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Preface

Is there some action a government of India could take that would lead the Indian economy to grow like
Indonesia’s or Egypt’s? If so, what, exactly? If not, what is it about the “nature of India” that makes
it so? The consequences for human welfare involved in questions like these are simply staggering:
Once one starts to think about them, it is hard to think about anything else.1

—Robert E. Lucas, Jr. (1988)

Economists have, in some sense, always known that growth is important. Yet, at the core
of the discipline, the study of economic growth languished after the late 1960s. Then, after
a lapse of two decades, this research became vigorous again in the late 1980s. The new
research began with models of the determination of long-run growth, an area that is now
called endogenous growth theory. Other recent research extended the older, neoclassical
growth model, especially to bring out the empirical implications for convergence across
economies. This book combines new results with expositions of the main research that
appeared from the 1950s through the beginning of the 2000s. The discussion stresses the
empirical implications of the theories and the relation of these hypotheses to data and
evidence. This combination of theory and empirical work is the most exciting aspect of
ongoing research on economic growth.

The introduction motivates the study, brings out some key empirical regularities in the
growth process, and provides a brief history of modern growth theory. Chapters 1 and 2 deal
with the neoclassical growth model, from Solow–Swan in the 1950s, to Cass–Koopmans
(and recollections of Ramsey) in the 1960s, to recent refinements of the model. Chapter 3
deals with extensions to incorporate a government sector and to allow for adjustment costs
in investment, as well as with the open economy and finite-horizon models of households.
Chapters 4 and 5 cover the versions of endogenous growth theory that rely on forms of
constant returns to reproducible factors. Chapters 6, 7, and 8 explore recent models of
technological change and R&D, including expansions in the variety and quality of products
and the diffusion of knowledge. Chapter 9 allows for an endogenous determination of labor
supply and population, including models of migration, fertility, and labor/leisure choice.
Chapter 10 works out the essentials of growth accounting and applies this framework to the
endogenous growth models. Chapter 11 covers empirical analysis of regions of countries,
including the U.S. states and regions of Europe and Japan. Chapter 12 deals with empirical
evidence on economic growth for a broad panel of countries from 1960 to 2000.

1. These inspirational words from Lucas have probably become the most frequently quoted passage in the growth
literature. Thus it is ironic (and rarely mentioned) that, even while Lucas was writing his ideas, India had already
begun to grow faster than Indonesia and Egypt. The growth rates of GDP per person from 1960 to 1980 were
3.2% per year in Egypt, 3.9% in Indonesia, and 1.5% in India. In contrast, from 1980 to 2000, the growth rates of
GDP per person were 1.8% per year in Egypt, 3.5% in Indonesia, and 3.6% in India. Thus, the Indian government
seems to have met Lucas’s challenge, whereas Egypt was faltering.



xvi Preface

The material is written as a text at the level of first-year graduate students in economics.
The widely used first edition has proven successful for graduate courses in macroeconomics,
economic growth, and economic development. Most of the chapters include problems that
guide the students from routine exercises through suggestive extensions of the models. The
level of mathematics includes differential equations and dynamic optimization, topics that
are discussed in the mathematical appendix at the end of the book. For undergraduates who
are comfortable with this level of mathematics, the book works well for advanced, elective
courses. The first edition has been used at this level throughout the world.

We have benefited from comments by Daron Acemoglu, Philippe Aghion, Minna
S. Andersen, Marios Angeletos, Elsa V. Artadi, Abhijit Banerjee, Paulo Barelli, Gary
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Introduction

I.1 The Importance of Growth

To think about the importance of economic growth, we begin by assessing the long-term
performance of the U.S. economy. The real per capita gross domestic product (GDP) in the
United States grew by a factor of 10 from $3340 in 1870 to $33,330 in 2000, all measured
in 1996 dollars. This increase in per capita GDP corresponds to a growth rate of 1.8 percent
per year. This performance gave the United States the second-highest level of per capita
GDP in the world in 2000 (after Luxembourg, a country with a population of only about
400,000).1

To appreciate the consequences of apparently small differentials in growth rates when
compounded over long periods of time, we can calculate where the United States would have
been in 2000 if it had grown since 1870 at 0.8 percent per year, one percentage point per year
below its actual rate. A growth rate of 0.8 percent per year is close to the rate experienced in
the long run—from 1900 to 1987—by India (0.64 percent per year), Pakistan (0.88 percent
per year), and the Philippines (0.86 percent per year). If the United States had begun in
1870 at a real per capita GDP of $3340 and had then grown at 0.8 percent per year over the
next 130 years, its per capita GDP in 2000 would have been $9450, only 2.8 times the value
in 1870 and 28 percent of the actual value in 2000 of $33,330. Then, instead of ranking
second in the world in 2000, the United States would have ranked 45th out of 150 countries
with data. To put it another way, if the growth rate had been lower by just 1 percentage
point per year, the U.S. per capita GDP in 2000 would have been close to that in Mexico
and Poland.

Suppose, alternatively, that the U.S. real per capita GDP had grown since 1870 at
2.8 percent per year, 1 percentage point per year greater than the actual value. This higher
growth rate is close to those experienced in the long run by Japan (2.95 percent per year from
1890 to 1990) and Taiwan (2.75 percent per year from 1900 to 1987). If the United States
had still begun in 1870 at a per capita GDP of $3340 and had then grown at 2.8 percent
per year over the next 130 years, its per capita GDP in 2000 would have been $127,000—
38 times the value in 1870 and 3.8 times the actual value in 2000 of $33,330. A per capita
GDP of $127,000 is well outside the historical experience of any country and may, in
fact, be infeasible (although people in 1870 probably would have thought the same about
$33,330). We can say, however, that a continuation of the long-term U.S. growth rate of
1.8 percent per year implies that the United States will not attain a per capita GDP of
$127,000 until 2074.

1. The long-term data on GDP come from Maddison (1991) and are discussed in chapter 12. Recent data are from
Heston, Summers, and Aten (2002) and are also discussed in chapter 12.
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Figure I.1
Histogram for per capita GDP in 1960. The data, for 113 countries, are the purchasing-power-parity (PPP)
adjusted values from Penn World Tables version 6.1, as described in Summers and Heston (1991) and Heston,
Summers, and Aten (2002). Representative countries are labeled within each group.

The comparison of levels of real per capita GDP over a century involves multiples as
high as 20; for example, Japan’s per capita GDP in 1990 was about 20 times that in 1890.
Comparisons of levels of per capita GDP across countries at a point in time exhibit even
greater multiples. Figure I.1 shows a histogram for the log of real per capita GDP for
113 countries (those with the available data) in 1960. The mean value corresponds to a
per capita GDP of $3390 (1996 U.S. dollars). The standard deviation of the log of real per
capita GDP—a measure of the proportionate dispersion of real per capita GDP—was 0.89.
This number means that a 1-standard-deviation band around the mean encompassed a range
from 0.41 of the mean to 2.4 times the mean. The highest per capita GDP of $14,980 for
Switzerland was 39 times the lowest value of $381 for Tanzania. The United States was
second with a value of $12,270. The figure shows representative countries for each range
of per capita GDP. The broad picture is that the richest countries included the OECD and
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Histogram for per capita GDP in 2000. The data, for 150 countries, are from the sources noted for figure I.1.
Representative countries are labeled within each group.

a few places in Latin America, such as Argentina and Venezuela. Most of Latin America
was in a middle range of per capita GDP. The poorer countries were a mixture of African
and Asian countries, but some Asian countries were in a middle range of per capita GDP.

Figure I.2 shows a comparable histogram for 150 countries in 2000. The mean here cor-
responds to a per capita GDP of $8490, 2.5 times the value in 1960. The standard deviation
of the log of per capita GDP in 2000 was 1.12, implying that a 1-standard-deviation band
ranged from 0.33 of the mean to 3.1 times the mean. Hence, the proportionate dispersion
of per capita GDP increased from 1960 to 2000. The highest value in 2000, $43,990 for
Luxembourg, was 91 times the lowest value—$482 for Tanzania. (The Democratic Re-
public of Congo would be poorer, but the data are unavailable for 2000.) If we ignore
Luxembourg because of its small size and compare Tanzania’s per capita GDP with the
second-highest value, $33,330 for the United States, the multiple is 69. Figure I.2 again
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marks out representative countries within each range of per capita GDP. The OECD coun-
tries still dominated the top group, joined by some East Asian countries. Most other Asian
countries were in the middle range of per capita GDP, as were most Latin American coun-
tries. The lower range in 2000 was dominated by sub-Saharan Africa.

To appreciate the spreads in per capita GDP that prevailed in 2000, consider the situation
of Tanzania, the poorest country shown in figure I.2. If Tanzania were to grow at the long-
term U.S. rate of 1.8 percent per year, it would take 235 years to reach the 2000 level of U.S.
per capita GDP. The required interval would still be 154 years if Tanzania were to grow at
the long-term Japanese rate of 2.75 percent per year.

For 112 countries with the necessary data, the average growth rate of real per capita GDP
between 1960 and 2000 was 1.8 percent per year—coincidentally the same as the long-term
U.S. rate—with a standard deviation of 1.7.2 Figure I.3 has a histogram of these growth
rates; the range is from −3.2 percent per year for the Democratic Republic of Congo (the
former Zaire) to 6.4 percent per year for Taiwan. (If not for missing data, the lowest-growing
country would probably be Iraq.) Forty-year differences in growth rates of this magnitude
have enormous consequences for standards of living. Taiwan raised its real per capita GDP
by a factor of 13 from $1430 in 1960 (rank 76 out of 113 countries) to $18,730 in 2000
(rank 24 of 150), while the Democratic Republic of Congo lowered its real per capita GDP
by a factor of 0.3 from $980 in 1960 (rank 93 of 113) to $320 in 1995—if not for missing
data, this country would have the lowest per capita GDP in 2000.

