanism to generate right-skewed stationary distributions is to construct a stochastic process with negative drift and a lower reflecting barrier.\(^4\) Champernowne (1953) was the first to employ a multiplicative stochastic process of income dynamics with independent proportionate changes that have negative expected value and a reflective lower barrier to derive a power law distribution for income.\(^5\) Wold and Whittle (1957) introduced a birth and death process with exogenous exponential wealth accumulation and bequests to generate a stable stationary wealth distribution. More recently Gabaix (1999) used this mechanism to study the distribution of city sizes, and Levy (2003) used it to study conditions that ensure convergence to the Pareto wealth distribution. In Benhabib and Bisin (2006) the wealth accumulation process is based on optimizing behavior of agents and has positive deterministic growth. But as in Wold and Whittle (1957), the geometrically distributed death and inheritance processes, together with estate taxes, result in a stationary distribution. In our model we will dispense with the need for a lower reflecting barrier to the stochastic process: bad luck will in fact drive down wealth.

Our model is a continuous time overlapping generations model with a continuum of agents as in Yaari (1965) and Blanchard (1985), with optimizing agents. There are three kinds of financial assets: a risk-free asset, a risky asset and life insurance or annuities. Life insurance or annuity companies operate competitively.

\(^3\)In a rank/frequency plot, the Pareto index is the reciprocal of the Pareto exponent. For a derivation of this relationship, see Levy and Solomon (1997).

\(^4\)Kesten (1973) studies the limit distribution of the solution \(Y_n\) of the difference equation \(Y_n = M_n Y_{n-1} + Q_n, n \geq 1\), where \(M_n\) is an i.i.d. random \(d \times d\) matrices, and \(Q_n\) is an i.i.d. random \(d\)-vector. And \(Y_n\) is also a \(d\)-vector. Takayasu, Sato, and Takayasu (1997) clarify necessary and sufficient conditions for a quantity described by \(X(t + 1) = b(t)X(t) + f(t)\) to follow a power law distribution with divergent moment. Sornette and Cont (1997) show that the multiplicative process with the reflective barrier and the Kesten variable are deeply related: the additive term in Kesten processes plays the role of effective repulsion from the origin. Sornette (1998) presents a review of applications, highlights the common physical mechanism and summerize the main known results of the stochastic processes with multiplicative noise.

\(^5\)See also Simon (1955) for a related mechanism to generate the Power Law distribution.
and make zero profits. For each agent the return to the risky asset is stochastic and follows a Geometric Brownian Motion. There are two heterogenous groups of agents: one group has a bequest motives and the other group does not. Under optimal consumption and investment behavior, the wealth of agents also follows a Geometric Brownian Motion. The geometrically distributed death rate, the Geometric Brownian Motion of wealth, and the inheritance of bequests results in a stationary distribution of wealth that follows a Pareto law in both tails (double Pareto distribution). While newborn agents are introduced into the economy at some arbitrary minimum level of wealth through transfers determined by a redistributive welfare policy, unlike the previous models in the literature described above, this level does not constitute a reflecting barrier: low realizations of the return on the risky asset can draw down wealth below this birth minimum, and so we end up with a double Pareto distribution.\footnote{Reed (2001) proposes a double Pareto distribution to explain the power law behaviour in the upper tail of income and of city size distributions. The income distribution within each cohort is lognormal and the age is an exponential random variable. Provided all income earners have the same starting income (no inheritance), the current distribution of incomes for the economy mixing all cohorts is a double Pareto distribution. The simpler techniques used by Reed that avoid PDEs however cannot be applied directly to our model with inheritance. The plots of Reed (2001) reveal power law behaviour in both the upper tail and lower tail of 1998 U.S. male earnings distributions and 1998 U.S. settlement sizes distribution.}

We try to disentangle the contributions of stochastic rate of return, of the age profile, and of inheritance to wealth inequality. From our rough calibration and simulation exercises, we find that luck captured by the stochastic rate of return contributes about 31% to wealth inequality in terms of Gini coefficient and life-cycle accumulation or age contributes about 37%. We show that surprisingly, bequests and inheritance can decrease wealth inequality because they have an impact on the growth rate of average wealth, dampening the dissipative effect of luck and age on the relative growth of individual wealth. We also show that government redistributive policies have important consequences for wealth inequality through their effects on the growth rates of wealth, on the size of government subsidies, and on bequests, and that fiscal policies can have an impact on social welfare defined as the sum of the discounted utility streams of those who are alive.

1.0.1. Related literature

A large literature of incomplete markets such as Aiyagari (1994) and Huggett (1993) study the stationary distribution of wealth in models with heterogenous
agents. Agents face uncertain labor income and a constant interest rate, and hold precautionary savings against uninsurable labor earnings. As pointed out by Schechtman and Escudero (1977) the constant or bounded relative risk aversion utility functions employed in these models mean that the stationary distribution of wealth has bounded support. To generate skewness and fat tails, we use a model with stochastic rates of return to capital as well as bequests and inheritance, but we abstract away from modelling labor earnings or their distribution. We obtain a stationary distribution of wealth with unbounded support, which displays fat-tails and upper skewness.

A number of authors have recently introduced new features to the basic incomplete market models to simulate the U.S. wealth distribution. Huggett (1996) calibrates life-cycle economies to match features of the U.S. earnings distribution and then examines the wealth distribution implications of his model. His model produces less than half the fraction of wealth held by the top 1% of U.S. households. Krusell and Smith (1998) study incomplete market economies with aggregate uncertainty. They introduce preference heterogeneity into the economy in the form of random discount factors to match the dispersion and the key features of the U.S. wealth distribution. Quadrini (2000) generates a concentration of wealth similar to the one observed in the U.S. economy by introducing entrepreneurship into his model. Castaneda, Diaz-Gimenez and Rios-Rull (2003) incorporate life cycle features, a social security system, progressive income and estate taxes and intergenerational transmission of stochastic earnings ability into their model, and find through simulations that the labor efficiency shock helps to account for the U.S. distribution of earnings and wealth almost exactly. De Nardi (2004) constructs an OLG model in which parents and children are linked by accidental and voluntary bequests and by earnings ability. Cagetti and De Nardi (2005) summarize some key facts about the U.S. wealth distribution and of equilibrium models with incomplete markets. More recently, Wang (2006) investigates the equilibrium wealth distribution in an economy endogenous time preferences that can differ across infinitely-lived agents. With endogenous time preference, the stronger incentives to consume for the rich agents narrow the wealth dispersion

\[\text{The mechanism that generates a non-degenerate stationary distribution for such additive shock (stochastic labor income) models require the gross interest rate to be smaller than the reciprocal of the time discount rate. This is also the feature used to generate a stationary distribution in the calibrated models, for example of Aiyagari (1994), Huggett (1993), Castaneda, Diaz-Gimenez and Rios-Rull (2003). In our model the product of the interest rate and the time discount rate exceeds unity so we have growth.} \]
and generate a stationary distribution. This mechanism differs from our model where the spread of the wealth process is checked by death, annuity markets, and estate taxes.

While the agents have uncertain lifetimes in our model, in the presence of the perfect life insurance markets there are no accidental bequests. This feature is in contrast to some of the literature on precautionary saving, such as Abel (1985) and Fuster (2000), who investigate how the lack of annuities markets affect savings behavior and the intergenerational transfer of wealth under uncertain lifetimes.

The rest of this paper is organized as follows. In section 2, we present the basic structure of our continuous time OLG economy. We investigate the cross-sectional wealth distribution of the economy in section 3. Section 4 contains the analysis of the effect of redistributive policy on wealth inequality and social welfare. We present an alternative economy with across the board lump-sum subsidies in section 5 and conclude with a discussion in section 6. We leave the proofs to the Appendix.

2. An OLG economy

There is a continuum of agents in the economy who invest their wealth in a riskless asset and a risky asset. The price of the risky asset is generated by a Geometric Brownian Motion process

\[dS(t) = S(t)\alpha dt + S(t)\sigma dB(t) \]

where \(B(t) \) is the standard Brownian motion, \(\alpha \) is the instantaneous conditional expected percentage change in price per unit time and \(\sigma \) is the instantaneous conditional standard deviation per unit time. The Geometric Brownian Motion process implies that risky asset price is non-stationary and log-normally distributed.

The price of the riskless asset is

\[dQ(t) = Q(t)rdt \]

where \(r < \alpha \).

The agent allocates personal wealth among current consumption, investment in a risky asset, a riskless asset and the purchase of life insurance. Negative life insurance purchases, allowed in our model, corresponds to the purchase of annuities. \(Z(s,t) \) denotes the bequest that the agent born at time \(s \) leaves at
time t if the agent dies. The bequest consists of two parts: the agent’s wealth invested in riskless asset and risky asset, and the life insurance/annuities that the agent purchases. The price of the life insurance is μ. The agent pays $P(s,t)dt$ to buy the life insurance. Should the agent die in the next short period dt, the life insurance company pays $\frac{P(s,t)}{\mu}$.

$$Z(s,t) = W(s,t) + \frac{P(s,t)}{\mu}$$

If $P(s,t) < 0$, the life insurance company is an annuity company, paying $P(s,t)dt$ and receiving $\frac{P(s,t)}{\mu}$ from the estate should the agent die.

There is an uncertainty about the duration of the agent’s life: it follows an exponential distribution with rate parameter of p. Each agent will die at a time $t \in [0, +\infty)$ according a probability density function $\pi(t) = pe^{-pt}$. In a small time Δt, the agent has probability of $p\Delta t$ to die, conditioning on the event that the agent is still alive. When the agent dies, the agent’s child is born. Each agent has one child.

Life insurance or annuity companies make zero profits and effectively act as clearing houses. In a short period of length Δt payments and disbursement are equal: $p \frac{P(s,t)}{\mu} \Delta t = P(s,t)\Delta t$, so that $\mu = p$.\(^8\)

We assume the bequest motive takes the form of "the joy of giving": The bequest enters parents’ utility function but parents do not care about children’s utility per se. (See however the Pure Altruism section 8.12 at the end of the Appendix for how, following Abel and Warshawsky (1988), we can parametrize the bequest function so that for a particular parametrization it reduces to the standard infinitely-lived dynastic utility Ramsey model) Utility from bequests is given by $\chi \phi((1 - \zeta)Z(s,t))$ where ζ is the estate tax rate, χ represents the strength of the bequest motive, and $\phi(\cdot)$ is the bequest utility function. We choose CRRA functions for both the consumption and the bequest utilities.

Let $J(W(s,t))$ be the optimal value function of agents. The agent’s utility maximization problem is

$$J(W(s,t)) = \max_{C,\omega,P} E_t \int_t^{+\infty} e^{-(\theta+p)(v-t)}[\frac{C^{1-\gamma}(s,v)}{1-\gamma} + p\chi \frac{(1 - \zeta)Z(s,v))^{1-\gamma}}{1-\gamma}]dv \quad (1)$$

\(^8\)In fact collections and disbursements occur every instant in continuous time as $\Delta t \to 0$.

7
subject to
\[dW(s, t) = \left[(r - \tau)W(s, t) + (\alpha - r)\omega(s, t)W(s, t) - C(s, t) - P(s, t)\right]dt + \sigma \omega(s, t)W(s, t)dB(s, t) \] \hspace{1cm} (2)

\(C(s, t) \) and \(W(s, t) \) are the consumption and wealth at time \(t \) of an agent born at time \(s \). \(\omega(s, t) \) is the share of wealth the agent invests in risky asset. \(\tau \) is the capital tax on wealth\(^9\). The transversality condition for the agent’s problem is\(^10\)
\[
\lim_{t \to +\infty} E e^{-(\theta + p)(t-s)} J(W(s, t)) = 0
\]
The set-up of the agent’s problem is that of Richard (1975). We add a capital tax and an estate tax to Richard’s (1975) model. The agent’s optimal policy is same as that of Richard (1975) except that we have to take into account the influence of taxes.

Proposition 1. The agent’s optimal policies are characterized by
\[
C(s, t) = A \frac{1}{\gamma} W(s, t), \quad \omega(s, t) = \frac{\alpha - r}{\gamma \sigma^2},
\]
\[
Z(s, t) = \left(\frac{P X}{A \mu} \right)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1}{\gamma - \gamma}} W(s, t)
\]
with
\[
A = \left(\frac{\theta + p - (1-\gamma)(r - \tau + \mu + \frac{(\alpha - r)^2}{2\gamma \sigma^2})}{\gamma(1 + (p/\gamma)\frac{1}{\gamma - \gamma})} \right)^{-\gamma}
\]
and
\[
dW(s, t) = gW(s, t)dt + \kappa W(s, t)dB(s, t).
\]
with \(g = \frac{r - \tau + \mu - \theta - p}{\gamma} + \frac{1 + \gamma (\alpha - r)^2}{2\gamma \gamma \sigma^2} \) and \(\kappa = \frac{\alpha - r}{\gamma \sigma^2} \).