A few other countries had growth rates from 1960 to 2000 that were nearly as high as
Taiwan’s; those with rates above 5 percent per year were Singapore with 6.2 percent, South
Korea with 5.9 percent, Hong Kong with 5.4 percent, and Botswana with 5.1 percent. These
countries increased their levels of per capita GDP by a multiple of at least 7 over 40 years.
Just below came Thailand and Cyprus at 4.6 percent growth, China at 4.3 percent, Japan at
4.2 percent (with rapid growth mainly into the 1970s), and Ireland at 4.1 percent. Figure I.3
shows that a number of other OECD countries came in the next-highest growth groups,
along with a few countries in Latin America (including Brazil and Chile) and more in Asia
(including Indonesia, India, Pakistan, and Turkey). The United States ranked 40th in growth
with a rate of 2.5 percent.

At the low end of growth, 16 countries aside from the Democratic Republic of Congo
had negative growth rates of real per capita GDP from 1960 to 2000. The list (which
would be substantially larger if not for missing data), starting from the bottom, is Central
African Republic, Niger, Angola, Nicaragua, Mozambique, Madagascar, Nigeria, Zambia,

2. These statistics include the Democratic Republic of Congo (the former Zaire), for which the data are for 1960
to 1995.
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Figure I.3
Histogram for growth rate of per capita GDP from 1960 to 2000. The growth rates are computed for 112
countries from the values of per capita GDP shown for 1960 and 2000 in figures I.1 and I.2. For Democratic
Republic of Congo (former Zaire), the growth rate is for 1960 to 1995. West Germany is the only country included
in figure I.1 (for 1960) but excluded from figure I.3 (because of data problems caused by the reunification of
Germany). Representative countries are labeled within each group.

Chad, Comoros, Venezuela, Senegal, Rwanda, Togo, Burundi, and Mali. Thus, except for
Nicaragua and Venezuela, this group comprises only sub-Saharan African countries. For
the 38 sub-Saharan African countries with data, the mean growth rate from 1960 to 2000
was only 0.6 percent per year. Hence, the typical country in sub-Saharan Africa increased
its per capita GDP by a factor of only 1.3 over 40 years. Just above the African growth
rates came a few slow-growing countries in Latin America, including Bolivia, Peru, and
Argentina.

As a rough generalization for regional growth experiences, we can say that sub-Saharan
Africa started relatively poor in 1960 and grew at the lowest rate, so it ended up by far the
poorest area in 2000. Asia started only slightly above Africa in many cases but grew rapidly
and ended up mostly in the middle. Latin America started in the mid to high range, grew
somewhat below average, and therefore ended up mostly in the middle along with Asia.



6 Introduction

Finally, the OECD countries started highest in 1960, grew in a middle range or better, and
therefore ended up still the richest.

If we want to understand why countries differ dramatically in standards of living (fig-
ures I.1 and I.2), we have to understand why countries experience such sharp divergences
in long-term growth rates (figure I.3). Even small differences in these growth rates, when
cumulated over 40 years or more, have much greater consequences for standards of living
than the kinds of short-term business fluctuations that have typically occupied most of the
attention of macroeconomists. To put it another way, if we can learn about government pol-
icy options that have even small effects on long-term growth rates, we can contribute much
more to improvements in standards of living than has been provided by the entire history of
macroeconomic analysis of countercyclical policy and fine-tuning. Economic growth—the
subject matter of this book—is the part of macroeconomics that really matters.

I.2 The World Income Distribution

Although we focus in this book on the theoretical and empirical determinants of aggregate
economic growth, we should keep in mind that growth has important implications for the
welfare of individuals. In fact, aggregate growth is probably the single most important factor
affecting individual levels of income. Hence, understanding the determinants of aggregate
economic growth is the key to understanding how to increase the standards of living of
individuals in the world and, thereby, to lessen world poverty.

Figure I.4 shows the evolution of the world’s per capita GDP from 1970 to 2000.3 It
is clear that the average person on the planet has been getting richer over time. But the
positive average growth rate over the last three decades does not mean that the income of all
citizens has increased. In particular, it does not mean that the incomes of the poorest people
have grown nor that the number of people whose incomes are below a certain poverty line
(say one dollar a day, as defined by the World Bank) has declined.4 Indeed, if inequality

3. The “world” is approximated by the 126 countries (139 countries after the breakup of the Soviet Union in
1989) in Sala-i-Martin (2003a, 2003b). The individuals in these 126 countries made up about 95 percent of the
world’s population. World GDP per capita is estimated by adding up the data for individual countries from Heston,
Summers, and Aten (2002) and then dividing by the world’s population.

4. The quest for a “true” poverty line has a long tradition, but the current “one-dollar-a-day” line can be traced
back to World Bank (1990). The World Bank originally defined the poverty line as one dollar a day in 1985 prices.
Although the World Bank’s own definition later changed to 1.08 dollars a day in 1993 dollars (notice that one
1985 dollar does not correspond to 1.08 1993 dollars), we use the original definition of one dollar a day in 1985
prices. One dollar a day (or 365 dollars a year) in 1985 prices becomes 495 dollars per year in 1996 prices, which
is the base year of the Heston, Summers, and Aten (2002) data used to construct the world income distributions.
Following Bhalla (2002), Sala-i-Martin (2003a) adjusts this poverty line upward by 15 percent to correct for the
bias generated by the underreporting of the rich. This adjustment means that our “one-dollar-a-day” poverty line
represents 570 dollars a year (or 1.5 dollars a day) in 1996 dollars.
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Figure I.4
World per capita GDP, 1970–2000. World per capita GDP is the sum of the GDPs for 126 countries (139 countries
after the collapse of the Soviet Union) divided by population. The sample of 126 countries is the one used in
Sala-i-Martin (2003a) and accounts for 95 percent of the world’s population.

increased along with economic growth, it is possible for the world to have witnessed both
positive per capita GDP growth and an increasing number of people below the poverty
line. To assess how aggregate growth affects poverty, Sala-i-Martin (2003a) estimates the
world distribution of individual income. To do so, he combines microeconomic survey
and aggregate GDP data for each country, for every year between 1970 and 2000.5 The
result for 1970 is displayed in figure I.5. The horizontal axis plots the level of income
(on a logarithmic scale), and the vertical axis has the number of people. The thin lines
correspond to the income distributions of individual countries. Notice, for example, that
China (the most populated country in the world) has a substantial fraction of the distribution
below the $1/day line. The same is true for India and a large number of smaller countries.
This pattern contrasts with the position of countries such as the United States, Japan,
or even the USSR, which have very little of their distributions below the $1/day line.
The thick line in figure I.5 is the integral of all the individual distributions. Therefore,

5. Sala-i-Martin (2003b) constructs an analogous distribution from which he estimates the number of people
whose personal consumption expenditure is less than one dollar a day. The use of consumption, rather than
income, accords better with the concept of “extreme poverty” used by international institutions such as the World
Bank and the United Nations. However, personal consumption has the drawbacks of giving no credit to public
services and saving.
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Figure I.5
The world distribution of income in 1970. The level of income is on the horizontal axis (on a logarithmic
scale), and the number of people is on the vertical axis. The thin curves correspond to the income distributions
of individual countries. The thick curve is the integral of individual country distributions and corresponds to the
world distribution of income. The vertical line marks the poverty line (which corresponds to one dollar a day in
1985 prices). Source: Sala-i-Martin (2003a).

this line corresponds to the world distribution of income in 1970. Again, a substantial
fraction of the world’s citizens were poor (that is, had an income of less than $1/day)
in 1970.

Figure I.6 displays the corresponding distributions for 2000. If one compares the 1970
with the 2000 distribution, one sees a number of interesting things. First, the world distri-
bution of income has shifted to the right. This shift corresponds to the cumulated growth of
per capita GDP. Second, we see that, underlying the evolution of worldwide income, there
is a positive evolution of incomes in most countries in the world. Most countries increased
their per capita GDP and, therefore, shifted to the right. Third, we see that the dispersion
of the distributions for some countries, notably China, has increased over this period. In
other words, income inequality rose within some large countries. Fourth, the increases in
inequality within some countries have not been nearly enough to offset aggregate per capita
growth, so that the fraction of the world’s people whose incomes lie below the poverty line
has declined dramatically.
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The world distribution of income in 2000. The level of income is on the horizontal axis (on a logarithmic
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of individual countries. The thick curve is the integral of individual country distributions and corresponds to the
world distribution of income. The vertical line marks the poverty line (which corresponds to one dollar a day in
1985 prices). Source: Sala-i-Martin (2003a).

The exact fraction of the world’s citizens that live below the poverty line can be computed
from the distributions estimated by Sala-i-Martin (2003a).6 These poverty rates, reported
in figure I.7, have been cut by a factor of 3: whereas 20 percent of the world’s citizens
were poor in 1970, only 7 percent were poor in 2000.7 Between 1970 and 1978, population
growth more than offset the reduction in poverty rates. Indeed, Sala-i-Martin (2003a) shows
that, during that period, the overall number of poor increased by 20 million people. But,
since 1978, the total number of people with income below the $1/day threshold declined by
more than 300 million. This achievement is all the more remarkable if we take into acount
that overall population increased by more than 1.6 billion people during this period.

6. The World Bank, the United Nations, and many individual researchers define poverty in terms of consumption,
rather than income. Sala-i-Martin (2003b) estimates poverty rates and head counts using consumption. The evolu-
tion of consumption poverty is similar to the one reported here for income although, obviously, the poverty rates
are higher if one uses consumption instead of income and still uses the same poverty line.

7. Sala-i-Martin (2003a) reports cumulative distribution functions (CDFs) for 1970, 1980, 1990, and 2000. Using
these CDFs, one can easily see that poverty rates have fallen dramatically over the last thirty years regardless of
what poverty line one adopts. Thus, the conclusion that aggregate growth has reduced poverty is quite robust.
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World poverty rates. The graphs show the fraction of overall population with income below the poverty line.
Source: Sala-i-Martin (2003a).

The clear conclusion is that economic growth led to substantial reductions in the world’s
poverty rates and head counts over the last thirty years. As mentioned earlier, this outcome
was not inevitable: if aggregate growth had been accompanied by substantial increases in
income inequality, it would have been possible for the mean of the income distribution
to increase but also for the fraction of the distribution below a specified poverty threshold
to also increase. Sala-i-Martin (2003a) shows that, even though this result is theoretically
possible, the world did not behave this way over the last thirty years. Moreover, he also
shows that world income inequality actually declined slightly between 1980 and 2000. This
conclusion holds whether inequality is measured by the Gini coefficient, the Theil Index,
the mean logarithmic deviation, various Atkinson indexes, the variance of log-income, or
the coefficient of variation.

Sala-i-Martin (2003a) decomposes the world into regions and notes that poverty erradica-
tion has been most pronounced in the regions where growth has been the largest. Figure I.8
reports poverty rates for the poorest regions of the world: East Asia, South Asia, Latin
America, Africa, the Middle East and North Africa (MENA), and Eastern Europe and
Central Asia. In 1970, three of these regions had poverty rates close to or above 30 percent.
Two of them (East Asia and South Asia) have experienced substantial reductions in poverty
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Figure I.8
Regional poverty rates. The graphs show the fraction of each region’s population with income below the poverty
line. The regions are the ones defined by the World Bank: East Asia, South Asia, Latin America, Africa, the Middle
East and North Africa (MENA), and Eastern Europe and Central Asia. Source: Sala-i-Martin (2003a).

rates. These are the regions that also experienced large positive aggregate growth rates. The
other region (Africa) has witnessed a dramatic increase in poverty rates over the last thirty
years. We also know that per capita growth rates have been negative or close to zero for most
countries in Africa. Figure I.8 also shows that two regions had poverty rates near 10 percent
in 1970: Latin America and MENA. Both have experienced reductions in poverty rates.
Latin America witnessed dramatic gains in the 1970s, when growth rates were substantial,
but suffered a setback during the 1980s (the “lost decade,” which featured negative growth
rates). Poverty rates in Latin America stabilized during the 1990s. Poverty rates in MENA
declined slightly between 1970 and 1975. The decline was very large during the high-growth
decade that followed the oil shocks and then stabilized when aggregate growth stopped.

Finally, Eastern Europe and Central Asia (a region that includes the former Soviet
Union) started off with very small poverty rates. The rates multiplied by a factor of 10
between 1989 and 2000. There are two reasons for the explosion of poverty rates in Eastern
Europe and Central Asia. One is the huge increase in inequality that followed the collapse
of the communist system. The second factor is the dismal aggregate growth performance
of these countries. Notice, however, that the average levels of income for these countries
remain far above the levels of Africa or even Asia. Therefore, even after the deterioration
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in mean income and the rise of income dispersion, poverty rates remain relatively low in
Eastern Europe and Central Asia.

I.3 Empirical Regularities about Economic Growth

Kaldor (1963) listed a number of stylized facts that he thought typified the process of
economic growth:

1. Per capita output grows over time, and its growth rate does not tend to diminish.

2. Physical capital per worker grows over time.

3. The rate of return to capital is nearly constant.

4. The ratio of physical capital to output is nearly constant.

5. The shares of labor and physical capital in national income are nearly constant.

6. The growth rate of output per worker differs substantially across countries.8

Fact 6 accords with the cross-country data that we have already discussed. Facts 1,
2, 4, and 5 seem to fit reasonably well with the long-term data for currently developed
countries. For discussions of the stability of the long-run ratio of physical capital to GDP
in Japan, Germany, Italy, the United Kingdom, and the United States, see Maddison (1982,
chapter 3). For indications of the long-term stability of factor shares in the United States, see
Denison (1974, appendix J) and Jorgenson, Gollop, and Fraumeni (1987, table 9.3). Young
(1995) reports that factor shares were reasonably stable in four East Asian countries—
Hong Kong, Singapore, South Korea, and Taiwan—from the early or middle 1960s through
1990. Studies of seven developed countries—Canada, France, Germany, Italy, Japan, the
Netherlands, and the United Kingdom—indicate that factor shares are similar to those in
the United States (Christensen, Cummings, and Jorgenson, 1980, and Dougherty, 1991).
In some Latin-American countries considered by Elias (1990), the capital shares tend,
however, to be higher than those in the United States.

Kaldor’s claimed fact 3 on the stability of real rates of return appears to be heavily
influenced by the experience of the United Kingdom; in this case, the real interest rate seems

8. Kuznets (1973, 1981) brings out other characteristics of modern economic growth. He notes the rapid rate of
structural transformation, which includes shifts from agriculture to industry to services. This process involves
urbanization, shifts from home work to employee status, and an increasing role for formal education. He also
argues that modern growth involves an increased role for foreign commerce and that technological progress
implies reduced reliance on natural resources. Finally, he discusses the growing importance of government: “The
spread of modern economic growth placed greater emphasis on the importance and need for organization in
national sovereign units. . . . The sovereign state unit was of critical importance as the formulator of the rules under
which economic activity was to be carried on; as a referee . . . ; and as provider of infrastructure” (1981, p. 59).
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to have no long-run trend (see Barro, 1987, figures 4 and 7). For the United States, however,
the long-term data suggest a moderate decline of real interest rates (Barro, 1997, table 11.1).
Real rates of return in some fast-growing countries, such as South Korea and Singapore,
are much higher than those in the United States but have declined over time (Young, 1995).
Thus it seems likely that Kaldor’s hypothesis of a roughly stable real rate of return should
be replaced by a tendency for returns to fall over some range as an economy develops.

We can use the data presented in chapter 12 to assess the long-run tendencies of the growth
rate of real per capita GDP. Tables 12.10 and 12.11 contain figures from Angus Maddison
for 31 countries over periods of roughly a century. These numbers basically exhaust the
available information about growth over very long time intervals.

Table 12.10 applies to 16 currently developed countries, the major countries in Europe
plus the United States, Canada, and Australia. These data show an average per capita
growth rate of 1.9 percent per year over roughly a century, with a breakdown by 20-year
periods as shown in table I.1. These numbers are consistent with Kaldor’s proposition that
the growth rate of real per capita GDP has no secular tendency to decline; in fact, the
periods following World War II show growth rates well above the long-run average. The
reduction in the growth rate from 3.7 percent per year in 1950–70 to 2.2 percent per year
in 1970–90 corresponds to the often-discussed productivity slowdown. It is apparent from
the table, however, that the growth rate for 1970–90 is high in relation to the long-term
history.

Table 12.11 contains figures for 15 currently less-developed countries in Asia and Latin
America. In this case, the average long-run growth rate from 1900 to 1987 is 1.4 percent
per year, and the breakdown into four subperiods is as shown in table I.2. Again, the
post–World War II period (here, 1950–87) shows growth rates well above the long-term
average.

Table I.1
Long-Term Growth Rates for Currently Developed Countries

Period Growth Rate (percent per year) Number of Countries

1830–50 0.9 10
1850–70 1.2 11
1870–90 1.2 13
1890–10 1.5 14
1910–30 1.3 16
1930–50 1.4 16
1950–70 3.7 16
1970–90 2.2 16

Source: Table 12.10.
Note: The growth rates are simple averages for the countries with data.
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Table I.2
Long-Term Growth Rates for Currently Less-Developed Countries

Period Growth Rate (percent per year) Number of Countries

1900–13 1.2 15
1913–50 0.4 15
1950–73 2.6 15
1973–87 2.4 15

Source: Table 12.11 in chapter 12.
Note: The growth rates are simple averages for the countries with data.

The information depicted in figures I.1–I.3 applies to the behavior of real per capita GDP
for over 100 countries from 1960 to 2000. We can use these data to extend the set of stylized
facts that was provided by Kaldor. One pattern in the cross-country data is that the growth
rate of per capita GDP from 1960 to 2000 is essentially uncorrelated with the level of per
capita GDP in 1960 (see chapter 12). In the terminology developed in chapter 1, we shall
refer to a tendency for the poor to grow faster than the rich as β convergence. Thus the
simple relationship between growth and the starting position for a broad cross section of
countries does not reveal β convergence. This kind of convergence does appear if we limit
attention to more homogeneous groups of economies, such as the U.S. states, regions of
several European countries, and prefectures of Japan (see Barro and Sala-i-Martin, 1991,
1992a, and 1992b, and chapter 11). In these cases, the poorer places tend to grow faster
than the richer ones. This behavior also appears in the cross-country data if we limit the
sample to a relatively homogeneous collection of currently prosperous places, such as the
OECD countries (see Baumol, 1986; DeLong, 1988).

We say in chapter 1 that conditional β convergence applies if the growth rate of per capita
GDP is negatively related to the starting level of per capita GDP after holding fixed some
other variables, such as initial levels of human capital, measures of government policies, the
propensities to save and have children, and so on. The broad cross-country sample—that
is, the data set that does not show β convergence in an absolute sense—clearly reveals β

convergence in this conditional context (see Barro, 1991; Barro and Sala-i-Martin, 1992a;
and Mankiw, Romer, and Weil, 1992). The rate of convergence is, however, only about 2
percent per year. Thus, it takes about 35 years for an economy to eliminate one-half of the
gap between its initial per capita GDP and its long-run or target level of per capita GDP.
(The target tends to grow over time.)

The results in chapter 12 show that a number of variables are significantly related to the
growth rate of per capita GDP, once the starting level of per capita GDP is held constant.
For example, growth depends positively on the initial quantity of human capital in the form
of educational attainment and health, positively on maintenance of the rule of law and the
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Table I.3
Ratios to GDP of Gross Domestic Investment and Gross National Saving (percent)

Period Australia Canada France India Japan Korea United Kingdom United States

1. Gross Domestic Investment

1870–89 16.5 16.0 12.8 — — — 9.3 19.8
1890–09 13.7 17.2 14.0 — 14.0 — 9.4 17.9
1910–29 17.4 19.8 — 6.4 16.6 5.1a 6.7 17.2
1930–49 13.3 13.1 — 8.4 20.5 — 8.1 12.7
1950–69 26.3 23.8 22.6 14.0 31.8 16.3b 17.2 18.9
1970–89 24.9 22.8 23.2 20.2 31.9 29.1 18.2 18.7

2. Gross National Saving

1870–89 11.2 9.1 12.8 — — — 13.9 19.1
1890–09 12.2 11.5 14.9 — 12.0 — 13.1 18.4
1910–29 13.6 16.0 — 6.4 17.1 2.38 9.6 18.9
1930–49 13.0 15.6 — 7.7 19.8 — 4.8 14.1
1950–69 24.0 22.3 22.8 12.2 32.1 5.9b 17.7 19.6
1970–89 22.9 22.1 23.4 19.4 33.7 26.2 19.4 18.5

Source: Maddison (1992).
a1911–29
b1951–69

ratio of investment to GDP, and negatively on fertility rates and the ratio of government
consumption spending to GDP.