Note that \(P(s, t) \) may be positive or negative depending on the sign of \(Z(s, t) - W(s, t) \), and determines if the agent buys annuities or life insurance.\(^11\) The mean growth rate of the agent’s wealth is \(g = \frac{r - \tau + \mu - \theta - p}{\gamma} + \frac{1 + \gamma (\alpha - r)^2}{2\gamma \gamma \sigma^2} \). This growth rate is independent of the preference parameter \(\chi \). This is due to the specific utility form

\(^9\)Of course \(\tau \) can be redefined so it is a tax on capital income.
\(^10\)For the transversality condition of the continuous-time stochastic dynamic programming problem, see Merton (1992).
\(^11\)If \(\mu = p \), then the sign of \(Z(s, t) - W(s, t) \) is determined by \((\frac{\chi}{\lambda})^\frac{1}{\gamma} (1 - \zeta)^{\frac{1}{\gamma - \gamma}} - 1 \).
of the function. The growth rate, \(g \), depends on the income tax rate \(\tau \), but not the estate tax rate \(\zeta \). The share of risky asset, \(\omega(s, t) = \frac{\alpha - \tau}{\gamma \sigma^2} \), is only influenced by the risk premium of the risky asset, the degree of risk aversion and the volatility of the risky asset. This is the same result as that of Merton (1971). The share of wealth invested in the risky asset, \(\omega(s, t) \), does not depend on "joy of giving" parameter \(\chi \) and the government policy. The volatility of the growth of the agent’s wealth is \(\kappa = \frac{\alpha - \tau}{\gamma \sigma^2} \). The agent’s wealth evolves as a Geometric Brownian Motion

\[
dW(s, t) = gW(s, t)dt + \kappa W(s, t)dB(s, t)
\]

(3)

Note that \(\kappa \) is negatively related to the standard deviation of the price of the risky asset, \(\sigma \), even though \(\kappa \) is positively related to \(\sigma \omega(s, t) \). This is because \(\omega(s, t) \) is negatively related to \(\sigma^2 \). The aversion to the risk causes the agent to overreact to the risk such that the volatility of the wealth is negatively related to the volatility of the risky asset, the only source of the uncertainty of the individual asset while alive. Government policy has no impact on \(\kappa \).

The wealth growth equation (3) implies that wealth growth displays Gibrat’s Law. The growth rate of the wealth is independent of the level of the wealth. In many of the mechanisms generating a Power law distribution, the Gibrat’s Law plays a fundamental role, which is also true in our model.

2.1. The aggregate economy

The age cohorts are large enough such that: 1) Even though each agent faces uncertainty about the duration of life, the size of the cohort born at \(s \), is \(pe^{-p(t-s)} \) at time \(t \). The size of the population at any time \(t \) is \(\int_{-\infty}^{t} p e^{p(s-t)} ds = 1 \). 2) Although different agents within a cohort have different wealth levels, because of large numbers the aggregate wealth level of a cohort depends on the age of the cohort, but not on the wealth distribution within the cohort. The mean wealth of the cohort is\(^{12}\)

\[
E_sW(s, t) = E_sW(s, s)e^{g(t-s)}
\]

(4)

We assume that in a small time interval \(\Delta t \), a fraction \(p \Delta t \) of people die, but only a fraction \(q \Delta t \) of people leave bequest, where \(q < p \). A fraction \((p - q) \Delta t \) of people leave no bequest when they die, since \(\chi = 0 \) in their utility function. Newborns who do not receive a bequest and whose inheritance level is lower than

\(^{12}\)For this point, we benefit from the discussion with Zheng Yang.
a specific level receive wealth subsidies from the government.

Let $W(t)$ be the aggregate wealth of the economy

$$W(t) = \int_{-\infty}^{t} E_s W(s, t) p e^{p(s-t)} ds \quad (5)$$

Plugging formula (4) into formula (5), we have

$$W(t) = \int_{-\infty}^{t} E_s W(s, s) p e^{(g-p)(t-s)} ds$$

The growth rate of the aggregate wealth is

$$\frac{dW(t)}{dt} = pE_t W(t, t) + (g - p) W(t) \quad (6)$$

We need to compute $pE_t W(t, t)$ in formula (6). Since $pE_t W(t, t)$ represents the aggregate starting wealth of the newborn, it consists of two parts: the private bequest and the public subsidy. The newborn whose parents have a bequest motive receives an inheritance. If the newborn’s inheritance is lower than a threshold level that is proportional to the aggregate wealth, the government gives the newborn a subsidy that brings their starting wealth to the threshold level. If the newborn’s inheritance is higher than the threshold level, the newborn does not receive a wealth subsidy from the government. The newborn whose parent does not have a bequest motive obtains a wealth subsidy and starts life at the threshold level of wealth. The subsidy is determined by the government’s budget. The government

13 We may think of part of these these subsidies as the discounted value of lifetime transfers. We may also consider initial wealth at birth to be the discounted value of lifetime earnings. See also section 6 below.

14 Benhabib and Bisin (2006) also use a welfare policy where the subsidy is designed to top up all bequests to newborns, including zero bequests, that fall short of a minimum wealth level that grows at the rate of growth of the economy. Both in the Benhabib-Bisin model and in our model, if the parents cared not about the gross bequest, but the bequest net of estate taxes, the optimal bequests would be different due to the induced non-convexity. Using standard smooth pasting arguments Benhabib and Bisin (2006) show in their appendix that if parents cared about net bequests, that the optimal net bequest would be zero until a threshold level that exceeds the minimum wealth for the newborn, and then revert exactly to the level prescribed by the model. As the wealth subsidy threshold to newborns goes to zero, the optimal bequest and consumption functions of the two models converge. In section 6 below we also consider a policy where all newborns, irrespective of inheritance, receive the same subsidy, which may also be interpreted,
collects capital and estate taxes, incurs government expenditures proportional to the aggregate wealth, and provides subsidies to qualifying newborns so that the government budget is balanced at all times. The subsidies to the newborn are

\[q \left(\frac{PX}{A\mu} \right)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1-\gamma}{\gamma}} \zeta W(t) + \tau W(t) - \eta W(t) \]

where \(q \left(\frac{PX}{A\mu} \right)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1-\gamma}{\gamma}} \zeta W(t) \) and \(\tau W(t) \), respectively, are government’s revenue from the estate tax and capital tax, and \(\eta W(t) \) is government expenditure. We assume that the government tax revenue is greater than government expenditure. The redistributive policy then implies that the newborn without inheritance has positive starting wealth. This specific wealth level is endogenous. We will determine this specific level in section 3.

The aggregate subsidy is \(q \left(\frac{PX}{A\mu} \right)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1-\gamma}{\gamma}} (1 - \zeta - \eta) W(t) \) and the aggregate inheritance is \(q \left(\frac{PX}{A\mu} \right)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1-\gamma}{\gamma}} (1 - \zeta) W(t) \). Combining these two parts, we have the aggregate starting wealth of newborns:

\[pE_t W(t, t) = \left(q \left(\frac{PX}{A\mu} \right)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1-\gamma}{\gamma}} (1 - \zeta - \eta) \right) W(t) + q \left(\frac{PX}{A\mu} \right)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1-\gamma}{\gamma}} (1 - \zeta) W(t) \]

Substituting it into equation (6), we obtain:

\[\frac{dW(t)}{dt} = \left(q \left(\frac{PX}{A\mu} \right)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1-\gamma}{\gamma}} + g - p + \tau - \eta \right) W(t) \]

(7)

The growth rate of the aggregate wealth of the economy is

\[\tilde{g} = q \left(\frac{PX}{A\mu} \right)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1-\gamma}{\gamma}} + g - p + \tau - \eta \]

We restrict the parameters such that the individual wealth grow rate is not less than the aggregate wealth growth rate:

\[g - \tilde{g} = p - q \left(\frac{PX}{A\mu} \right)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1-\gamma}{\gamma}} - (\tau - \eta) \geq 0 \]

(8)

after adjusting the fiscal policies, as the discounted value of lifetime labor earnings.
We can normalize the economy such that

\[W(0) = 1 \]

Then formula (7) determines evolution of the aggregate wealth of the economy.

3. Wealth distribution and inequality

We now investigate the cross-sectional distribution of the wealth. Since aggregate wealth level is growing, one way to study the cross-sectional wealth distribution would be investigate the distribution of the ratio of individual wealth to aggregate wealth. This is equivalent to discounting the individual wealth level by the aggregate economy growth rate \(\bar{g} \). Let \(X(s, t) \) be the the ratio of the individual wealth to the aggregate wealth.\(^{15}\)

\[X(s, t) = e^{-\bar{g} t} W(s, t) \]

Note that \(X(s, t) \) also generates Geometric Brownian Motion.

\[dX(s, t) = (g - \bar{g})X(s, t)dt + \kappa X(s, t)dB(s, t) \]

Then \(X(s, t) \) is lognormally distributed.

\[X(s, t) = X(s, s) \exp[(g - \bar{g} - \frac{1}{2} \kappa^2)(t - s) + \kappa(B(s, t) - B(s, s))] \]

where we assume that \(g - \bar{g} - \frac{1}{2} \kappa^2 \geq 0 \).

Let \(f(x, t) \) be the cross-sectional distribution of \(X(s, t) \) at time \(t \). In order to investigate the cross-sectional distribution of \(X(s, t) \), we need to know not only the evolution function of \(X(s, t) \) during an agent’s the lifetime, but also the change of \(X(s, t) \) between two consecutive generations. The evolution of wealth during an agent’s the lifetime reflects the impact of age and of the stochastic rates of return on capital. The change of \(X(s, t) \) between two consecutive generations reflects the role of inheritance and government subsidies. Let \(x^*W(t) \) be the threshold level of wealth below which newborns qualify for the government wealth subsidy.

\(^{15}\)More precisely, \(X(s, t) = e^{-\bar{g} t}W(s, t)/W(0) \). We omit the denominator, since it is only a normalizing factor and we assume that \(W(0) = 1 \).
Suppose that a parent with wealth $W(e, s)$ leaves bequest $Z(e, s)$ to his child. If $(1 - \zeta)Z(e, s) \geq x^* W(s)$, the child’s starting wealth is determined by $W(s, s) = (1 - \zeta)Z(e, s)$. For the optimal policy $Z(e, s) = (\frac{p\chi}{A\mu})^{\frac{1}{\gamma}} (1 - \zeta) \frac{1 - x^*}{x^*} W(e, s)$ we have

$$W(s, s) = (1 - \zeta)\left(\frac{p\chi}{A\mu}\right)^{\frac{1}{\gamma}} (1 - \zeta) \frac{1 - x^*}{x^*} W(e, s) = \left(\frac{p\chi(1 - \zeta)}{A\mu}\right)^{\frac{1}{\gamma}} W(e, s) \quad (9)$$

Multiplying both sides of equation (9) by $e^{-\beta s}$, and applying the formula $X(s, t) = e^{-\beta t} W(s, t)$, we have

$$X(s, s) = \left(\frac{p\chi(1 - \zeta)}{A\mu}\right)^{\frac{1}{\gamma}} X(e, s)$$

Let

$$\rho = \left(\frac{p\chi(1 - \zeta)}{A\mu}\right)^{\frac{1}{\gamma}} \quad (10)$$

The transfer of wealth $X(s, t)$ between two consecutive generations when the inherited wealth of the newborn is above the threshold for a government subsidy is:

$$X(s, s) = \rho X(e, s)$$

If on the other hand the parents have a bequest motive but their wealth level $W(e, s) < \frac{x^*}{p} W(s)$, or if the parents do not have a bequest motive, then the government subsidizes their children.

In section 8.2 of the Appendix we derive the evolution of $f(x, t)$ which is given by the forward Kolmogorov equation below, modified to accommodate the death of the agents and the bequests:

$$\frac{\partial f(x, t)}{\partial t} = \frac{1}{2} \frac{\partial^2}{\partial x^2} (\kappa^2 x^2 f(x, t)) - \frac{\partial}{\partial x} ((g - \bar{g}) x f(x, t)) - pf(x, t) + qf\left(\frac{x}{\rho}, t\right) \frac{1}{\rho}, \quad x > x^* \quad (11)$$

$$\frac{\partial f(x, t)}{\partial t} = \frac{1}{2} \frac{\partial^2}{\partial x^2} (\kappa^2 x^2 f(x, t)) - \frac{\partial}{\partial x} ((g - \bar{g}) x f(x, t)) - pf(x, t), \quad x < x^* \quad (12)$$

The partial differential equation does not hold at $x = x^*$.16 It is difficult to

16For this point, we greatly benefited from the discussion with Matthias Kredler and Henry P. McKean.
solve this partial differential equation. Instead, we investigate the behavior of the equation in the long run, the stationary distribution of the wealth.\footnote{Benhabib and Bisin (2006) do study the transition dynamics and convergence of the PDE above, but their setting is simpler because it does not involve stochastic returns.}

In the stationary distribution, we have $\frac{\partial f(x,t)}{\partial t} = 0$. We deduce, from the partial differential equation, the stationary distribution $f(x)$ which satisfies the following ordinary differential equations:

$$\frac{1}{2} \kappa^2 x^2 f''(x) + (2\kappa^2 - (g - \bar{g})) x f'(x) + (\kappa^2 - (g - \bar{g}) - p) f(x) + q f \left(\frac{x}{\rho} \right) \frac{1}{\rho} = 0, \quad x > x^*$$

(13)

and

$$\frac{1}{2} \kappa^2 x^2 f''(x) + (2\kappa^2 - (g - \bar{g})) x f'(x) + (\kappa^2 - (g - \bar{g}) - p) f(x) = 0, \quad x < x^*$$

(14)

The endogenous value x^* is determined by government’s subsidy policy:

$$(p - q) x^* + q \int_0^{x^*} (x^* - \rho x) f(x) dx = q \left(\frac{p x}{A \mu} \right)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1}{\gamma}} \zeta^{1 - \gamma} (1 - \zeta)^{\frac{1}{\gamma}} (1 - \zeta)^{1 - \gamma} + \tau - \eta.$$

(15)

$(p - q) x^*$ is the government’s subsidy for the newborns whose parents do not have a bequest motive. $q \int_0^{x^*} (x^* - \rho x) f(x) dx$ is the government’s subsidy to the newborns who receive inheritance lower than x^*. $q \left(\frac{p x}{A \mu} \right)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1}{\gamma}} (1 - \zeta)^{1 - \gamma} + \tau - \eta$ is the discounted subsidy to all the newborns from the government’s budget.