We can assess regularities in investment and saving ratios by using the long-term data
in Maddison (1992). He provides long-term information for a few countries on the ratios
of gross domestic investment to GDP and of gross national saving (the sum of domestic
and net foreign investment) to GDP. Averages of the investment and saving ratios over
20-year intervals for the eight countries that have enough data for a long-period analysis
are shown in table I.3. For an individual country, the table indicates that the time paths of
domestic investment and national saving are usually similar. Domestic investment was,
however, substantially higher than national saving (that is, borrowing from abroad was
large) for Australia and Canada from 1870 to 1929, for Japan from 1890 to 1909, for the
United Kingdom from 1930 to 1949, and for Korea from 1950 to 1969 (in fact, through the
early 1980s). National saving was much higher than domestic investment (lending abroad
was substantial) for the United Kingdom from 1870 to 1929 and for the United States from
1930 to 1949.

For the United States, the striking observation from the table is the stability over time of
the ratios for domestic investment and national saving. The only exception is the relatively
low values from 1930 to 1949, the period of the Great Depression and World War II. The
United States is, however, an outlier with respect to the stability of its investment and saving



16 Introduction

ratios; the data for the other seven countries show a clear increase in these ratios over time.
In particular, the ratios for 1950–89 are, in all cases, substantially greater than those from
before World War II. The long-term data therefore suggest that the ratios to GDP of gross
domestic investment and gross national saving tend to rise as an economy develops, at
least over some range. The assumption of a constant gross saving ratio, which appears in
chapter 1 in the Solow–Swan model, misses this regularity in the data.

The cross-country data also reveal some regularities with respect to fertility rates and,
hence, rates of population growth. For most countries, the fertility rate tends to decline
with increases in per capita GDP. For the poorest countries, however, the fertility rate
may rise with per capita GDP, as Malthus (1798) predicted. Even stronger relations exist
between educational attainment and fertility. Except for the most advanced countries, female
schooling is negatively related with the fertility rate, whereas male schooling is positively
related with the fertility rate. The net effect of these forces is that the fertility rate—and
the rate of population growth—tend to fall over some range as an economy develops. The
assumption of an exogenous, constant rate of population growth—another element of the
Solow–Swan model—conflicts with this empirical pattern.

I.4 A Brief History of Modern Growth Theory

Classical economists, such as Adam Smith (1776), David Ricardo (1817), and Thomas
Malthus (1798), and, much later, Frank Ramsey (1928), Allyn Young (1928), Frank Knight
(1944), and Joseph Schumpeter (1934), provided many of the basic ingredients that appear
in modern theories of economic growth. These ideas include the basic approaches of com-
petitive behavior and equilibrium dynamics, the role of diminishing returns and its relation
to the accumulation of physical and human capital, the interplay between per capita income
and the growth rate of population, the effects of technological progress in the forms of
increased specialization of labor and discoveries of new goods and methods of production,
and the role of monopoly power as an incentive for technological advance.

Our main study begins with these building blocks already in place and focuses on the
contributions in the neoclassical tradition since the late 1950s. We use the neoclassical
methodology and language and rely on concepts such as aggregate capital stocks, aggregate
production functions, and utility functions for representative consumers (who often have
infinite horizons). We also use modern mathematical methods of dynamic optimization and
differential equations. These tools, which are described in the appendix at the end of this
book, are familiar today to most first-year graduate students in economics.

From a chronological viewpoint, the starting point for modern growth theory is the clas-
sic article of Ramsey (1928), a work that was several decades ahead of its time. Ramsey’s
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treatment of household optimization over time goes far beyond its application to growth the-
ory; it is hard now to discuss consumption theory, asset pricing, or even business-cycle theory
without invoking the optimality conditions that Ramsey (and Fisher, 1930) introduced to
economists. Ramsey’s intertemporally separable utility function is as widely used today as
the Cobb–Douglas production function. The economics profession did not, however, accept
or widely use Ramsey’s approach until the 1960s.

Between Ramsey and the late 1950s, Harrod (1939) and Domar (1946) attempted to
integrate Keynesian analysis with elements of economic growth. They used production
functions with little substitutability among the inputs to argue that the capitalist system is
inherently unstable. Since they wrote during or immediately after the Great Depression,
these arguments were received sympathetically by many economists. Although these con-
tributions triggered a good deal of research at the time, very little of this analysis plays a
role in today’s thinking.

The next and more important contributions were those of Solow (1956) and Swan (1956).
The key aspect of the Solow–Swan model is the neoclassical form of the production function,
a specification that assumes constant returns to scale, diminishing returns to each input, and
some positive and smooth elasticity of substitution between the inputs. This production
function is combined with a constant-saving-rate rule to generate an extremely simple
general-equilibrium model of the economy.

One prediction from these models, which has been exploited seriously as an empirical
hypothesis only in recent years, is conditional convergence. The lower the starting level of
per capita GDP, relative to the long-run or steady-state position, the faster the growth rate.
This property derives from the assumption of diminishing returns to capital; economies
that have less capital per worker (relative to their long-run capital per worker) tend to have
higher rates of return and higher growth rates. The convergence is conditional because the
steady-state levels of capital and output per worker depend, in the Solow–Swan model, on
the saving rate, the growth rate of population, and the position of the production function—
characteristics that might vary across economies. Recent empirical studies indicate that
we should include additional sources of cross-country variation, especially differences in
government policies and in initial stocks of human capital. The key point, however, is that
the concept of conditional convergence—a basic property of the Solow–Swan model—has
considerable explanatory power for economic growth across countries and regions.

Another prediction of the Solow–Swan model is that, in the absence of continuing im-
provements in technology, per capita growth must eventually cease. This prediction, which
resembles those of Malthus and Ricardo, also comes from the assumption of diminishing re-
turns to capital. We have already observed, however, that positive rates of per capita growth
can persist over a century or more and that these growth rates have no clear tendency to
decline.
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The neoclassical growth theorists of the late 1950s and 1960s recognized this modeling
deficiency and usually patched it up by assuming that technological progress occurred
in an exogenous manner. This device can reconcile the theory with a positive, possibly
constant per capita growth rate in the long run, while retaining the prediction of conditional
convergence. The obvious shortcoming, however, is that the long-run per capita growth rate
is determined entirely by an element—the rate of technological progress—that is outside
of the model. (The long-run growth rate of the level of output also depends on the growth
rate of population, another element that is exogenous in the standard theory.) Thus we
end up with a model of growth that explains everything but long-run growth, an obviously
unsatisfactory situation.

Cass (1965) and Koopmans (1965) brought Ramsey’s analysis of consumer optimization
back into the neoclassical growth model and thereby provided for an endogenous determi-
nation of the saving rate. This extension allows for richer transitional dynamics but tends to
preserve the hypothesis of conditional convergence. The endogeneity of saving also does not
eliminate the dependence of the long-run per capita growth rate on exogenous technological
progress.

The equilibrium of the Cass–Koopmans version of the neoclassical growth model can be
supported by a decentralized, competitive framework in which the productive factors, labor
and capital, are paid their marginal products. Total income then exhausts the total product
because of the assumption that the production function features constant returns to scale.
Moreover, the decentralized outcomes are Pareto optimal.

The inclusion of a theory of technological change in the neoclassical framework is dif-
ficult, because the standard competitive assumptions cannot be maintained. Technological
advance involves the creation of new ideas, which are partially nonrival and therefore have
aspects of public goods. For a given technology—that is, for a given state of knowledge—it
is reasonable to assume constant returns to scale in the standard, rival factors of production,
such as labor, capital, and land. In other words, given the level of knowledge on how to
produce, one would think that it is possible to replicate a firm with the same amount of
labor, capital, and land and obtain twice as much output. But then, the returns to scale tend
to be increasing if the nonrival ideas are included as factors of production. These increasing
returns conflict with perfect competition. In particular, the compensation of nonrival old
ideas in accordance with their current marginal cost of production—zero—will not provide
the appropriate reward for the research effort that underlies the creation of new ideas.

Arrow (1962) and Sheshinski (1967) constructed models in which ideas were unintended
by-products of production or investment, a mechanism described as learning by doing. In
these models, each person’s discoveries immediately spill over to the entire economy, an
instantaneous diffusion process that might be technically feasible because knowledge is
nonrival. Romer (1986) showed later that the competitive framework can be retained in this
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case to determine an equilibrium rate of technological advance, but the resulting growth
rate would typically not be Pareto optimal. More generally, the competitive framework
breaks down if discoveries depend in part on purposive R&D effort and if an individual’s
innovations spread only gradually to other producers. In this realistic setting, a decentralized
theory of technological progress requires basic changes in the neoclassical growth model
to incorporate an analysis of imperfect competition.9 These additions to the theory did not
come until Romer’s (1987, 1990) research in the late 1980s.

The work of Cass (1965) and Koopmans (1965) completed the basic neoclassical growth
model.10 Thereafter, growth theory became excessively technical and steadily lost contact
with empirical applications. In contrast, development economists, who are required to give
advice to sick countries, retained an applied perspective and tended to use models that were
technically unsophisticated but empirically useful. The fields of economic development and
economic growth drifted apart, and the two areas became almost completely separated.

Probably because of its lack of empirical relevance, growth theory effectively died as an
active research field by the early 1970s, on the eve of the rational-expectations revolution
and the oil shocks. For about 15 years, macroeconomic research focused on short-term
fluctuations. Major contributions included the incorporation of rational expectations into
business-cycle models, improved approaches to policy evaluation, and the application of
general-equilibrium methods to real business-cycle theory.

After the mid-1980s, research on economic growth experienced a boom, beginning with
the work of Romer (1986) and Lucas (1988). The motivation for this research was the
observation (or recollection) that the determinants of long-run economic growth are crucial
issues, far more important than the mechanics of business cycles or the countercyclical
effects of monetary and fiscal policies. But a recognition of the significance of long-run
growth was only a first step; to go further, one had to escape the straitjacket of the neoclassical
growth model, in which the long-term per capita growth rate was pegged by the rate of
exogenous technological progress. Thus, in one way or another, the recent contributions
determine the long-run growth rate within the model; hence, the designation endogenous-
growth models.