3.1. Pareto distribution

In this section, we first discuss the special case of no inheritance and then the general case of inheritance. In both cases the stationary distribution turns out to be a double Pareto distribution.

3.1.1. No inheritance

If agents do not have bequest motive, they leave no bequest to their children. The starting wealth of the newborn is the government subsidy. This closes a channel for the intergenerational transmission of inequality in the wealth distribution and
corresponds to the special case of $q = 0$ in the general model. If $q = 0$, the density function of the stationary distribution, $f(x)$ solves

$$
\frac{1}{2} \kappa^2 x^2 f''(x) + (2\kappa^2 - (g - \bar{g})) x f'(x) + (\kappa^2 - (g - \bar{g}) - p) f(x) = 0, x \neq x^*
$$

All of the newborns are injected into the economy through the discounted wealth level $x^* = \frac{r - \eta}{p} > 0$.

Proposition 2. The stationary distribution in the no inheritance case has the following kernel

$$f(x) = \begin{cases} C_1 x^{-\beta_1} & \text{when } x \leq x^* \\ C_2 x^{-\beta_2} & \text{when } x \geq x^* \end{cases}$$

where β_1 and β_2 are the two roots of

$$\frac{\kappa^2}{2} \beta^2 - \left(\frac{3}{2} \kappa^2 - (g - \bar{g})\right) \beta + \kappa^2 - p - (g - \bar{g}) = 0.$$

Then

$$\beta_1 = \frac{\frac{3}{2} \kappa^2 - (g - \bar{g}) - \sqrt{\left(\frac{1}{2} \kappa^2 - (g - \bar{g})\right)^2 + 2 \kappa^2 p}}{\kappa^2}$$

$$\beta_2 = \frac{\frac{3}{2} \kappa^2 - (g - \bar{g}) + \sqrt{\left(\frac{1}{2} \kappa^2 - (g - \bar{g})\right)^2 + 2 \kappa^2 p}}{\kappa^2}$$

When people die, there is a shift of the wealth level. By assumption, the individual wealth growth rate is higher than the aggregate growth rate, $g - \bar{g} = p - (\tau - \eta) > 0$. The following proposition shows that $f(x)$ is integrable on $(0, +\infty)$ and therefore is a distribution function. Furthermore the proposition shows that the stationary distribution has finite mean.

Proposition 3. $\beta_1 < 1$ and $\beta_2 > 2$.

The normalization condition gives us $\int_0^{x^*} C_1 x^{-\beta_1} dx + \int_{x^*}^{+\infty} C_2 x^{-\beta_2} dx = 1$. And the mean preservation condition gives us $\int_0^{x^*} C_1 x^{1-\beta_1} dx + \int_{x^*}^{+\infty} C_2 x^{1-\beta_2} dx = 1$.\footnote{For the dying people whose wealth levels are higher than $x^* = \frac{r - \eta}{p}$, the wealth levels shift downward. For the dying people whose wealth levels are lower than $x^* = \frac{r - \eta}{p}$, the wealth levels shift upward.}

\footnote{Mean wealth discounted at the aggregate growth rate is constant since there are no net injections of wealth by construction. We normalize $W(0) = 1$.}
Combining these two conditions, we can determine C_1 and C_2.\(^{20}\)

3.1.2. The general case

Now we set $p > q > 0$ so that some agents have a bequest motive.

Proposition 4. The stationary distribution has the following kernel

$$f(x) = \begin{cases} C_1 x^{-\beta_1} & \text{when } x < x^* \\ C_2 x^{-\beta_2} & \text{when } x > x^* \end{cases}$$

where β_1 is the smaller root of the characteristic equation

$$\frac{\kappa^2}{2} \beta^2 - \left(\frac{3}{2} \kappa^2 - (g - \tilde{g})\right) \beta + \kappa^2 - p - (g - \tilde{g}) = 0$$

(16)

and β_2 is the larger solution of the characteristic equation

$$\frac{\kappa^2}{2} \beta^2 - \left(\frac{3}{2} \kappa^2 - (g - \tilde{g})\right) \beta + \kappa^2 - p - (g - \tilde{g}) + q \rho^{\beta-1} = 0.$$

(17)

The characteristic equation represents the forces that influence wealth inequality in the economy. Note that $g - \tilde{g} = p - q \left(\frac{\rho x}{A_t}\right)^{\frac{1}{2}} \left(1 - \zeta \right)^{\frac{1}{2}} (1 - \zeta - (\tau + \eta))$ reflects the relative growth rate of individual wealth to the aggregate wealth. Through this term the parameter of preference for bequests, χ, and the capital tax rate, τ, influence the Pareto coefficients β_1 and β_2. The volatility of the price of the risky asset is reflected by the term $\kappa = \frac{\alpha - r}{\sigma}$. The capital tax rate, τ, is one of the two fiscal policy tools of the government. The other policy tool of government is the estate tax rate, ζ, which is reflected in the intergenerational transmission term, $\rho = \left(\frac{px(1-\zeta)}{A_t}\right)^{\frac{1}{2}}$. The strength of bequest motive χ also influences ρ. Note that while the volatility of risky asset, σ, influences the individual wealth growth rate, it does not influence the relative growth rate of wealth. Therefore σ does not influence the Pareto coefficient through the relative growth rate, $g - \tilde{g}$. On the other hand, the capital tax rate, τ, has an impact on the relative growth rate, but has no impact on the volatility of wealth growth, κ.

\(^{20}\)For an even simpler model that still generates the double Pareto distribution without inheritance and without government taxes and transfers and where all agents are born with the same positive initial wealth, see Appendix 8.10.
The following proposition characterizes the two solutions of the characteristic equations (16) and (17).

Proposition 5. \(\beta_1 < 1 \) and \(\beta_2 > 2 \).

This proposition guarantees that there exists a stationary distribution of the wealth.\(^{21}\) The proposition also assures that \(f(x) \) is a distribution function since \(\beta_1 < 1 \) and \(\beta_2 > 2 \) imply the integrability of \(f(x) \) on \((0, +\infty)\). Furthermore, \(\beta_1 < 1 \) and \(\beta_2 > 2 \) guarantee that the stationary distribution has finite mean, but this does not imply that the variance necessarily exists.

From the normalization condition, \(\int_0^{x^*} C_1 x^{-\beta_1} dx + \int_{x^*}^{+\infty} C_2 x^{-\beta_2} dx = 1 \), and the mean preservation condition \(\int_0^{x^*} C_1 x^{1-\beta_1} dx + \int_{x^*}^{+\infty} C_2 x^{1-\beta_2} dx = 1 \),\(^{22}\) we can determine the terms \(C_1 \) and \(C_2 \) of the stationary distribution density function:

\[
C_1 = (1 - \frac{1}{2 - \beta_2}) x^*(x^*)^{\beta_1-2} \frac{(2 - \beta_1)(2 - \beta_2)(1 - \beta_1)}{\beta_2 - \beta_1}
\]

and

\[
C_2 = (1 - \frac{1}{2 - \beta_1}) x^*(x^*)^{\beta_2-2} \frac{(2 - \beta_1)(2 - \beta_2)(1 - \beta_2)}{\beta_2 - \beta_1}
\]

Note that the density function is not necessarily continuous at \(x^* \).

With the explicit form of \(f(x) \), we can find the endogenous \(x^* \) by equation (15).

\[
x^* = \frac{q(\frac{\rho x}{\mu q})^{\frac{1}{2}} (1 - \zeta) ^{\frac{1}{\gamma}} \zeta + \tau - \eta + \rho \frac{\rho^{\beta_2-1}(2-\beta_1)}{\beta_2 - \beta_1} q}{p - \rho^{\beta_2-1}(1-\beta_1) q}
\]

In the Appendix 8.7 we derive the Lorenz curve and the Gini coefficient of the double Pareto distribution.

4. The calibrated economy

We calibrate parameters to simulate our very stylized and abstract model economy. We explore the numerical relationship between the Gini coefficient and the

\(^{21}\)Constantinides and Duffie (1996) use the Law of Large Numbers to prove the existence of the cross-sectional distribution of consumption in a heterogenous agents asset pricing model by introducing a large death rate so that their model has finite variance for the stationary distribution of consumption. They do not characterize the distribution.

\(^{22}\)Note that we normalize \(W(0) = 1 \).
fundamental parameters. We choose the annual time discount rate, $\theta = 0.03$, the preference parameter for bequests, $\chi = 15$, the volatility of the risky asset, $\sigma = 0.26$, the coefficient of relative risk aversion, $\gamma = 3$, the annual risk-free interest rate, $r = 1.8\%$, and the annual average return on the risky asset, $\alpha = 8.8\%$, which implies that the risk premium of the risky asset is $\alpha - r = 7\%$. As in Benhabib and Bisin (2006), we pick $p = 0.016$, which implies that agents have an expected working life of $\frac{1}{p} = 62.5$ years. As noted earlier, under fair market insurance we set the life insurance price $\mu = p = 0.016$. Kopczuk and Lupton (2006) find that roughly $\frac{3}{4}$ of the elderly single population has a bequest motive. Setting $\frac{2}{p} = 0.75$ implies that $q = 0.012$. Following Friedman and Carlitz (2005) we calibrate the effective estate tax rate at $\zeta = 0.19$. Since only net government expenditures affect results and play a role in the analysis, we set government expenditures $\eta = 0$. This leaves the calibration of the capital tax on wealth at τ. Since we have $\eta = 0$ we have to consider τ as net of capital and income taxes that are collected for purposes other than redistribution. We have to set τ such that, together with estate taxes, it will generate the revenue to subsidize transfer payments. These transfers, in discounted value, correspond to the government wealth transfer to the young. At about $9 - 10\%$ of GDP in the US, transfers amount to about a trillion dollars or about $9,000$ per household.\footnote{If we add state subsidies to public education, transfers would be even higher.} Discounted over working life at an interest rate of 6.5%, this corresponds to an initial wealth of about $130,000$. Thus we set $\tau = 0.004$ so that together with estate taxes, the capital taxes can finance the redistributive transfers.\footnote{From the US 2004 Survey of Consumer Finances average household wealth is about $448,000$, so that total household wealth is about 50 trillion. At the calibrated estate tax of 19% our model would produce a fraction $q * \mu * \zeta$ of household wealth in estate taxes, amounting to 86 billion, about 2.5-3 times the actual collection, but still a small fraction of government revenues. As shown in the last table of the appendix, lowering ζ to match the actual collections has little effect on the results of our calibration. Note that in our model, relative to capital taxes collected through τ to finance transfers for new households, estate taxes are quite small. In the US economy they are insignificant.} Section 5.1 and the tables in section 8.11 of the Appendix provide sensitivity results for alternative calibrations of capital and estate taxes and other parameters.

The following table reports the numerical results of the calibrated economy:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>ω</th>
<th>ρ</th>
<th>g</th>
<th>\hat{g}</th>
<th>$g - \hat{g}$</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results</td>
<td>13988.6</td>
<td>0.345168</td>
<td>0.0954114</td>
<td>0.0107745</td>
<td>0.000187993</td>
<td>0.0105865</td>
<td>0.0897436</td>
</tr>
</tbody>
</table>
From the simulation results, the portfolio share that the agent invests in the risky asset is $\omega = 0.345168$. The bequest function is $Z(s, t) = (\frac{P_A}{A_\mu})^{\frac{1}{\gamma}}(1 - \zeta)^{\frac{1}{\gamma - 1}}W(s, t) = 0.117792W(s, t)$ so that purchased life insurance is given by $P(s, t) = p(Z(s, t) - W(s, t)) = -0.0141153W(s, t)$. Negative life insurance corresponds precisely to annuities. Given, τ, and ω the average return on wealth, including annuity receipts, is 5.18% and the individual consumption function is $C(s, t) = A^{-\frac{1}{3}}W(s, t) = 0.0415026W(s, t)$.