The initial wave of the new research—Romer (1986), Lucas (1988), Rebelo (1991)—
built on the work of Arrow (1962), Sheshinski (1967), and Uzawa (1965) and did not really
introduce a theory of technological change. In these models, growth may go on indefinitely
because the returns to investment in a broad class of capital goods—which includes human

9. Another approach is to assume that all of the nonrival research—a classic public good—is financed by the
government through involuntary taxes; see Shell (1967).

10. However, recent research has shown how to extend the neoclassical growth model to allow for heterogeneity
among households (Caselli and Ventura, 2000) and to incorporate time-inconsistent preferences (Barro, 1999).
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capital—do not necessarily diminish as economies develop. (This idea goes back to Knight,
1944.) Spillovers of knowledge across producers and external benefits from human capital
are parts of this process, but only because they help to avoid the tendency for diminishing
returns to the accumulation of capital.

The incorporation of R&D theories and imperfect competition into the growth framework
began with Romer (1987, 1990) and included significant contributions by Aghion and
Howitt (1992) and Grossman and Helpman (1991, chapters 3 and 4). In these models,
technological advance results from purposive R&D activity, and this activity is rewarded
by some form of ex post monopoly power. If there is no tendency for the economy to run
out of ideas, the growth rate can remain positive in the long run. The rate of growth and
the underlying amount of inventive activity tend, however, not to be Pareto optimal because
of distortions related to the creation of the new goods and methods of production. In these
frameworks, the long-term growth rate depends on governmental actions, such as taxation,
maintenance of law and order, provision of infrastructure services, protection of intellectual
property rights, and regulations of international trade, financial markets, and other aspects
of the economy. The government therefore has great potential for good or ill through its
influence on the long-term rate of growth. This research program remained active through
the 1990s and has been applied, for example, to understanding scale effects in the growth
process (Jones, 1999), analyzing whether technological progress will be labor or capital
augmenting (Acemoglu, 2002), and assessing the role of competition in the growth process
(Aghion et al., 2001, 2002).

The new research also includes models of the diffusion of technology. Whereas the
analysis of discovery relates to the rate of technological progress in leading-edge economies,
the study of diffusion pertains to the manner in which follower economies share by imitation
in these advances. Since imitation tends to be cheaper than innovation, the diffusion models
predict a form of conditional convergence that resembles the predictions of the neoclassical
growth model. Some recent empirical work has verified the importance of technological
diffusion in the convergence process.

Another key exogenous parameter in the neoclassical growth model is the growth rate
of population. A higher rate of population growth lowers the steady-state level of capital
and output per worker and tends thereby to reduce the per capita growth rate for a given
initial level of per capita output. The standard model does not, however, consider the effects
of per capita income and wage rates on population growth—the kinds of effects stressed
by Malthus—and also does not take account of the resources used up in the process of
child rearing. Another line of recent research makes population growth endogenous by
incorporating an analysis of fertility choice into the neoclassical model. The results are
consistent, for example, with the empirical regularity that fertility rates tend to fall with
per capita income over the main range of experience but may rise with per capita income
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for the poorest countries. Additional work related to the endogeneity of labor supply in a
growth context concerns migration and labor/leisure choice.

The clearest distinction between the growth theory of the 1960s and that of the 1990s is
that the recent research pays close attention to empirical implications and to the relation
between theory and data. However, much of this applied perspective involved applications
of empirical hypotheses from the older theory, notably the neoclassical growth model’s
prediction of conditional convergence. The cross-country regressions motivated by the
neoclassical model surely became a fixture of research in the 1990s. An interesting recent
development in this area, which we explore in chapter 12, involves assessment of the
robustness of these kinds of estimates. Other empirical analyses apply more directly to
the recent theories of endogenous growth, including the roles of increasing returns, R&D
activity, human capital, and the diffusion of technology.

I.5 Some Highlights of the Second Edition

This second edition of Economic Growth includes changes throughout the book. We mention
here a few of the highlights. In this introduction we already described new estimates of the
distribution of income of individuals throughout the world from 1970 to 2000.

Chapter 1 has been made easier and more accessible. We added a section on markets in
the Solow–Swan model. We also discussed the nature of the theoretical dissatisfaction with
neoclassical theory that led to the emergence of endogenous growth models with imperfect
competition.

Chapter 2 expands the treatment of the basic neoclassical growth model to allow for
heterogeneity of households. There is an improved approach to ruling out “undersaving”
paths and for deriving and using transversality conditions. We also include an analysis of
models with nonconstant time-preference rates.

Chapter 3 has various extensions to the basic neoclassical growth model, including an
expanded treatment of the government sector. The framework allows for various forms of
tax rates and allows for a clear distinction between taxes on capital income and taxes on
labor or consumption.

Chapters 6 and 7 discuss models of endogenous technological progress. The new mate-
rial includes an analysis of the role and source of scale effects in these models. We refer
in chapter 6 to Thomas Jefferson’s mostly negative views on patents as a mechanism for
motivating inventions. Chapter 7 has an improved analysis of models where technologi-
cal advances take the form of quality improvements. We have particularly improved the
treatment of the interplay between industry leaders and outsiders and, hence, of the role of
outside competition in the growth process.
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Chapter 8 has a model of technological diffusion. The basic model is improved, and the
theoretical results are related to recent empirical findings.

Chapter 9 has an extended treatment of endogenous population growth. Chapter 10 has an
improved analysis of growth accounting, including its relation to theories of endogenous
technological progress. Chapter 11, which deals with regional data sets, extends the analysis
of U.S. states through 2000.

In chapter 12 we include an updated treatment of cross-country growth regressions, using
the new Summers–Heston data set, Penn World Tables version 6.1, which has data through
2000 (see Heston, Summers, and Aten, 2002). We also discuss in this chapter various issues
about the reliability of estimates from cross-country regressions, including ways to assess
the robustness of the results.



1Growth Models with Exogenous Saving Rates (the Solow–Swan Model)

1.1 The Basic Structure

The first question we ask in this chapter is whether it is possible for an economy to enjoy
positive growth rates forever by simply saving and investing in its capital stock. A look at
the cross-country data from 1960 to 2000 shows that the average annual growth rate of real
per capita GDP for 112 countries was 1.8 percent, and the average ratio of gross investment
to GDP was 16 percent.1 However, for 38 sub-Saharan African countries, the average
growth rate was only 0.6 percent, and the average investment ratio was only 10 percent.
At the other end, for nine East Asian “miracle” economies, the average growth rate was
4.9 percent, and the average investment ratio was 25 percent. These observations suggest
that growth and investment rates are positively related. However, before we get too excited
with this relationship, we might note that, for 23 OECD countries, the average growth
rate was 2.7 percent—lower than that for the East Asian miracles—whereas the average
investment ratio was 24 percent—about the same as that for East Asia. Thus, although
investment propensities cannot be the whole story, it makes sense as a starting point to try
to relate the growth rate of an economy to its willingness to save and invest. To this end, it
will be useful to begin with a simple model in which the only possible source of per capita
growth is the accumulation of physical capital.

Most of the growth models that we discuss in this book have the same basic general-
equilibrium structure. First, households (or families) own the inputs and assets of the
economy, including ownership rights in firms, and choose the fractions of their income to
consume and save. Each household determines how many children to have, whether to join
the labor force, and how much to work. Second, firms hire inputs, such as capital and labor,
and use them to produce goods that they sell to households or other firms. Firms have access
to a technology that allows them to transform inputs into output. Third, markets exist on
which firms sell goods to households or other firms and on which households sell the inputs
to firms. The quantities demanded and supplied determine the relative prices of the inputs
and the produced goods.

Although this general structure applies to most growth models, it is convenient to start
our analysis by using a simplified setup that excludes markets and firms. We can think
of a composite unit—a household/producer like Robinson Crusoe—who owns the inputs
and also manages the technology that transforms inputs into outputs. In the real world,
production takes place using many different inputs to production. We summarize all of
them into just three: physical capital K (t), labor L(t), and knowledge T (t). The production

1. These data—from Penn World Tables version 6.1—are described in Summers and Heston (1991) and Heston,
Summers, and Aten (2002). We discuss these data in chapter 12.
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function takes the form

Y (t) = F[K (t), L(t), T (t)] (1.1)

where Y (t) is the flow of output produced at time t .
Capital, K (t), represents the durable physical inputs, such as machines, buildings, pencils,

and so on. These goods were produced sometime in the past by a production function of the
form of equation (1.1). It is important to notice that these inputs cannot be used by multiple
producers simultaneously. This last characteristic is known as rivalry—a good is rival if it
cannot be used by several users at the same time.

The second input to the production function is labor, L(t), and it represents the inputs
associated with the human body. This input includes the number of workers and the amount
of time they work, as well as their physical strength, skills, and health. Labor is also a rival
input, because a worker cannot work on one activity without reducing the time available
for other activities.

The third input is the level of knowledge or technology, T (t). Workers and machines
cannot produce anything without a formula or blueprint that shows them how to do it. This
blueprint is what we call knowledge or technology. Technology can improve over time—for
example, the same amount of capital and labor yields a larger quantity of output in 2000
than in 1900 because the technology employed in 2000 is superior. Technology can also
differ across countries—for example, the same amount of capital and labor yields a larger
quantity of output in Japan than in Zambia because the technology available in Japan is
better. The important distinctive characteristic of knowledge is that it is a nonrival good: two
or more producers can use the same formula at the same time.2 Hence, two producers that
each want to produce Y units of output will each have to use a different set of machines and
workers, but they can use the same formula. This property of nonrivalry turns out to have
important implications for the interactions between technology and economic growth.3

2. The concepts of nonrivalry and public good are often confused in the literature. Public goods are nonrival (they
can be used by many people simultaneously) and also nonexcludable (it is technologically or legally impossible
to prevent people from using such goods). The key characteristic of knowledge is nonrivalry. Some formulas or
blueprints are nonexcludable (for example, calculus formulas on which there are no property rights), whereas
others are excludable (for example, the formulas used to produce pharmaceutical products while they are pro-
tected by patents). These properties of ideas were well understood by Thomas Jefferson, who said in a letter
of August 13, 1813, to Isaac McPherson: “If nature has made any one thing less susceptible than all others of
exclusive property, it is the actions of the thinking power called an idea, which an individual may exclusively
possess as long as he keeps it to himself; but the moment it is divulged, it forces itself into the possession of
everyone, and the receiver cannot dispossess himself of it. Its peculiar character, too, is that no one possesses the
less, because every other possesses the whole of it. He who receives an idea from me, receives instruction himself
without lessening mine” (available on the Internet from the Thomas Jefferson Papers at the Library of Congress,
lcweb2.loc.gov/ammem/mtjhtml/mtjhome.html).