The growth rate of the wealth of agents is $g = 0.0107745$, while the growth rate of the aggregate economy, \bar{g}, is almost zero. The reason for the low growth rates is simple and can be explained with a rough approximation. We calibrate the riskless rate of return at 1.8% and the mean of the risky rate at 8.8%, and we match the 7% premium for risky assets. In the optimal portfolio allocation 34% of wealth is held in the risky asset, so that with annuity receipts agents receive a return on wealth of 5.18%. The Euler equation relates the consumption growth rate to the difference between the mean return on wealth and the discount rate, multiplied by the intertemporal elasticity of substitution $\sigma^{-1} = \frac{1}{3}$. Thus the small difference between the mean return on wealth and the discount rate necessarily results in low growth rates. In section 4.5 we provide a sensitivity analysis by raising both the riskless and the mean risky returns while maintaining the 7% risk premium, and we obtain higher growth rates of wealth.

We can now plot the stationary distribution of wealth for this calibration, with mean wealth normalized to 1:

In the simulated economy, $x^* = 0.313596$, corresponding to $\$129,000$ or 31% of mean household wealth of $\$448,000$, normalized to unity in our model. This is very close to the discounted value of lifetime transfers of roughly $\$130,000$ that we used to calibrate τ above. When $x < x^*$, the density of the distribution is governed by C_1 and β_1 (the increasing part of the density in Figure 4.1). When $x > x^*$, the density is governed by C_2 and β_2 (the decreasing part of the density in Figure 4.1). Let F^* denote the percentage of the population whose wealth level is lower than x^*. The following table lists the parameters of the distribution:

25 The bequest function, abstracting from inter-vivos transfers, is only for the agents who do leave bequests. Therefore for the pre-tax bequest flow we must multiply the right side by q, so bequest flows are $0.0014W$.

The empirical wealth distribution from the U.S. 2004 Survey of Consumer Finances data displays (see Figure 4.2) the two power-law-like fat tails, albeit with some jagged wiggles. Even though in our model we cannot generate the zero and negative wealth levels held by 8.9% of the population in the data, our model replicates the "double Pareto" distribution. The spike of the empirical data however is around the zero wealth level, and excludes the discounted value of government transfers to households.

The prominent features of wealth distribution are the fat-tail and upper skew-

<table>
<thead>
<tr>
<th>Distribution</th>
<th>x^*</th>
<th>F^*</th>
<th>β_1</th>
<th>C_1</th>
<th>β_2</th>
<th>C_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution</td>
<td>0.313596</td>
<td>0.30558</td>
<td>-1.96772</td>
<td>28.3256</td>
<td>2.30647</td>
<td>0.199409</td>
</tr>
</tbody>
</table>

Figure 4.1: Model Data
ness. Using quintiles and the Gini coefficient we compare the wealth distribution of our model economy with the U.S. wealth distribution data.26

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Economy & Gini & First & Second & Third & Fourth & Fifth \\
\hline
United States & 0.78 & -0.39 & 1.74 & 5.72 & 13.43 & 79.49 \\
Model & 0.64 & 4.07 & 6.21 & 8.16 & 12.24 & 69.32 \\
\hline
\end{tabular}
\end{table}

We further disaggregate the top groups, and compare the percentiles of the wealth distribution for the United States and the benchmark model economies.

\footnote{26The data of the U.S. economy in the following two tables are from Castaneda, Diaz-Gimenez and Rios-Rull (2003).}
Our model overpredicts the wealth share of the upper 1% wealth group. Our prediction is 34.33%, while in the data the number is 29.55%. Our model underpredicts the wealth share of the 90% – 95% group and 95% – 99% group. The predicted shares are, respectively, 8.84% and 15.75% while in the data the corresponding numbers are 12.62% and 23.95%. For the group of top 20%, the predicted number is 69.32% which is lower than the number of data, 79.49%. The model overpredicts the wealth shares held by the first, second and third quintile group. Our model predicts a Gini coefficient lower than that of data: Our prediction is 0.64, while in the data Gini is 0.78. Much of the wealth inequality in our model is due to the heavy upper tail. Our model predicts the heavy tail, but underpredicts the Gini of the wealth distribution as a whole. This in part is because we do not capture the inequalities in wealth induced by disparities in labor earnings.

4.1. Wealth distribution conditional on age

Within the same age group, even though the agents have the same age, they have the different starting wealth levels and the realizations of the stochastic rate of return. These two factors generate wealth inequality within an age cohort. The wealth distribution within the age 0 group stems from the initial wealth inequality of newborns. It reflects the heterogeneity of their inheritance. This distribution has a mass point, x^*, which has a positive probability. All the newborns, including those who do not receive inheritance (since their parents do not have bequest motive) and those whose inheritance is lower than the threshold level x^* (even though their parents have bequest motive), have a starting wealth x^*. For older cohorts, the distribution of wealth also reflects the element of luck coming from stochastic returns. For a fixed starting wealth level, and for luck driven by Brownian motion, the distribution of wealth conditional on age t is lognormal. In Appendix 8.8 we derive the distribution of wealth within age groups. We can plot the wealth distribution conditional on age in our simulated model. The wealth distribution within age groups also display upper skewness and fat tails.

To investigate the relationship between wealth inequality within the cohort and the age, we plot the Gini coefficient of the wealth distribution within the age
We find that the wealth inequality decreases as age goes up.27 We do not plot the Gini coefficient of wealth distribution within age 0 cohort, even though that is an interesting distribution of the starting wealth of newborns.28 Huggett (1996) also studies the wealth inequality within age groups and notes a U shape: the Gini coefficient declines to about age 50 and then picks up again. See also Hendricks (2007) for empirical findings that the Gini coefficient declines with age of cohorts.

\footnotesize
27We do not plot the Gini coefficient of wealth distribution within age 0 cohort, even though that is an interesting distribution of the starting wealth of newborns.
28Huggett (1996) also studies the wealth inequality within age groups and notes a U shape: the Gini coefficient declines to about age 50 and then picks up again. See also Hendricks (2007) for empirical findings that the Gini coefficient declines with age of cohorts.
4.2. Inequality and bequests

Wealth inequality decreases as the parameter of bequest motive, χ, increases. On the one hand, when people have stronger bequest motives and leave higher bequests, the wealth process becomes more persistent across generations. More wealth inequality is inherited. On the other hand, if people purchase more life insurance or fewer annuities, the relative growth rate of the individual wealth decreases. The lower relative growth rate of wealth causes the wealth distribution to become more equal. The simulated results below show that the growth effect dominates the inheritance effect. Therefore a higher bequest motive, χ, implies a lower Gini coefficient. We cut a slice of $\sigma = 0.26$ in Figure 4.5 to highlight this.
4.3. Inequality and the volatility of the risky asset

Wealth inequality decreases as the volatility of the risky asset increases. This counter-intuitive result is mainly due to the endogenous choice of the risky asset. When the volatility of risky asset increases, people hold a smaller share of risky asset, and in effect the volatility of the overall portfolio declines. The net effect of the portfolio reallocation and lower volatility of the wealth portfolio in turn lowers inequality. This first channel is the direct volatility effect on inequality. The second channel through which the volatility of the risky asset influences inequality is through the relative growth rate of the individual wealth. By the formula (8), we know that the higher is the volatility of the risky asset, the higher is the relative growth rate. The third channel works through the influence of the volatility of the risky asset on the bequests. The higher is the volatility of the risky asset, the less persistent is the wealth process across generations. This channel reduces wealth inequality when the volatility of the risky asset increases. In our simulation, the volatility effect and the growth effect dominate the bequest effect. Setting $\chi = 15$, we can show the relationship between inequality and the volatility of the risky asset:

<table>
<thead>
<tr>
<th>χ</th>
<th>β_1</th>
<th>β_2</th>
<th>$Gini$</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>-1.97299</td>
<td>2.30493</td>
<td>0.637806</td>
</tr>
<tr>
<td>15</td>
<td>-1.96772</td>
<td>2.30647</td>
<td>0.636731</td>
</tr>
<tr>
<td>16</td>
<td>-1.9627</td>
<td>2.30795</td>
<td>0.635706</td>
</tr>
<tr>
<td>17</td>
<td>-1.95789</td>
<td>2.30936</td>
<td>0.634729</td>
</tr>
</tbody>
</table>

We plot the relationship between the Gini coefficient, the preference for bequests, χ, and the volatility of the risky asset, σ, in Figure 4.5. For the simulated
numbers, see the first table in section 8.11 of the Appendix.

Figure 4.5: Gini by return volatility and bequest motive

Inequality and risk aversion

Risk aversion affects wealth inequality through all the three channels: growth, volatility and inheritance. We set $\chi = 15$ and $\sigma = 0.26$ to simulate the economy for $\gamma = 2$, $\gamma = 2.5$ and $\gamma = 3$. The Gini coefficient decreases with the increase of the coefficient of relative risk aversion.
4.4. Inheritance, stochastic return and the age effect

We now explore the roles of inheritance, age, and stochastic rates of the capital return on wealth inequality. We investigate special cases to isolate the effect of each of these factors. To identify the effect of these three factors we construct two schemes. In scheme I, we first eliminate the investment opportunity of agents in the risky asset. Our model reduces to that of Benhabib and Bisin (2006). After we close the channel of stochastic returns, we find that the Gini coefficient of the economy decreases. Comparing the Gini coefficient of this special economy with the general case, we isolate the effect of the luck on wealth inequality. We then eliminate the bequest motive by setting $\gamma = 0$, and study an economy without luck or inheritance. In scheme II, we first limit the age effect by setting the wealth growth rate of the agent relative to the growth rate of the economy to be as low as possible. Comparing the Gini coefficient of this special economy with that of the general case, we estimate the age effect. We then close the inheritance channel while keeping the relative growth rate as low as possible to identify the effect of inheritance on wealth inequality.

4.4.1. Scheme I

Stochastic rates of capital return We disentangle the contribution of stochastic rates of capital return to wealth inequality by shutting down the investment opportunity in the risky asset. In the economy without risky asset, the agent’s discounted wealth can not be lower than the threshold level, x^*. The stationary distribution of wealth is a Pareto distribution:

$$f(x) = C_2 x^{-\beta_2} \quad x \geq x^*$$

where $C_2 = (\beta_2 - 1)(x^*)^{\beta_2 - 1}$ and β_2 satisfies the characteristic function

$$(g - \bar{g})\beta - p - (g - \bar{g}) + q\rho^{\beta - 1} = 0.$$
From the balance in government budget, we have

\[(p - q)x^* + q \int_{x^*}^{2x^*} (x^* - \rho x)C_2x^{-\beta_2}dx = q(\frac{P_Y}{A\mu})^{\frac{1}{\gamma}}(1 - \zeta)^{\frac{1-\gamma}{\gamma}} \zeta + \tau - \eta\]

We determine \(x^*:\)

\[x^* = \frac{q(\frac{P_Y}{A\mu})^{\frac{1}{\gamma}}(1 - \zeta)^{\frac{1-\gamma}{\gamma}} \zeta + \tau - \eta}{p + \frac{1}{\beta_2 - 3}q \rho^{\beta_2 - 1} - \frac{\beta_2 - 1}{\beta_2 - 2}q \rho}\]

In the stationary distribution, the Gini coefficient is\(^{29}\)

\[G = \frac{1}{2\beta_2 - 3}\]

For the standard calibration of our model, the Gini coefficient without risky asset is 0.439633. Comparing this Gini coefficient with that of the economy with risky asset, 0.636731, we find that the Gini coefficient decreases by about 31% when we close the investment opportunity for the risky asset. We can view this number as the contribution of luck to wealth inequality.

Intergenerational transmission and age effect After we close the channel for stochastic returns our model reduces to that of Benhabib and Bisin (2006). In order to close the intergenerational transmission channel, we set \(\chi = 0\). Note that in the standard calibration of section 3.2, \(\chi = 15\). The wealth process is more persistent across generations with inheritance than without. When people have bequest motives and leave higher bequests, more of the wealth inequality is inherited. On the other hand if people leave bequests, they receive smaller annuities and consume less. The growth rate of aggregate economy increases because the initial wealth of agents at birth is higher due to the higher bequests. As shown in Proposition 1 however, for our CRRA preferences, the individual agent’s growth rate is not influenced by the bequest motive parameter \(\chi\). When the aggregate economy grows faster, the lucky agents who earn high returns relative to the economy will not break away as easily and leave others behind by as much. The lower relative wealth growth rate, \(g - \tilde{g}\), therefore causes the wealth distribution to become more equal. The simulated results below show that in fact the growth effect

\(^{29}\)See, for example, Chipman (1974). Note that in standard terminology the Pareto exponent corresponds to \(\beta_2 - 1\) in our model.
dominates the inheritance effect. Therefore we can have a higher Gini coefficient after we close the intergenerational transmission channel. Surprisingly, a stronger bequest motive and higher inheritance rates may decrease wealth inequality.

<table>
<thead>
<tr>
<th>χ</th>
<th>g</th>
<th>\tilde{g}</th>
<th>$g - \tilde{g}$</th>
<th>β_2</th>
<th>x^*</th>
<th>Gini</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.018</td>
<td>0.006</td>
<td>0.012</td>
<td>2.33333</td>
<td>0.25</td>
<td>0.6</td>
</tr>
<tr>
<td>15</td>
<td>0.018</td>
<td>0.00867146</td>
<td>0.00932854</td>
<td>2.63731</td>
<td>0.389242</td>
<td>0.439633</td>
</tr>
</tbody>
</table>

The empirical literature initiated by Kotlikoff and Summers (1981) emphasizes the role of bequests on the wealth accumulation. They show that life cycle savings without intergenerational transfers and bequests cannot account for the level of the U.S. capital stock. Updating the work of Kotlikoff and Summers, Gale and Sholtz (1994) show that inheritances (even excluding accidental bequests) plus various inter-vivos transfers account for at least 50% of the accumulation and transmission of the U.S. capital stock.

If we completely shut down the age effect on the other hand, for example by raising the tax rate τ to set the relative growth rate $g - \tilde{g} = 0$, the long-run stationary distribution becomes degenerate and its support consists of only x^*. Without luck or stochastic returns, inheritance alone will not generate or amplify inequality in the stationary distribution.

4.4.2. Scheme II

Age effect In this experiment we allow the stochastic return to remain and we pick $\tau = 0.0107$ so that the relative growth rate is $g - \tilde{g} \approx \frac{1}{2}\kappa^2$. Note that with stochastic returns $\frac{1}{2}\kappa^2$ is the lowest bound for $g - \tilde{g}$ that yields a non-degenerate stationary distribution. In this economy, the Gini coefficient is 0.402667 whereas in our benchmark economy the Gini coefficient is 0.636731. After we close the age effect, the Gini coefficient decreases by about 37%. We can view this number as the lower bound for the contribution of the age effect to wealth inequality.

Inheritance We now pick $\chi = 0$ to close the inheritance or intergenerational transmission channel. We set $\tau = 0.011973$ so that the economy-wide relative growth rate is $g - \tilde{g} = \frac{1}{2}\kappa^2$. In this economy the Gini coefficient becomes 0.401526. Relative to the case with inheritance and no age effect, the Gini is marginally lower.
4.5. Sensitivity analysis for rates of return

Here we explore increasing rates of return so as to obtain higher growth rates for the economy. To keep the risk premium at 7%, we adjust upwards both the return of the riskless asset and the return on the risky asset. We show the effects of raising the rates of return on the consumption function, the bequest function, the individual wealth growth rate and aggregate wealth growth rate. The higher are the rates of return, the higher is aggregate growth rate of the economy \tilde{g}.

\begin{align*}
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
& A & \omega & \rho & g & \tilde{g} & g - \tilde{g} & \kappa \\
\hline
r = 1.8\%, \alpha = 8.8\% & 13988.6 & 0.345168 & 0.095411 & 0.010774 & 0.000187 & 0.010586 & 0.089743 \\
r = 2\%, \alpha = 9\% & 12774.4 & 0.345168 & 0.098343 & 0.011441 & 0.000898 & 0.010543 & 0.089743 \\
r = 3\%, \alpha = 10\% & 8419.67 & 0.345168 & 0.113004 & 0.014774 & 0.004448 & 0.010325 & 0.089743 \\
r = 4\%, \alpha = 11\% & 5839.38 & 0.345168 & 0.127664 & 0.018107 & 0.007999 & 0.010108 & 0.089743 \\
r = 5\%, \alpha = 12\% & 4214.38 & 0.345168 & 0.142325 & 0.021441 & 0.011549 & 0.009891 & 0.089743 \\
r = 6\%, \alpha = 13\% & 3140.5 & 0.345168 & 0.156985 & 0.024774 & 0.015100 & 0.009674 & 0.089743 \\
r = 7\%, \alpha = 14\% & 2402.58 & 0.345168 & 0.171646 & 0.028107 & 0.018650 & 0.009457 & 0.089743 \\
r = 8\%, \alpha = 15\% & 1878.8 & 0.345168 & 0.186306 & 0.031441 & 0.022201 & 0.009239 & 0.089743 \\
\hline
\end{array}
\end{align*}

The different wealth accumulation processes in the different economies result in the different stationary distributions of wealth. The effects of increasing the returns on capital are shown in the following table.

\begin{align*}
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
& x* & F* & \beta_1 & C_1 & \beta_2 & C_2 & Gini \\
\hline
r = 1.8\%, \alpha = 8.8\% & 0.313596 & 0.30558 & -1.96772 & 28.3256 & 2.30647 & 0.199409 & 0.636731 \\
r = 2\%, \alpha = 9\% & 0.315502 & 0.30647 & -1.96029 & 27.5945 & 2.30866 & 0.200566 & 0.635217 \\
r = 3\%, \alpha = 10\% & 0.325052 & 0.31095 & -1.92333 & 24.2825 & 2.31964 & 0.206376 & 0.627737 \\
r = 4\%, \alpha = 11\% & 0.334644 & 0.315486 & -1.88666 & 21.4657 & 2.33078 & 0.212233 & 0.620396 \\
r = 5\%, \alpha = 12\% & 0.344287 & 0.320079 & -1.85029 & 19.0571 & 2.34207 & 0.218147 & 0.613184 \\
r = 6\%, \alpha = 13\% & 0.353988 & 0.324729 & -1.81422 & 16.9874 & 2.35353 & 0.224124 & 0.606098 \\
r = 7\%, \alpha = 14\% & 0.363749 & 0.329437 & -1.77846 & 15.2009 & 2.36516 & 0.230169 & 0.599133 \\
r = 8\%, \alpha = 15\% & 0.373576 & 0.334203 & -1.74301 & 13.6523 & 2.37698 & 0.236289 & 0.592287 \\
\hline
\end{array}
\end{align*}
5. Redistributive Policies

We now investigate the impact of redistributive government policy on wealth inequality and aggregate welfare in our calibrated model. Government fiscal policies do affect wealth inequality through their effect on the relative growth rate, bequests and the redistributive subsidy. Note that government policy has no impact on the portfolio choice of the risky asset, and does not influence the volatility of individual wealth.

5.1. Tax and wealth inequality

Capital and estate taxes influence wealth inequality through the relative growth rate of wealth, $g - \tilde{g}$, through their effect on the intergenerational transmission of wealth and through their redistributive effects. Neither of the government policy tools have an impact on the volatility of wealth. In Figure 5.1 we plot the Gini coefficient as a function of the capital tax rate, τ, and the estate tax rate, ζ. For the simulated numbers, see the last table in section 8.11 of the Appendix.

We calculate the Gini coefficients for combinations of the capital tax, τ and the estate tax, ζ, in a parameter region such that $g \geq 0$, $\tilde{g} \geq 0$ and $g - \tilde{g} - \frac{1}{2}k^2 \geq 0$. The minimum value of the Gini coefficient is 0.4020, obtained for $\zeta = 0.95$ and $\tau = 0.0047$ where both ζ and τ are on the boundary of the parameter region and cannot be further increased.

The higher is the capital tax, τ, the lower is the relative growth rate, $g - \tilde{g}$. A lower $g - \tilde{g}$ implies that the wealth distribution is more equal. The higher is the capital tax, τ, the lower is the intergenerational transmission parameter, ρ. Lower ρ implies that the wealth process between two consecutive generations becomes less persistent and the wealth distribution becomes more equal. Furthermore when τ increases, x^* increases. In our calibrated economy therefore, a higher τ implies a lower Gini coefficient.

The higher the estate tax, ζ, the lower is the relative growth rate, $g - \tilde{g}$. At the same time the higher the estate tax, ζ, the lower is the intergenerational transmission parameter, ρ. The effect of ζ on $g - \tilde{g}$ and ρ can be obtained by analyzing equations (8) and (10). Furthermore, the higher is the estate tax, ζ, the higher is the bequest that the agent leaves to his children to partly offset the higher estate taxes. Thus a higher estate tax rate implies a lower consumption propensity and a larger bequest. The aggregate growth rate of the economy increases because

\[30] In Figure (5.1), the range of τ is $0.004 - 0.0099$ and the range of ζ is $0 - 0.6$.\]
of the higher bequest levels. This in turn decreases the difference between the individual wealth growth rate and the aggregate growth rate since the estate tax ζ has no impact on the individual wealth growth rate. Lower $g - \tilde{g}$ implies that the wealth distribution is more equal. Lower ρ implies that the wealth process between two consecutive generations becomes less persistent. Furthermore x^* increases as ζ increases. The overall effect of a higher ζ therefore is a lower the Gini coefficient.

These results on the effects of taxes are consistent with our intuition: redistributive policies tend to reduce wealth inequality.

Figure 5.1: Gini by taxes
5.2. Taxes and welfare

Government policies influence both the individual utilities and the wealth distribution in the economy. We take aggregate welfare to be the integral of the individual utilities with respect to the cross-sectional wealth distribution. Thus we simply add the utilities of those currently alive. We compute aggregate welfare of the economy and find the optimal government fiscal policies.

There are two kinds of people in the economy. $\frac{q}{p}$ fraction of the people have a bequest motive and $1 - \frac{q}{p}$ fraction of people do not have a bequest motive. From Proposition 1, we know that people with bequest motives have the following value function:

$$U(w) = \frac{1}{1 - \gamma} \left(\frac{\theta + p - (1 - \gamma)(r - \tau + \mu + \frac{(a-r)^2}{2\gamma\sigma^2})}{\gamma(1 + (p\chi)^{\frac{1}{\gamma}} \mu^{\frac{\gamma-1}{\gamma}} (1 - \zeta)^{\frac{1}{\gamma}})} \right)^{-\gamma} w^{1-\gamma}$$

For people with no bequest motive, the value function is:

$$U_0(w) = \frac{1}{1 - \gamma} \left(\frac{\theta + p - (1 - \gamma)(r - \tau + \mu + \frac{(a-r)^2}{2\gamma\sigma^2})}{\gamma} \right)^{-\gamma} w^{1-\gamma}$$

The aggregate welfare of the economy is the weighted sum of the individual utilities with weights according to the cross-sectional wealth distribution of the two groups of agents.

$$\Omega(\tau, \zeta) = \frac{q}{p} \int_0^{+\infty} U(w)f(w)dw + \frac{p-q}{p} \int_0^{+\infty} U_0(w)f(w)dw$$

In section 8.9 of the Appendix we derive the aggregate welfare function:

$$\Omega(\tau, \zeta) = \left[\frac{q}{p} \frac{1}{1 - \gamma} \left(\frac{\theta + p - (1 - \gamma)(r - \tau + \mu + \frac{(a-r)^2}{2\gamma\sigma^2})}{\gamma(1 + (p\chi)^{\frac{1}{\gamma}} \mu^{\frac{\gamma-1}{\gamma}} (1 - \zeta)^{\frac{1}{\gamma}})} \right)^{-\gamma} + \frac{p-q}{p} \frac{1}{1 - \gamma} \left(\frac{\theta + p - (1 - \gamma)(r - \tau + \mu + \frac{(a-r)^2}{2\gamma\sigma^2})}{\gamma} \right)^{-\gamma} \right] \times \frac{C_1}{2 - \gamma - \beta_1} (x^*)^{2-\gamma-\beta_1} - \frac{C_2}{2 - \gamma - \beta_2} (x^*)^{2-\gamma-\beta_2}$$

Note that β_1 and β_2 are functions of capital tax rate, τ, and estate tax rate, ζ.

33
Note also that β_2 has a non-linear relationship with τ, and ζ. In section 8.9 of the Appendix, we show that the aggregate welfare function is well-defined when $\beta_1 < -1$. In Figure (5.2) we plot welfare as a function of the capital tax rate, τ, and the estate tax rate, ζ.31

Figure 5.2: Welfare by taxes

For the set of combinations of the capital tax, τ and the estate tax, ζ, such that $g > 0$, $\tilde{g} > 0$, $g - \tilde{g} - \frac{1}{2} \kappa^2 \geq 0$ and $\beta_1 < -1$, we calculate the aggregate welfare for our calibrated economy. The maximum of the welfare function is obtained for $\zeta = 0.18$ and $\tau = 0.0063$. The estate tax is very close to our calibration but maximizing social welfare requires a high capital tax because our social welfare

31In Figure (5.2), the range of τ is 0.004 – 0.0099 and the range of ζ is 0 – 0.5.
function, weighting only generations currently alive, puts a high emphasis on equality. Setting $\tau = 0.0063$ decreases the relative growth rate so that the Gini coefficient for the tax rates maximizing social welfare is now 0.5260. Of course a different welfare specification that puts more weight on future generations by including the utilities of those not yet born would put a higher weight on growth, and shift the optimal taxes from ζ that does not affect individual growth rates to τ that does.