3. Government policies, which depend on laws and institutions, would also affect the output of an economy. Since
basic public institutions are nonrival, we can include these factors in T (t) in the production function.
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We assume a one-sector production technology in which output is a homogeneous good
that can be consumed, C(t), or invested, I (t). Investment is used to create new units of
physical capital, K (t), or to replace old, depreciated capital. One way to think about the
one-sector technology is to draw an analogy with farm animals, which can be eaten or used
as inputs to produce more farm animals. The literature on economic growth has used more
inventive examples—with such terms as shmoos, putty, or ectoplasm—to reflect the easy
transmutation of capital goods into consumables, and vice versa.

In this chapter we imagine that the economy is closed: households cannot buy foreign
goods or assets and cannot sell home goods or assets abroad. (Chapter 3 allows for an open
economy.) We also start with the assumption that there are no government purchases of
goods and services. (Chapter 4 deals with government purchases.) In a closed economy
with no public spending, all output is devoted to consumption or gross investment,4 so
Y (t) = C(t) + I (t). By subtracting C(t) from both sides and realizing that output equals
income, we get that, in this simple economy, the amount saved, S(t) ≡ Y (t)− C(t), equals
the amount invested, I (t).

Let s(·) be the fraction of output that is saved—that is, the saving rate—so that 1 − s(·)
is the fraction of output that is consumed. Rational households choose the saving rate by
comparing the costs and benefits of consuming today rather than tomorrow; this comparison
involves preference parameters and variables that describe the state of the economy, such
as the level of wealth and the interest rate. In chapter 2, where we model this decision
explicitly, we find that s(·) is a complicated function of the state of the economy, a function
for which there are typically no closed-form solutions. To facilitate the analysis in this initial
chapter, we assume that s(·) is given exogenously. The simplest function, the one assumed
by Solow (1956) and Swan (1956) in their classic articles, is a constant, 0 ≤ s(·) = s ≤ 1.
We use this constant-saving-rate specification in this chapter because it brings out a large
number of results in a clear way. Given that saving must equal investment, S(t) = I (t), it
follows that the saving rate equals the investment rate. In other words, the saving rate of a
closed economy represents the fraction of GDP that an economy devotes to investment.

We assume that capital is a homogeneous good that depreciates at the constant rate δ > 0;
that is, at each point in time, a constant fraction of the capital stock wears out and, hence,
can no longer be used for production. Before evaporating, however, all units of capital are
assumed to be equally productive, regardless of when they were originally produced.

4. In an open economy with government spending, the condition is

Y (t) − r · D(t) = C(t) + I (t) + G(t) + N X (t)

where D(t) is international debt, r is the international real interest rate, G(t) is public spending, and N X (t) is
net exports. In this chapter we assume that there is no public spending, so that G(t) = 0, and that the economy is
closed, so that D(t) = N X (t) = 0.
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The net increase in the stock of physical capital at a point in time equals gross investment
less depreciation:

K̇ (t) = I (t) − δK (t) = s · F[K (t), L(t), T (t)] − δK (t) (1.2)

where a dot over a variable, such as K̇ (t), denotes differentiation with respect to time, K̇ (t) ≡
∂K (t)/∂t (a convention that we use throughout the book) and 0 ≤ s ≤ 1. Equation (1.2)
determines the dynamics of K for a given technology and labor.

The labor input, L , varies over time because of population growth, changes in participation
rates, shifts in the amount of time worked by the typical worker, and improvements in the
skills and quality of workers. In this chapter, we simplify by assuming that everybody
works the same amount of time and that everyone has the same constant skill, which we
normalize to one. Thus we identify the labor input with the total population. We analyze
the accumulation of skills or human capital in chapter 5 and the choice between labor and
leisure in chapter 9.

The growth of population reflects the behavior of fertility, mortality, and migration, which
we study in chapter 9. In this chapter, we simplify by assuming that population grows at
a constant, exogenous rate, L̇/L = n ≥ 0, without using any resources. If we normalize
the number of people at time 0 to 1 and the work intensity per person also to 1, then the
population and labor force at time t are equal to

L(t) = ent (1.3)

To highlight the role of capital accumulation, we start with the assumption that the level
of technology, T (t), is a constant. This assumption will be relaxed later.

If L(t) is given from equation (1.3) and technological progress is absent, then equa-
tion (1.2) determines the time paths of capital, K (t), and output, Y (t). Once we know how
capital or GDP changes over time, the growth rates of these variables are also determined.
In the next sections, we show that this behavior depends crucially on the properties of the
production function, F(·).

1.2 The Neoclassical Model of Solow and Swan

1.2.1 The Neoclassical Production Function

The process of economic growth depends on the shape of the production function. We
initially consider the neoclassical production function. We say that a production function,
F(K , L , T ), is neoclassical if the following properties are satisfied:5

5. We ignore time subscripts to simplify notation.
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1. Constant returns to scale. The function F(·) exhibits constant returns to scale. That
is, if we multiply capital and labor by the same positive constant, λ, we get λ the amount
of output:

F(λK , λL , T ) = λ · F(K , L , T ) for all λ > 0 (1.4)

This property is also known as homogeneity of degree one in K and L. It is important to
note that the definition of scale includes only the two rival inputs, capital and labor. In other
words, we did not define constant returns to scale as F(λK , λL , λT ) = λ · F(K , L , T ).

To get some intuition on why our assumption makes economic sense, we can use the
following replication argument. Imagine that plant 1 produces Y units of output using the
production function F and combining K and L units of capital and labor, respectively, and
using formula T . It makes sense to assume that if we create an identical plant somewhere
else (that is, if we replicate the plant), we should be able to produce the same amount of
output. In order to replicate the plant, however, we need a new set of machines and workers,
but we can use the same formula in both plants. The reason is that, while capital and labor are
rival goods, the formula is a nonrival good and can be used in both plants at the same time.
Hence, because technology is a nonrival input, our definition of returns to scale makes sense.

2. Positive and diminishing returns to private inputs. For all K > 0 and L > 0, F(·)
exhibits positive and diminishing marginal products with respect to each input:

∂ F

∂K
> 0,

∂2 F

∂K 2
< 0

∂ F

∂L
> 0,

∂2 F

∂L2
< 0

(1.5)

Thus, the neoclassical technology assumes that, holding constant the levels of technology
and labor, each additional unit of capital delivers positive additions to output, but these
additions decrease as the number of machines rises. The same property is assumed for labor.

3. Inada conditions. The third defining characteristic of the neoclassical production
function is that the marginal product of capital (or labor) approaches infinity as capital
(or labor) goes to 0 and approaches 0 as capital (or labor) goes to infinity:
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(
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)
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(
∂ F

∂L

)
= 0

(1.6)

These last properties are called Inada conditions, following Inada (1963).
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4. Essentiality. Some economists add the assumption of essentiality to the definition of a
neoclassical production function. An input is essential if a strictly positive amount is needed
to produce a positive amount of output. We show in the appendix that the three neoclassical
properties in equations (1.4)–(1.6) imply that each input is essential for production, that is,
F(0, L) = F(K , 0) = 0. The three properties of the neoclassical production function also
imply that output goes to infinity as either input goes to infinity, another property that is
proven in the appendix.

Per Capita Variables When we say that a country is rich or poor, we tend to think in
terms of output or consumption per person. In other words, we do not think that India is
richer than the Netherlands, even though India produces a lot more GDP, because, once we
divide by the number of citizens, the amount of income each person gets on average is a lot
smaller in India than in the Netherlands. To capture this property, we construct the model
in per capita terms and study primarily the dynamic behavior of the per capita quantities of
GDP, consumption, and capital.

Since the definition of constant returns to scale applies to all values of λ, it also applies
to λ = 1/L . Hence, output can be written as

Y = F(K , L , T ) = L · F(K/L , 1, T ) = L · f (k) (1.7)

where k ≡ K/L is capital per worker, y ≡ Y/L is output per worker, and the function f (k) is
defined to equal F(k, 1, T ).6 This result means that the production function can be expressed
in intensive form (that is, in per worker or per capita form) as

y = f (k) (1.8)

In other words, the production function exhibits no “scale effects”: production per person is
determined by the amount of physical capital each person has access to and, holding constant
k, having more or fewer workers does not affect total output per person. Consequently, very
large economies, such as China or India, can have less output or income per person than
very small economies, such as Switzerland or the Netherlands.

We can differentiate this condition Y = L · f (k) with respect to K , for fixed L , and then
with respect to L , for fixed K , to verify that the marginal products of the factor inputs are
given by

∂Y/∂K = f ′(k) (1.9)

∂Y/∂L = f (k) − k · f ′(k) (1.10)

6. Since T is assumed to be constant, it is one of the parameters implicit in the definition of f (k).
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Figure 1.1
The Solow–Swan model. The curve for gross investment, s · f (k), is proportional to the production function, f (k).
Consumption per person equals the vertical distance between f (k) and s · f (k). Effective depreciation (for k) is
given by (n + δ) · k, a straight line from the origin. The change in k is given by the vertical distance between
s · f (k) and (n + δ) · k. The steady-state level of capital, k∗, is determined at the intersection of the s · f (k) curve
with the (n + δ) · k line.

The Inada conditions imply limk→0[ f ′(k)] = ∞ and limk→∞[ f ′(k)] = 0. Figure 1.1 shows
the neoclassical production in per capita terms: it goes through zero; it is vertical at zero,
upward sloping, and concave; and its slope asymptotes to zero as k goes to infinity.

A Cobb–Douglas Example One simple production function that is often thought to pro-
vide a reasonable description of actual economies is the Cobb–Douglas function,7

Y = AK α L1−α (1.11)

where A > 0 is the level of the technology and α is a constant with 0 < α < 1. The
Cobb–Douglas function can be written in intensive form as

y = Akα (1.12)

7. Douglas is Paul H. Douglas, who was a labor economist at the University of Chicago and later a U.S. Senator
from Illinois. Cobb is Charles W. Cobb, who was a mathematician at Amherst. Douglas (1972, pp. 46–47) says that
he consulted with Cobb in 1927 on how to come up with a production function that fit his empirical equations for
production, employment, and capital stock in U.S. manufacturing. Interestingly, Douglas says that the functional
form was developed earlier by Philip Wicksteed, thus providing another example of Stigler’s Law (whereby nothing
is named after the person who invented it).
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Note that f ′(k) = Aαkα−1 > 0, f ′′(k) = −Aα(1 − α)kα−2 < 0, limk→∞ f ′(k) = 0, and
limk→0 f ′(k) = ∞. Thus, the Cobb–Douglas form satisfies the properties of a neoclassical
production function.

The key property of the Cobb–Douglas production function is the behavior of factor
income shares. In a competitive economy, as discussed in section 1.2.3, capital and labor
are each paid their marginal products; that is, the marginal product of capital equals the
rental price R, and the marginal product of labor equals the wage rate w. Hence, each unit of
capital is paid R = f ′(k) = αAkα−1, and each unit of labor is paid w = f (k) − k · f ′(k) =
(1 − α) · Akα . The capital share of income is then Rk/ f (k) = α, and the labor share is
w/ f (k) = 1 − a. Thus, in a competitive setting, the factor income shares are constant—
independent of k—when the production function is Cobb–Douglas.

1.2.2 The Fundamental Equation of the Solow–Swan Model

We now analyze the dynamic behavior of the economy described by the neoclassical pro-
duction function. The resulting growth model is called the Solow–Swan model, after the
important contributions of Solow (1956) and Swan (1956).

The change in the capital stock over time is given by equation (1.2). If we divide both
sides of this equation by L , we get

K̇/L = s · f (k) − δk

The right-hand side contains per capita variables only, but the left-hand side does not. Hence,
it is not an ordinary differential equation that can be easily solved. In order to transform it
into a differential equation in terms of k, we can take the derivative of k ≡ K/L with respect
to time to get

k̇ ≡ d(K/L)

dt
= K̇/L − nk

where n = L̇/L . If we substitute this result into the expression for K̇/L , we can rearrange
terms to get

k̇ = s · f (k) − (n + δ) · k (1.13)

Equation (1.13) is the fundamental differential equation of the Solow–Swan model. This
nonlinear equation depends only on k.

The term n +δ on the right-hand side of equation (1.13) can be thought of as the effective
depreciation rate for the capital-labor ratio, k ≡ K/L . If the saving rate, s, were 0, capital
per person would decline partly due to depreciation of capital at the rate δ and partly due
to the increase in the number of persons at the rate n.
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Figure 1.1 shows the workings of equation (1.13). The upper curve is the production func-
tion, f (k). The term (n + δ) · k, which appears in equation (1.13), is drawn in figure 1.1 as a
straight line from the origin with the positive slope n + δ. The term s · f (k) in equation (1.13)
looks like the production function except for the multiplication by the positive fraction s.
Note from the figure that the s · f (k) curve starts from the origin [because f (0) = 0], has
a positive slope [because f ′(k) > 0], and gets flatter as k rises [because f ′′(k) < 0]. The
Inada conditions imply that the s · f (k) curve is vertical at k = 0 and becomes flat as k goes
to infinity. These properties imply that, other than the origin, the curve s · f (k) and the line
(n + δ) · k cross once and only once.

Consider an economy with the initial capital stock per person k(0) > 0. Figure 1.1 shows
that gross investment per person equals the height of the s · f (k) curve at this point. Con-
sumption per person equals the vertical difference at this point between the f (k) and s · f (k)

curves.

1.2.3 Markets

In this section we show that the fundamental equation of the Solow–Swan model can be
derived in a framework that explicitly incorporates markets. Instead of owning the tech-
nology and keeping the output produced with it, we assume that households own financial
assets and labor. Assets deliver a rate of return r(t), and labor is paid the wage rate w(t).
The total income received by households is, therefore, the sum of asset and labor income,
r(t) · (assets) + w(t) · L(t). Households use the income that they do not consume to accu-
mulate more assets

d(assets)/dt = [r · (assets) + w · L] − C (1.14)

where, again, time subscripts have been omitted to simplify notation. Divide both sides of
equation (1.14) by L , define assets per person as a, and take the derivative of a with respect
to time, ȧ = (1/L) · d(assets)/dt −na, to get that the change in assets per person is given by

ȧ = (r · a + w) − c − na (1.15)

Firms hire labor and capital and use these two inputs with the production technology in
equation (1.1) to produce output, which they sell at unit price. We think of firms as renting
the services of capital from the households that own it. (None of the results would change
if the firms owned the capital, and the households owned shares of stock in the firms.)
Hence, the firms’ costs of capital are the rental payments, which are proportional to K . This
specification assumes that capital services can be increased or decreased without incurring
any additional expenses, such as costs for installing machines.
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Let R be the rental price for a unit of capital services, and assume again that capital stocks
depreciate at the constant rate δ ≥ 0. The net rate of return to a household that owns a unit
of capital is then R − δ. Households also receive the interest rate r on funds lent to other
households. In the absence of uncertainty, capital and loans are perfect substitutes as stores
of value and, as a result, they must deliver the same return, so r = R − δ or, equivalently,
R = r + δ.

The representative firm’s flow of net receipts or profit at any point in time is given by

π = F(K , L , T ) − (r + δ) · K − wL (1.16)

that is, gross receipts from the sale of output, F(K , L , T ), less the factor payments, which
are rentals to capital, (r + δ) · K , and wages to workers, wL . Technology is assumed to
be available for free, so no payment is needed to rent the formula used in the process
of production. We assume that the firm seeks to maximize the present value of profits.
Because the firm rents capital and labor services and has no adjustment costs, there are
no intertemporal elements in the firm’s maximization problem.8 (The problem becomes
intertemporal when we introduce adjustment costs for capital in chapter 3.)

Consider a firm of arbitrary scale, say with level of labor input L . Because the produc-
tion function exhibits constant returns to scale, the profit for this firm, which is given by
equation (1.16), can be written as

π = L · [ f (k) − (r + δ) · k − w] (1.17)

A competitive firm, which takes r and w as given, maximizes profit for given L by setting

f ′(k) = r + δ (1.18)

That is, the firm chooses the ratio of capital to labor to equate the marginal product of capital
to the rental price.

The resulting level of profit is positive, zero, or negative depending on the value of w.
If profit is positive, the firm could attain infinite profits by choosing an infinite scale. If
profit is negative, the firm would contract its scale to zero. Therefore, in a full market
equilibrium, w must be such that profit equals zero; that is, the total of the factor payments,
(r + δ) · K + wL , equals the gross receipts in equation (1.17). In this case, the firm is
indifferent about its scale.

8. In chapter 2 we show that dynamic firms would maximize the present discounted value of all future profits,
which is given if r is constant by

∫ ∞
0

L · [ f (k) − (r + δ) · k − w] · e−r t dt . Because the problem does not involve
any dynamic constraint, the firm maximizes static profits at all points in time. In fact, this dynamic problem is
nothing but a sequence of static problems.



Growth Models with Exogenous Saving Rates 33

For profit to be zero, the wage rate has to equal the marginal product of labor correspond-
ing to the value of k that satisfies equation (1.18):

[ f (k) − k · f ′(k)] = w (1.19)

It can be readily verified from substitution of equations (1.18) and (1.19) into equation (1.17)
that the resulting level of profit equals zero for any value of L . Equivalently, if the factor
prices equal the respective marginal products, the factor payments just exhaust the total
output (a result that corresponds in mathematics to Euler’s theorem).9

The model does not determine the scale of an individual, competitive firm that operates
with a constant-returns-to-scale production function. The model will, however, determine
the capital/labor ratio k, as well as the aggregate level of production, because the aggregate
labor force is determined by equation (1.3).

The next step is to define the equilibrium of the economy. In a closed economy, the only
asset in positive net supply is capital, because all the borrowing and lending must cancel
within the economy. Hence, equilibrium in the asset market requires a = k. If we substitute
this equality, as well as r = f ′(k) − δ and w = f (k) − k · f ′(k), into equation (1.15), we get

k̇ = f (k) − c − (n + δ) · k

Finally, if we follow Solow–Swan in making the assumption that households consume a
constant fraction of their gross income, c = (1 − s) · f (k), we get

k̇ = s · f (k) − (n + δ) · k

which is the same fundamental equation of the Solow–Swan model that we got in equa-
tion (1.13). Hence, introducing competitive markets into the Solow–Swan model does not
change any of the main results.10

1.2.4 The Steady State

We now have the necessary tools to analyze the behavior of the model over time. We first
consider the long run or steady state, and then we describe the short run or transitional
dynamics. We define a steady state as a situation in which the various quantities grow at

9. Euler’s theorem says that if a function F(K , L) is homogeneous of degree one in K and L , then F(K , L) =
FK · K + FL · L . This result can be proven using the equations F(K , L) = L · f (k), FK = f ′(k), and FL = f (k)−
k · f ′(k).

10. Note that, in the previous section and here, we assumed that each person saved a constant fraction of his or her
gross income. We could have assumed instead that each person saved a constant fraction of his or her net income,
f (k) − δk, which in the market setup equals ra + w. In this case, the fundamental equation of the Solow–Swan
model would be k̇ = s · f (k) − (sδ + n) · k. Again, the same equation applies to the household-producer and
market setups.
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constant (perhaps zero) rates.11 In the Solow–Swan model, the steady state corresponds to
k̇ = 0 in equation (1.13),12 that is, to an intersection of the s · f (k) curve with the (n +δ) · k
line in figure 1.1.13 The corresponding value of k is denoted k∗. (We focus here on the
intersection at k > 0 and neglect the one at k = 0.) Algebraically, k∗ satisfies the condition

s · f (k∗) = (n + δ) · k∗ (1.20)

Since k is constant in the steady state, y and c are also constant at the values y∗ = f (k∗)
and c∗ = (1 − s) · f (k∗), respectively. Hence, in the neoclassical model, the per capita
quantities k, y, and c do not grow in the steady state. The constancy of the per capita
magnitudes means that the levels of variables—K , Y , and C—grow in the steady state at
the rate of population growth, n.