6. A lump-sum subsidy policy

Previously we discussed a welfare policy for which only those newborns whose inheritance is lower than x^* receive a subsidy. Here we discuss the alternative policy where all the newborns receive a subsidy.\(^{32}\) Note that this subsidy, after adjusting the redistributive taxes for a balanced government budget, may be interpreted as the discounted value of lifetime labor earnings received by all newborns. Each newborn with or without inheritance obtains

$$b(t) = \{q(\frac{pX}{A\mu})^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1-\gamma}{\gamma}} \zeta W(t) + \tau W(t) - \eta W(t)\}/p$$

$$= \frac{q(\frac{pX}{A\mu})^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1-\gamma}{\gamma}} \zeta + \tau - \eta}{p} W(t)$$

where $q(\frac{pX}{A\mu})^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1-\gamma}{\gamma}} \zeta W(t)$ is the government’s revenue from estate tax, $\tau W(t)$ is government’s revenue from capital tax and $\eta W(t)$ is government’s expenditure, proportional to aggregate wealth in the economy. Note that the individual and aggregate wealth growth rates still are

$$dW(s,t) = \left[\frac{r - \tau + \mu - \theta - p}{\gamma} + \frac{1 + \gamma (\alpha - r)^2}{2\gamma \sigma^2}\right] W(s,t)dt + \frac{\alpha - r}{\gamma \sigma} W(s,t)dB(s,t).$$

and

$$\tilde{g} = q(\frac{pX}{A\mu})^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1-\gamma}{\gamma}} + g - p + \tau - \eta$$

\(^{32}\)See Huggett (1996) for a calibrated model where accidental bequests are distributed equally to everyone, not just newborns. DeNardi (2004) also has some specifications of calibrated models where accidental bequests are equally distributed to the population.
The stationary distribution $f(x)$ now satisfies

$$\frac{1}{2} \kappa^2 x^2 f''(x) + (2\kappa^2 - (g - \bar{g}))xf'(x) + (\kappa^2 - (g - \bar{g}) - p) f(x) = 0 \quad \text{when } x < x^*$$

(18)

and

$$\frac{1}{2} \kappa^2 x^2 f''(x) + (2\kappa^2 - (g - \bar{g}))xf'(x) + (\kappa^2 - (g - \bar{g}) - p) f(x) + q f\left(\frac{x - x^*}{\rho}\right) \frac{1}{\rho} = 0 \quad \text{when } x > x^*$$

(19)

Then discounted wealth level

$$x^* = \frac{q\left(\frac{\rho x}{A\mu}\right) \frac{1}{2} (1 - \zeta)^{\frac{1}{2}} - \zeta + \tau - \eta}{p}$$

has extra density since all of the newborns with no inheritance are injected into the economy through this wealth level.

Note that equation (19) differs from equation (17) only by x^* in the last term: $q f\left(\frac{x - x^*}{\rho}\right) \frac{1}{\rho}$ as opposed to $q f\left(\frac{x}{\rho}\right) \frac{1}{\rho}$. Therefore the stationary distribution $f(x)$ associated with equation (18) and (19) is approximately Pareto, and is approximated by the stationary distribution associated with equations (16) and (17) for large x:

$$f(x) = \begin{cases} C_1 x^{-\beta_1} & \text{when } x < x^* \\ C_2 x^{-\beta_2} & \text{when } x > x^* \end{cases}$$

where

$$\beta_1 = \frac{3}{2} \kappa^2 - (g - \bar{g}) - \sqrt{\frac{1}{2} \kappa^2 - (g - \bar{g})} + 2\kappa^2 p$$

and β_2 solves

$$\frac{\kappa^2}{2} \beta^2 + (g - \bar{g} - \frac{3}{2} \kappa^2) \beta + \kappa^2 - p - (g - \bar{g}) + q \rho^{\beta-1} = 0$$

7. Conclusions

There are three basic forces in our model that cause wealth inequality: inheritance, stochastic rates of return and age. The effects of age and stochastic returns are captured by the mean relative growth rate and the volatility of the Geometric Brownian Motion. The role of inheritance is represented by the bequest
motive which generates further jumps and reshuffling in the stochastic process for wealth accumulation. Geometric Brownian Motion coupled with the exponential death rate, despite the complications introduced by inheritance, generates a double Pareto distribution as the stationary distribution of wealth.

The dispersion of the age distribution causes wealth inequality because those who remain alive have an individual growth rate of wealth higher than the aggregate growth rate of the economy. The stochastic return of the wealth itself is a source of wealth inequality. And inheritance plays a role by perpetuating wealth inequality across generations while at the same time limiting dispersion by increasing the relative aggregate growth rate. The heterogeneity of the bequest motive, the estate taxes, as well as the annuities assure the existence of stationary distribution of wealth: together they restrict the spread of the Geometric Brownian Motion. Inheritance and luck are also responsible for generating a skewed distribution of wealth conditional upon age, that is for every age cohort.

Our rough calibration and simulation exercises disentangle some of the main sources of wealth inequality: stochastic returns, age and inheritance. Luck, or the stochastic rate of capital return contributes about 31% to wealth inequality in terms of the Gini coefficient and the age effect contributes about 37%. We show that surprisingly, inheritance can decrease wealth inequality because it increases the growth rate of aggregate wealth relative to individual wealth.

Finally we show that government redistributive policies have important consequences for wealth inequality and welfare through their effects on the relative growth rates of wealth, on bequests, and on the size of government subsidies.

References

8. Appendix

Proof: Following Merton (1992) and Kamien and Schwartz (1991), we set up the Hamilton-Jacobi-Bellman equation of the maximization problem

\[
(\theta + p)J(W(s,t)) = \max_{C;\omega;P} \left\{ \frac{C(s,t)^{1-\gamma}}{1-\gamma} + p\chi \frac{(1 - \zeta)Z(s,t)^{1-\gamma}}{1-\gamma} \right. \\
+ \left. J_W(W(s,t))[(r - \tau)W(s,t) + (\alpha - r)\omega(s,t)W(s,t) - C(s,t) - P(s,t)] \right. \\
+ 1/2 J_{WW}(W(s,t))\sigma^2\omega^2(s,t)W^2(s,t) \}
\]

Using the relation

\[
Z(s,t) = W(s,t) + \frac{P(s,t)}{\mu}
\]

we find the first order conditions:

\[
C(s,t)^{-\gamma} = J_W
\]

\[
p\chi(1 - \zeta)^{1-\gamma}Z(s,t)^{-\gamma}\frac{1}{\mu} = J_W
\]

\[
(\alpha - r)J_WW(s,t) = -J_{WW}\sigma^2\omega(s,t)W^2(s,t)
\]

We guess the value function

\[
J(W(s,t)) = \frac{A}{1-\gamma} W(s,t)^{1-\gamma}
\]

where \(A \) is the undetermined constant. Then

\[
C(s,t) = A^{-1/\gamma} W(s,t)
\]

\[
Z(s,t) = \left(\frac{p\chi}{A\mu}\right)^{1/\gamma} (1 - \zeta)^{1-\gamma/\gamma} W(s,t)
\]

\[
P(s,t) = (\mu^{1-\gamma/\gamma} \frac{p\chi}{A})^{1/\gamma} (1 - \zeta)^{1-\gamma/\gamma} - \mu)W(s,t)
\]
\[
\omega(s, t) = \frac{\alpha - r}{\gamma \sigma^2}
\]

Plugging these equations into the Hamilton-Jacobi-Bellman equation, we can determine the constant \(A \):

\[
A = \left(\frac{\theta + p - (1 - \gamma)(r - \tau + \mu + \frac{(\alpha - r)^2}{2\gamma \sigma^2})}{\gamma (1 + (p\chi)^\frac{1}{\gamma} \frac{\gamma - 1}{\gamma} (1 - \zeta)^\frac{1}{\gamma})} \right)^{-\gamma}
\]

From the budget constraint we have

\[
dW(s, t) = \left[\frac{r - \tau + \mu - \theta - p}{\gamma} + \frac{1 + \gamma (\alpha - r)^2}{2\gamma \sigma^2} \right] W(s, t)dt + \frac{\alpha - r}{\gamma \sigma} W(s, t)dB(s, t).
\]

8.2. Derivation of the forward Kolmogorov equation

When \(x > x^* \), by the Markovian property of the process

\[
\text{Pr}\{X(t) = x|X(0) = y, X(t-h) = a\} = \text{Pr}\{X(h) = x|X(0) = a\} = \text{Pr}\{DB = \log x - \log a\}
\]

where \(DB \) is a normal distribution with mean \((g - \tilde{g} - \frac{1}{2} \kappa^2)h\), and variance \(\kappa^2h \). Let \(f_{DB}(\cdot) \) be the density function of the normal distribution with mean \((g - \tilde{g} - \frac{1}{2} \kappa^2)h\), and variance \(\kappa^2h \).

\[
f(x, t; y) = (1 - ph) \int_0^{+\infty} f(a, t - h; y)f_{DB}((\log x - \log a) - h\frac{a}{\rho})da + qh \cdot f(x, t; y) \frac{1}{\rho} + o(h)
\]

\[
= (1 - ph) \int_0^{+\infty} [f(x, t; y) + (a - x) \frac{\partial}{\partial x} f(x, t; y) - h \frac{\partial}{\partial t} f(x, t; y) + (a - x)^2 \frac{\partial^2}{\partial x^2} f(x, t; y)]f_{DB}((\log x - \log a) - h\frac{a}{\rho})da + qh \cdot f(x, t; y) \frac{1}{\rho} + o(h)
\]

\[
= (1 - ph)(1 - (g - \tilde{g})h + \kappa^2h)f(x, t; y) + (1 - ph)(2\kappa^2 - (g - \tilde{g}))hx \frac{\partial}{\partial x} f(x, t; y) - (1 - ph)h \frac{\partial}{\partial t} f(x, t; y) + (1 - ph)\kappa^2hx^2 \frac{\partial^2}{\partial x^2} f(x, t; y) + qh \cdot f(x, t; y) \frac{1}{\rho} + o(h)
\]
where we use the Taylor expansion in the second and third equality. Divide by \(h \) on both sides and let \(h \to 0 \)

\[
\frac{\partial}{\partial t} f(x, t; y) = (\kappa^2 - p - (g - \bar{g})) f(x, t; y) + (2\kappa^2 - (g - \bar{g})) x \frac{\partial}{\partial x} f(x, t; y)
\]

\[
+ \frac{1}{2} \kappa^2 x^2 \frac{\partial^2}{\partial x^2} f(x, t; y) + q f(x, t; y) \frac{1}{\rho}, \quad x > x^\ast
\]

Then

\[
\frac{\partial f(x, t)}{\partial t} = \frac{1}{2} \frac{\partial^2}{\partial x^2} (\kappa^2 x^2 f(x, t)) - \frac{\partial}{\partial x} ((g - \bar{g}) x f(x, t)) - p f(x, t) + q f(x, t) \frac{1}{\rho}, \quad x > x^\ast.
\]

Similarly, we have

\[
\frac{1}{2} \kappa^2 x^2 f''(x) + (2\kappa^2 - (g - \bar{g})) x f'(x) + (\kappa^2 - (g - \bar{g}) - p) f(x) = 0, \quad x < x^\ast
\]

8.3. Proof of Proposition 2

Proof: Plugging \(f(x) = Cx^{-\beta} \) into the ordinary differential equation

\[
\frac{1}{2} \kappa^2 x^2 f''(x) + (2\kappa^2 - (g - \bar{g})) x f'(x) + (\kappa^2 - (g - \bar{g}) - p) f(x) = 0
\]

we have the characteristic equation

\[
\frac{\kappa^2}{2} \beta^2 - \left(\frac{3}{2} \kappa^2 - (g - \bar{g}) \right) \beta + \kappa^2 - p - (g - \bar{g}) = 0
\]

This quadratic equation has two roots

\[
\beta_1 = \frac{\frac{3}{2} \kappa^2 - (g - \bar{g}) - \sqrt{\left(\frac{1}{2} \kappa^2 - (g - \bar{g}) \right)^2 + 2\kappa^2 p}}{\kappa^2}
\]

and

\[
\beta_2 = \frac{\frac{3}{2} \kappa^2 - (g - \bar{g}) + \sqrt{\left(\frac{1}{2} \kappa^2 - (g - \bar{g}) \right)^2 + 2\kappa^2 p}}{\kappa^2}.
\]

44
8.4. Proof of Proposition 3

Proof: Note that
\[\beta_1 < 1 \iff \frac{\frac{3}{2}\kappa^2 - (g - \tilde{g}) - \sqrt{\left(\frac{1}{2}\kappa^2 - (g - \tilde{g})\right)^2 + 2\kappa^2 p}}{\kappa^2} < 1 \]
\[\iff \frac{1}{2}\kappa^2 - (g - \tilde{g}) < \sqrt{\left(\frac{1}{2}\kappa^2 - (g - \tilde{g})\right)^2 + 2\kappa^2 p} \]
The last inequality obviously holds. Then \(\beta_1 < 1 \).

\[\beta_2 > 2 \iff \frac{\frac{3}{2}\kappa^2 - (g - \tilde{g}) + \sqrt{\left(\frac{1}{2}\kappa^2 - (g - \tilde{g})\right)^2 + 2\kappa^2 p}}{\kappa^2} > 2 \]
\[\iff \sqrt{\left(\frac{1}{2}\kappa^2 - (g - \tilde{g})\right)^2 + 2\kappa^2 p} > \frac{1}{2}\kappa^2 + (g - \tilde{g}) \]
\[\iff p > g - \tilde{g} \]
The last inequality holds since our assumption that government revenue is greater than the government expenditure, implies that \(g - \tilde{g} = p - (\tau - \eta) < p \). Then \(\beta_2 > 2 \).

8.5. Proof of Proposition 4

Proof: Plugging \(f(x) = Cx^{-\beta} \) into the ordinary differential equation
\[\frac{1}{2}\kappa^2 x^2 f''(x) + (2\kappa^2 - (g - \tilde{g}))x f'(x) + (\kappa^2 - (g - \tilde{g}) - p)f(x) = 0, \quad x < x^* \]
we have the characteristic equation
\[\frac{\kappa^2}{2} \beta^2 - \left(\frac{3}{2}\kappa^2 - (g - \tilde{g})\right) \beta + \kappa^2 - p - (g - \tilde{g}) = 0. \]
Plugging \(f(x) = Cx^{-\beta} \) into the ordinary differential equation
\[\frac{1}{2}\kappa^2 x^2 \frac{d^2}{dx^2} f(x) + (2\kappa^2 - (g - \tilde{g}))xf'(x) + (\kappa^2 - (g - \tilde{g}) - p)f(x) + qf(x) = 0, \quad x > x^* \]
we have the characteristic equation

\[
\frac{\kappa^2}{2} \beta^2 - \left(\frac{3}{2} \kappa^2 - (g - \bar{g}) \right) \beta + \kappa^2 - p - (g - \bar{g}) + q \rho^{\beta - 1} = 0.
\]

8.6. Proof of Proposition 5

Proof33: We know

\[
\beta_1 = \frac{\frac{3}{2} \kappa^2 - (g - \bar{g}) - \sqrt{\left(\frac{1}{2} \kappa^2 - (g - \bar{g})\right)^2 + 2 \kappa^2 p}}{\kappa^2}
\]

\[
\beta_1 < 1 \Leftrightarrow \frac{\frac{3}{2} \kappa^2 - (g - \bar{g}) - \sqrt{\left(\frac{1}{2} \kappa^2 - (g - \bar{g})\right)^2 + 2 \kappa^2 p}}{\kappa^2} < 1
\]

\[
\Leftrightarrow \frac{1}{2} \kappa^2 - (g - \bar{g}) < \sqrt{\left(\frac{1}{2} \kappa^2 - (g - \bar{g})\right)^2 + 2 \kappa^2 p}
\]

The last inequality obviously holds. Then \(\beta_1 < 1\).

Let \(\Gamma(\beta) = \frac{\kappa^2}{2} \beta^2 - \left(\frac{3}{2} \kappa^2 - (g - \bar{g}) \right) \beta + \kappa^2 - p - (g - \bar{g}) + q \rho^{\beta - 1}\). Since \(\frac{\kappa^2}{2} > 0\), we know that

\[
\lim_{\beta \to -\infty} \Gamma(\beta) = +\infty \quad \text{and} \quad \lim_{\beta \to +\infty} \Gamma(\beta) = +\infty.
\]

Let \(\beta = 1\). \(\Gamma(1) = q - p < 0\). Let \(\beta = 2\).

\[
\Gamma(2) = g - \bar{g} - p + q \rho
\]

\[
= p - q \left(\frac{pX}{A\mu} \right)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1 - \gamma}{\gamma}} (\tau - \eta) - p + q \left(\frac{pX(1 - \zeta)}{A\mu} \right)^{\frac{1}{\gamma}}
\]

\[
= -q \left(\frac{pX}{A\mu} \right)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1 - \gamma}{\gamma}} \zeta + \tau - \eta < 0
\]

This inequality is from the assumption that government revenue is greater than the government expenditure. By the continuity of \(\Gamma(\beta)\), we know that there exist \(\beta < 1\), such that \(\Gamma(\beta) = 0\), and there exist \(\beta > 2\), such that \(\Gamma(\beta) = 0\). Since the function \(\Gamma(\beta)\) is convex, it can at most have two roots. Then the unique \(\beta_2 > 2\).

33 For this proof, we benifit from the discussion with Henry P. McKean.
8.7. Gini coefficient of the stationary distribution of wealth

Following Nygard and Sandstrom (1981) and Gastwirth (1971), we derive the Lorenz curve, and Gini coefficient of a double Pareto distribution.\footnote{This is also an extension of the derivation of Lorenz curve and Gini coefficient for a Pareto distribution from Wikipedia (http://en.wikipedia.org/wiki/Pareto_distribution) to a double Pareto distribution.}

The cumulative density function (CDF) of the stationary distribution of wealth is

$$F(x) = \int_0^x C_1 v^{-\beta_1} dv = \frac{C_1}{1 - \beta_1} x^{1 - \beta_1} \quad \text{When } x \leq x^*$$

and

$$F(x) = \int_0^{x^*} C_1 v^{-\beta_1} dv + \int_{x^*}^x C_2 v^{-\beta_2} dv = 1 - \frac{C_2}{\beta_2 - 1} x^{1 - \beta_2} \quad \text{When } x \geq x^*$$

Let $x(F)$ be the inverse of the CDF.

$$x = \left(\frac{1 - \beta_1}{C_1} F \right)^{\frac{1}{1 - \beta_1}} \quad \text{When } x \leq x^*$$

and

$$x = \left[\frac{\beta_2 - 1}{C_2} (1 - F) \right]^{\frac{1}{\beta_2 - 1}} \quad \text{When } x \geq x^*$$

The function of Lorenz curve is

$$L(F) = \frac{\int_0^{x(F)} x f(x) dx}{\int_0^{+\infty} x f(x) dx} = \frac{\int_0^F x(F') dF'}{\int_0^1 x(F') dF'} = \int_0^F x(F') dF'$$

where $x(F)$ is the inverse of the CDF.

Let $F^* = F(x^*) = \frac{C_1}{1 - \beta_1} (x^*)^{1 - \beta_1}$. When $F \leq F^*$

$$L(F) = \int_0^F x(F') dF' = \left(\frac{1 - \beta_1}{C_1} \right)^{\frac{1}{1 - \beta_1}} \frac{1 - \beta_1}{2 - \beta_1} F^{\frac{2 - \beta_1}{1 - \beta_1}}$$

This is also an extension of the derivation of Lorenz curve and Gini coefficient for a Pareto distribution from Wikipedia (http://en.wikipedia.org/wiki/Pareto_distribution) to a double Pareto distribution.
When $F \geq F^*$

\[
L(F) = \int_0^F x(F')dF' = \int_0^{F^*} x(F')dF' + \int_{F^*}^F x(F')dF' = \frac{C_1}{2 - \beta_1}(x^*)^{2-\beta_1} + \int_{F^*}^F x(F')dF' = \frac{C_1}{2 - \beta_1}(x^*)^{2-\beta_1} + \left(\frac{\beta_2 - 1}{C_2}\right)^{\frac{1}{1-\beta_2}} \frac{1 - \beta_2}{2 - \beta_2} \left\{ \left[1 - F^*\right]^{\frac{2-\beta_2}{1-\beta_2}} - \left[F - F^*\right]^{\frac{2-\beta_2}{1-\beta_2}} \right\}
\]

The Gini coefficient of the stationary distribution is

\[
G = 1 - 2 \int_0^1 L(F) dF = 1 - 2 \int_0^{F^*} L(F) dF - 2 \int_{F^*}^1 L(F) dF = 1 - 2 \left(\frac{1 - \beta_1}{C_1}\right)^{\frac{1}{1-\beta_1}} \frac{1 - \beta_1}{2 - \beta_1} \frac{1 - \beta_1}{3 - 2\beta_1} \left(F^*\right)^{\frac{3-2\beta_1}{1-\beta_1}} - 2 \frac{C_1}{2 - \beta_1}(x^*)^{2-\beta_1}(1 - F^*) - 2 \left(\frac{\beta_2 - 1}{C_2}\right)^{\frac{1}{1-\beta_2}} \frac{1 - \beta_2}{3 - 2\beta_2} \left(1 - F^*\right)^{\frac{3-2\beta_2}{1-\beta_2}}.
\]

8.8. Wealth distribution conditional on age

The distribution of the starting wealth consists of two parts, one of which is a mass point. At x^*, the distribution has a positive probability, $\frac{q}{p}(C_1 \int_0^{x^*} x^{-\beta_1} dx + C_2 \int_{x^*}^\infty x^{-\beta_2} dx) + \frac{p-q}{p}$. For wealth levels higher than x^*, the density of the distribution is

\[
v(y) = \frac{q}{p} C_2 \left(\frac{y}{\rho}\right)^{-\beta_2} \frac{1}{\rho}, \quad y > x^*
\]

Conditional on age t, the density of wealth distribution will be the sum of two components: 1. starting from $y > x^*$, using the stationary density $v(y)$, we can compute the probability of reaching x, 2. staring from the mass point x^* we can
compute the probability of reaching x:

$$f_t(x) = \int_{x^*}^{+\infty} \frac{1}{x \sqrt{2\pi t \kappa^2}} \exp\left(-\frac{(\log(x) - \log(y) - (g - \tilde{g} - \frac{1}{2} \kappa^2)t)^2}{2t\kappa^2} \right) v(y) dy + \frac{1}{x \sqrt{2\pi t \kappa^2}} \exp\left(-\frac{(\log(x) - \log(x^*) - (g - \tilde{g} - \frac{1}{2} \kappa^2)t)^2}{2t\kappa^2} \right) \times$$

$$\left[\frac{q}{p} (C_1 \int_0^{x^*} x^{-\beta_1} dx + C_2 \int_{x^*}^{x} x^{-\beta_2} dx) + \frac{p-q}{p} \right]$$

$$= \int_{x^*}^{+\infty} \frac{1}{x \sqrt{2\pi t \kappa^2}} \exp\left(-\frac{(\log(x) - \log(y) - (g - \tilde{g} - \frac{1}{2} \kappa^2)t)^2}{2t\kappa^2} \right) \times$$

$$\left[\frac{q}{p} (C_1 \int_0^{x^*} x^{-\beta_1} dx + C_2 \int_{x^*}^{x} x^{-\beta_2} dx) + \frac{p-q}{p} \right].$$

8.9. Derivation of Ω

$$\Omega(\tau, \zeta) = \frac{q}{p} \int_0^{+\infty} U(z)f(z) dz + \frac{p-q}{p} \int_0^{+\infty} U_0(z)f(z) dz$$

$$= \frac{q}{p} \int_0^{+\infty} \left[\frac{\theta + p - (1-\gamma)(r-\tau + \mu + \frac{(a-r)^2}{2 \gamma \sigma^2})}{\gamma(1 + (p \chi)^{\frac{1}{\gamma}} \mu^\gamma (1 - \zeta)_1^{\frac{1}{\gamma}})} \right] \frac{1}{w^{1-\gamma}} f(w) dw$$

$$+ \frac{p-q}{p} \int_0^{+\infty} \left[\frac{\theta + p - (1-\gamma)(r-\tau + \mu + \frac{(a-r)^2}{2 \gamma \sigma^2})}{\gamma(1 + (p \chi)^{\frac{1}{\gamma}} \mu^\gamma (1 - \zeta)_1^{\frac{1}{\gamma}})} \right] \frac{1}{w^{1-\gamma}} f(w) dw$$

$$= \left[\frac{q}{p} \int_0^{+\infty} \left[\frac{\theta + p - (1-\gamma)(r-\tau + \mu + \frac{(a-r)^2}{2 \gamma \sigma^2})}{\gamma(1 + (p \chi)^{\frac{1}{\gamma}} \mu^\gamma (1 - \zeta)_1^{\frac{1}{\gamma}})} \right] \frac{1}{w^{1-\gamma}} f(w) dw$$

$$+ \frac{p-q}{p} \int_0^{+\infty} \left[\frac{\theta + p - (1-\gamma)(r-\tau + \mu + \frac{(a-r)^2}{2 \gamma \sigma^2})}{\gamma(1 + (p \chi)^{\frac{1}{\gamma}} \mu^\gamma (1 - \zeta)_1^{\frac{1}{\gamma}})} \right] \frac{1}{w^{1-\gamma}} f(w) dw \right] \times$$

$$\int_0^{+\infty} w^{1-\gamma} f(w) dw \quad (A.1)$$
We then compute \(\int_0^{+\infty} w^{1-\gamma} f(w)dw \)

\[
\int_0^{+\infty} w^{1-\gamma} f(w)dw = C_1 \int_0^{x^*} x^{1-\gamma} x^{-\beta_1} dx + C_2 \int_{x^*}^{+\infty} x^{1-\gamma} x^{-\beta_2} dx
\]

\[
= C_1 \int_0^{x^*} x^{1-\gamma-\beta_1} dx + C_2 \int_{x^*}^{+\infty} x^{1-\gamma-\beta_2} dx
\]

\[
= \frac{C_1}{2 - \gamma - \beta_1} (x^*)^{2-\gamma-\beta_1} - \frac{C_2}{2 - \gamma - \beta_2} (x^*)^{2-\gamma-\beta_2}
\]

The last step is valid when \(\beta_1 < -1 \) since \(\gamma = 3 \) in our calibration. Plugging the above result of the integral into the formula (A.1), we have

\[
\Omega(\tau, \zeta) = \frac{q}{p} \int_0^{+\infty} U(z) f(z) dz + \frac{p-q}{p} \int_0^{+\infty} U_0(z) f(z) dz
\]

\[
= \left[\frac{q}{p} \frac{1}{1-\gamma} \left(\frac{\theta + p - (1-\gamma)(r - \tau + \mu + \frac{(\alpha - \eta)^2}{2\gamma \sigma^2})}{\gamma (1 + (p\chi)^{\frac{1}{\gamma}} \mu^\frac{\gamma - 1}{\gamma} (1 - \zeta)^{\frac{1}{\gamma}})} \right)^{-\gamma} + \right]
\]

\[
\left[\frac{p-q}{p} \frac{1}{1-\gamma} \left(\frac{\theta + p - (1-\gamma)(r - \tau + \mu + \frac{(\alpha - \eta)^2}{2\gamma \sigma^2})}{\gamma (1 + (p\chi)^{\frac{1}{\gamma}} \mu^\frac{\gamma - 1}{\gamma} (1 - \zeta)^{\frac{1}{\gamma}})} \right)^{-\gamma} \right] \int_0^{+\infty} w^{1-\gamma} f(w)dw
\]

\[
= \left[\frac{q}{p} \frac{1}{1-\gamma} \left(\frac{\theta + p - (1-\gamma)(r - \tau + \mu + \frac{(\alpha - \eta)^2}{2\gamma \sigma^2})}{\gamma (1 + (p\chi)^{\frac{1}{\gamma}} \mu^\frac{\gamma - 1}{\gamma} (1 - \zeta)^{\frac{1}{\gamma}})} \right)^{-\gamma} + \right]
\]

\[
\left[\frac{p-q}{p} \frac{1}{1-\gamma} \left(\frac{\theta + p - (1-\gamma)(r - \tau + \mu + \frac{(\alpha - \eta)^2}{2\gamma \sigma^2})}{\gamma (1 + (p\chi)^{\frac{1}{\gamma}} \mu^\frac{\gamma - 1}{\gamma} (1 - \zeta)^{\frac{1}{\gamma}})} \right)^{-\gamma} \right] \times
\]

\[
\left[\frac{C_1}{2 - \gamma - \beta_1} (x^*)^{2-\gamma-\beta_1} - \frac{C_2}{2 - \gamma - \beta_2} (x^*)^{2-\gamma-\beta_2} \right].
\]

8.10. A simple mechanism underlying a double Pareto distribution of wealth without inheritance

We have

\[
dX(s, t) = gX(s, t)dt + \kappa X(s, t)dB(s, t)
\]

\[
X(s, t) = X(s, s) \exp[(g - \frac{1}{2}\kappa^2)(t - s) + \kappa(B(s, t) - B(s, s))]
\]

50
$X(s, t)$ is a geometric Brownian motion.

Normalize $X(s, s), \log(X(s, s)) = 0$ so initial wealth is fixed (no inheritance). Then $X(s, t)$ is log-normal

$$\log(X(s, t)) = (g - \frac{1}{2}\kappa^2)(t - s) + \kappa(B(s, t) - B(s, s))$$

Now integrate over the population:

$$\int_{-\infty}^{t} pe^{-p(t-s)} \frac{1}{x} \frac{1}{\sqrt{2\pi(t-s)\kappa^2}} \exp\left[-\frac{(\log(x) - (g - \frac{1}{2}\kappa^2)(t-s))^2}{2(t-s)\kappa^2}\right] ds$$

$$= \int_{0}^{+\infty} pe^{-pv} \frac{1}{x} \frac{1}{\sqrt{2\pi\kappa^2v^2}} \exp\left[-\frac{(\log(x) - (g - \frac{1}{2}\kappa^2)v)^2}{2\kappa^2v^2}\right] dv$$

Let

$$f(x) = \int_{0}^{+\infty} pe^{-pv} \frac{1}{x} \frac{1}{\sqrt{2\pi\kappa^2v^2}} \exp\left[-\frac{(\log(x) - (g - \frac{1}{2}\kappa^2)v)^2}{2\kappa^2v^2}\right] dv$$

$$w(x, v) = \frac{1}{x} \frac{1}{\sqrt{2\pi\kappa^2v^2}} \exp\left[-\frac{(\log(x) - (g - \frac{1}{2}\kappa^2)v)^2}{2\kappa^2v^2}\right]$$

$$f(x) = \int_{0}^{+\infty} pe^{-pv} w(x, v) dv$$

$$f'(x) = \int_{0}^{+\infty} pe^{-pv} \frac{\partial w(x, v)}{\partial x} dv$$

$$f''(x) = \int_{0}^{+\infty} pe^{-pv} \frac{\partial^2 w(x, v)}{\partial x^2} dv$$

Note that

$$\frac{\partial w(x, v)}{\partial v} = \frac{1}{\kappa^2 x^2} \frac{\partial^2 w(x, v)}{\partial x^2} + (2\kappa^2 - g) x \frac{\partial w(x, v)}{\partial x} + (\kappa^2 - g) w(x, v)$$

Then

$$\frac{1}{2} \kappa^2 x^2 f''(x) + (2\kappa^2 - g) x f'(x) + (\kappa^2 - g) f(x) = \int_{0}^{+\infty} pe^{-pv} \frac{\partial w(x, v)}{\partial v} dv = pf(x)$$

51
This gives the characteristic equation

\[\frac{1}{2} \kappa^2 x^2 f''(x) + (2\kappa^2 - g)xf'(x) + (\kappa^2 - g - p)f(x) = 0 \]

Then \(f(x) \) has the functional form

\[f(x) = \begin{cases}
C_1 x^{-\beta_1} & \text{when } x \leq x^* \\
C_2 x^{-\beta_2} & \text{when } x \geq x^*
\end{cases} \]

where \(\beta_1 \) and \(\beta_2 \) are the two roots of the characteristic equation

\[\frac{\kappa^2}{2} \beta^2 - (\frac{3}{2} \kappa^2 - g)\beta + \kappa^2 - g - p = 0 \]

Solving this equation, we have

\[\beta_1 = \frac{3}{2} \kappa^2 - g - \sqrt{\left(\frac{1}{2} \kappa^2 - g\right)^2 + 2\kappa^2 p} \]

and

\[\beta_2 = \frac{3}{2} \kappa^2 - g + \sqrt{\left(\frac{1}{2} \kappa^2 - g\right)^2 + 2\kappa^2 p} \]

8.11. Simulation results-Gini coefficient

<table>
<thead>
<tr>
<th>σ (\chi)</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.691555</td>
<td>0.690649</td>
<td>0.689788</td>
<td>0.688966</td>
</tr>
<tr>
<td>0.21</td>
<td>0.680519</td>
<td>0.67958</td>
<td>0.678686</td>
<td>0.677833</td>
</tr>
<tr>
<td>0.22</td>
<td>0.670422</td>
<td>0.669451</td>
<td>0.668527</td>
<td>0.667646</td>
</tr>
<tr>
<td>0.23</td>
<td>0.66118</td>
<td>0.66018</td>
<td>0.659228</td>
<td>0.658319</td>
</tr>
<tr>
<td>0.24</td>
<td>0.652716</td>
<td>0.651688</td>
<td>0.650711</td>
<td>0.649777</td>
</tr>
<tr>
<td>0.25</td>
<td>0.644917</td>
<td>0.643865</td>
<td>0.642864</td>
<td>0.641908</td>
</tr>
<tr>
<td>0.26</td>
<td>0.637806</td>
<td>0.636731</td>
<td>0.635706</td>
<td>0.63472</td>
</tr>
<tr>
<td>$\zeta \backslash \tau$</td>
<td>0.004</td>
<td>0.005</td>
<td>0.006</td>
<td>0.007</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>0</td>
<td>0.650234</td>
<td>0.594185</td>
<td>0.546586</td>
<td>0.506215</td>
</tr>
<tr>
<td>0.1</td>
<td>0.643547</td>
<td>0.588788</td>
<td>0.542218</td>
<td>0.502678</td>
</tr>
<tr>
<td>0.2</td>
<td>0.635948</td>
<td>0.582625</td>
<td>0.537207</td>
<td>0.498605</td>
</tr>
<tr>
<td>0.3</td>
<td>0.627151</td>
<td>0.575452</td>
<td>0.531349</td>
<td>0.493824</td>
</tr>
<tr>
<td>0.4</td>
<td>0.616726</td>
<td>0.566905</td>
<td>0.524334</td>
<td>0.488076</td>
</tr>
<tr>
<td>0.5</td>
<td>0.603986</td>
<td>0.556398</td>
<td>0.515668</td>
<td>0.480947</td>
</tr>
<tr>
<td>0.6</td>
<td>0.587734</td>
<td>0.542913</td>
<td>0.504491</td>
<td>0.471718</td>
</tr>
</tbody>
</table>

8.12. Pure altruism

"Joy of giving" can be viewed as a reduced form of a pure altruistic bequest motive. (See, for example, Abel and Warshawsky (1988).) The parameter of "joy of giving" can be derived from the value of the altruism parameter. In the case of pure altruism, parents care about their offspring’s welfare through the altruism parameter φ. Parents receive utility from their children’s utility with a parameter $\varphi \leq 1$. The agent’s utility function is

$$V(W(s, t)) = \max_{C, \omega, P} E_t \int_t^{+\infty} e^{-\theta + p(v - t)}[\frac{C^{1-\gamma}(s, v)}{1-\gamma} + p\varphi V((1 - \zeta)Z(s, v))]dv$$

and the budget constraint is

$$dW(s, t) = [(r - \tau)W(s, t) + (\alpha - \tau)\omega(s, t)]W(s, t) - C(s, t) - P(s, t) dt + \sigma \omega(s, t)W(s, t) dB(s, t)$$

The optimal policies under pure altruism, as derived below, are

$$C(s, t) = H^{-\frac{1}{\gamma}}W(s, t), \quad Z(s, t) = \left(\frac{p\varphi}{\mu}\right)^{\frac{1}{\gamma}}(1 - \zeta)^{\frac{1}{\gamma}}W(s, t), \quad \omega(s, t) = \frac{\alpha - \tau}{\gamma \sigma^2}.$$

where

$$H = \left\{\frac{\theta + p}{\gamma} - \mu \frac{\gamma - \alpha}{\gamma} (p\varphi)^{\frac{1}{\gamma}}(1 - \zeta)^{\frac{1}{\gamma}} - \frac{1 - \gamma}{\gamma} [\tau - \tau + \mu + \frac{(\alpha - \tau)^2}{2\gamma \sigma^2}]\right\}^{-\gamma}$$
The individual wealth change equation is
\[
dW(s, t) = \left[\frac{r - \tau + \mu - \theta - p}{\gamma} + \frac{1 + \gamma (\alpha - r)^2}{2\gamma \sigma^2} \right] W(s, t) dt + \frac{\alpha - r}{\gamma \sigma} W(s, t) dB(s, t).
\]
We can now establish the endogenous formulation of the "joy of giving" from the parameter of pure altruism:
\[
\chi = \varphi H
\]
Setting \(\varphi = 1 \) yields the standard infinitely-lived dynastic model. Note that the share of wealth invested in the risky asset does not depend on the parameter of pure altruism and the government policy. The share of wealth allocated to the purchase of life insurance does depends on the estate tax rate.

To derive the results above, we guess the value function
\[
V(W(s, t)) = \frac{H}{1 - \gamma} W(s, t)^{1-\gamma}
\]
where \(H \) is the undetermined constant.

\[
V(W(s, t)) = \max_{C, \omega, P} \mathbb{E}_t \left[\int_t^{\infty} e^{-(\theta + p)(v-t)} \left[\frac{C^{1-\gamma}(s, v)}{1 - \gamma} + p\varphi V((1 - \zeta)Z(s, v)) \right] dv \right]
\]

Then the Hamilton-Jacobi-Bellman equation is
\[
(\theta + p) \frac{H}{1 - \gamma} W(s, t)^{1-\gamma}
\]
\[
= \max_{C, \omega, P} \left\{ \frac{C(s, t)^{1-\gamma}}{1 - \gamma} + p\varphi \frac{H}{1 - \gamma} ((1 - \zeta)Z(s, t))^{1-\gamma}
+ HW(s, t)^{-\gamma}[r - \tau) W(s, t) + (\alpha - r) \omega(s, t)W(s, t) - C(s, t) - P(s, t)]
- \frac{1}{2} H \gamma \sigma^2 \omega^2(s, t) W(s, t)^{1-\gamma} \right\}
\]

Using the relation
\[
Z(s, t) = W(s, t) + \frac{P(s, t)}{\mu}
\]
we find the first order conditions:
\[
C(s, t)^{-\gamma} = HW(s, t)^{-\gamma}
\]
Plugging these equations into the Hamilton-Jacobi-Bellman equation, we can determine the constant H:

$$H = \left\{ \frac{\theta + p}{\gamma} - \mu \frac{1}{\gamma} (p\varphi) \frac{1}{\gamma} (1 - \zeta) \frac{1}{\gamma} - \frac{1}{\gamma} \left[r - \tau + \mu + \frac{(\alpha - r)^2}{2\gamma\sigma^2} \right] \right\}^{-\gamma}$$

And the optimal policy is

$$C(s, t) = H^{-\frac{1}{\gamma}} W(s, t), \quad Z(s, t) = \left(\frac{p\varphi}{\mu} \right)^{\frac{1}{\gamma}} (1 - \zeta)^{\frac{1}{\gamma}} W(s, t), \quad \omega(s, t) = \frac{\alpha - r}{\gamma\sigma^2}.$$