Once-and-for-all changes in the level of the technology will be represented by shifts of
the production function, f ( · ). Shifts in the production function, in the saving rate s, in the
rate of population growth n, and in the depreciation rate δ, all have effects on the per capita
levels of the various quantities in the steady state. In figure 1.1, for example, a proportional
upward shift of the production function or an increase in s shifts the s · f (k) curve upward
and leads thereby to an increase in k∗. An increase in n or δ moves the (n + δ) · k line
upward and leads to a decrease in k∗.

It is important to note that a one-time change in the level of technology, the saving rate,
the rate of population growth, and the depreciation rate do not affect the steady-state growth
rates of per capita output, capital, and consumption, which are all still equal to zero. For this
reason, the model as presently specified will not provide explanations of the determinants
of long-run per capita growth.

1.2.5 The Golden Rule of Capital Accumulation and Dynamic Inefficiency

For a given level of A and given values of n and δ, there is a unique steady-state value k∗ > 0
for each value of the saving rate s. Denote this relation by k∗(s), with dk∗(s)/ds > 0. The
steady-state level of per capita consumption is c∗ = (1 − s) · f [k∗(s)]. We know from

11. Some economists use the expression balanced growth path to describe the state in which all variables grow at
a constant rate and use steady state to describe the particular case when the growth rate is zero.

12. We can show that k must be constant in the steady state. Divide both sides of equation (1.13) by k to get
k̇/k = s · f (k)/k − (n + δ). The left-hand side is constant, by definition, in the steady state. Since s, n, and δ are
all constants, it follows that f (k)/k must be constant in the steady state. The time derivative of f (k)/k equals
−{[ f (k) − k f ′(k)]/k} · (k̇/k). The expression f (k) − k f ′(k) equals the marginal product of labor (as shown by
equation [1.19]) and is positive. Therefore, as long as k is finite, k̇/k must equal 0 in the steady state.

13. The intersection in the range of positive k exists and is unique because f (0) = 0, n + δ < limk→0[s · f ′(k)] =
∞, n + δ > limk→∞[s · f ′(k)] = 0, and f ′′(k) < 0.
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cgold
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s

c*

Figure 1.2
The golden rule of capital accumulation. The vertical axis shows the steady-state level of consumption per
person that corresponds to each saving rate. The saving rate that maximizes steady-state consumption per person
is called the golden-rule saving rate and is denoted by sGold.

equation (1.20) that s · f (k∗) = (n + δ) · k∗; hence, we can write an expression for c∗ as

c∗(s) = f [k∗(s)] − (n + δ) · k∗(s) (1.21)

Figure 1.2 shows the relation between c∗ and s that is implied by equation (1.21). The
quantity c∗ is increasing in s for low levels of s and decreasing in s for high values of s.
The quantity c∗ attains its maximum when the derivative vanishes, that is, when [ f ′(k∗) −
(n + δ)] · dk∗/ds = 0. Since dk∗/ds > 0, the term in brackets must equal 0. If we denote
the value of k∗ that corresponds to the maximum of c∗ by kgold, then the condition that
determines kgold is

f ′(kgold) = n + δ (1.22)

The corresponding saving rate can be denoted as sgold, and the associated level of steady-state
per capita consumption is given by cgold = f (kgold) − (n + δ) · kgold.

The condition in equation (1.22) is called the golden rule of capital accumulation (see
Phelps, 1966). The source of this name is the biblical Golden Rule, which states, “Do unto
others as you would have others do unto you.” In economic terms, the golden-rule result
can be interpreted as “If we provide the same amount of consumption to members of each
current and future generation—that is, if we do not provide less to future generations than
to ourselves—then the maximum amount of per capita consumption is cgold.”

Figure 1.3 illustrates the workings of the golden rule. The figure considers three possible
saving rates, s1, sgold, and s2, where s1 < sgold < s2. Consumption per person, c, in each
case equals the vertical distance between the production function, f (k), and the appropriate
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Figure 1.3
The golden rule and dynamic inefficiency. If the saving rate is above the golden rule (s2 > sgold in the figure),
a reduction in s increases steady-state consumption per person and also raises consumption per person along the
transition. Since c increases at all points in time, a saving rate above the golden rule is dynamically inefficient. If the
saving rate is below the golden rule (s1 < sgold in the figure), an increase in s increases steady-state consumption
per person but lowers consumption per person along the transition. The desirability of such a change depends on
how households trade off current consumption against future consumption.

s · f (k) curve. For each s, the steady-state value k∗ corresponds to the intersection between
the s · f (k) curve and the (n + δ) · k line. The steady-state per capita consumption, c∗, is
maximized when k∗ = kgold because the tangent to the production function at this point
parallels the (n + δ) · k line. The saving rate that yields k∗ = kgold is the one that makes the
s · f (k) curve cross the (n + δ) · k line at the value kgold. Since s1 < sgold < s2, we also see
in the figure that k∗

1 < kgold < k∗
2 .

An important question is whether some saving rates are better than others. We will be
unable to select the best saving rate (or, indeed, to determine whether a constant saving rate
is desirable) until we specify a detailed objective function, as we do in the next chapter.
We can, however, argue in the present context that a saving rate that exceeds sgold forever
is inefficient because higher quantities of per capita consumption could be obtained at all
points in time by reducing the saving rate.

Consider an economy, such as the one described by the saving rate s2 in figure 1.3, for
which s2 > sgold, so that k∗

2 > k∗
gold and c∗

2 < cgold. Imagine that, starting from the steady
state, the saving rate is reduced permanently to sgold. Figure 1.3 shows that per capita
consumption, c—given by the vertical distance between the f (k) and sgold · f (k) curves—
initially increases by a discrete amount. Then the level of c falls monotonically during the
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transition14 toward its new steady-state value, cgold. Since c∗
2 < cgold, we conclude that c

exceeds its previous value, c∗
2, at all transitional dates, as well as in the new steady state.

Hence, when s > sgold, the economy is oversaving in the sense that per capita consumption
at all points in time could be raised by lowering the saving rate. An economy that oversaves
is said to be dynamically inefficient, because the path of per capita consumption lies below
feasible alternative paths at all points in time.

If s < sgold—as in the case of the saving rate s1 in figure 1.3—then the steady-state amount
of per capita consumption can be increased by raising the saving rate. This rise in the saving
rate would, however, reduce c currently and during part of the transition period. The outcome
will therefore be viewed as good or bad depending on how households weigh today’s
consumption against the path of future consumption. We cannot judge the desirability of an
increase in the saving rate in this situation until we make specific assumptions about how
agents discount the future. We proceed along these lines in the next chapter.

1.2.6 Transitional Dynamics

The long-run growth rates in the Solow–Swan model are determined entirely by exoge-
nous elements—in the steady state, the per capita quantities k, y, and c do not grow and
the aggregate variables K , Y , and C grow at the exogenous rate of population growth n.
Hence, the main substantive conclusions about the long run are that steady-state growth
rates are independent of the saving rate or the level of technology. The model does, however,
have more interesting implications about transitional dynamics. This transition shows how
an economy’s per capita income converges toward its own steady-state value and to the per
capita incomes of other economies.

Division of both sides of equation (1.13) by k implies that the growth rate of k is given by

γk ≡ k̇/k = s · f (k)/k − (n + δ) (1.23)

where we have used the notation γz to represent the growth rate of variable z, notation that
we will use throughout the book. Note that, at all points in time, the growth rate of the level
of a variable equals the per capita growth rate plus the exogenous rate of population growth
n, for example,

K̇/K = k̇/k + n

For subsequent purposes, we shall find it convenient to focus on the growth rate of k, as
given in equation (1.23).

14. In the next subsection we analyze the transitional dynamics of the model.
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Figure 1.4
Dynamics of the Solow–Swan model. The growth rate of k is given by the vertical distance between the saving
curve, s · f (k)/k, and the effective depreciation line, n + δ. If k < k∗, the growth rate of k is positive, and k
increases toward k∗. If k > k∗, the growth rate is negative, and k falls toward k∗. Thus, the steady-state capital
per person, k∗, is stable. Note that, along a transition from an initially low capital per person, the growth rate of k
declines monotonically toward zero. The arrows on the horizontal axis indicate the direction of movement of k
over time.

Equation (1.23) says that k̇/k equals the difference between two terms. The first term,
s · f (k)/k, we call the saving curve and the second term, (n + δ), the depreciation curve.
We plot the two curves versus k in figure 1.4. The saving curve is downward sloping;15 it
asymptotes to infinity at k = 0 and approaches 0 as k tends to infinity.16 The depreciation
curve is a horizontal line at n + δ. The vertical distance between the saving curve and
the depreciation line equals the growth rate of capital per person (from equation [1.23]),
and the crossing point corresponds to the steady state. Since n + δ > 0 and s · f (k)/k falls
monotonically from infinity to 0, the saving curve and the depreciation line intersect once
and only once. Hence, the steady-state capital-labor ratio k∗ > 0 exists and is unique.

Figure 1.4 shows that, to the left of the steady state, the s · f (k)/k curve lies above n + δ.
Hence, the growth rate of k is positive, and k rises over time. As k increases, k̇/k declines
and approaches 0 as k approaches k∗. (The saving curve gets closer to the depreciation

15. The derivative of f (k)/k with respect to k equals −[ f (k)/k − f ′(k)]/k. The expression in brackets equals
the marginal product of labor, which is positive. Hence, the derivative is negative.

16. Note that limk→0[s · f (k)/k] = 0/0. We can apply l’Hôpital’s rule to get limk→0[s · f (k)/k] =
limk→0[s · f ′(k)] = ∞, from the Inada condition. Similarly, the Inada condition limk→∞[ f ′(k)] = 0 implies
limk→∞[s · f (k)/k] = 0.
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line as k gets closer to k∗; hence, k̇/k falls.) The economy tends asymptotically toward the
steady state in which k—and, hence, y and c—do not change.

The reason behind the declining growth rates along the transition is the existence of di-
minishing returns to capital: when k is relatively low, the average product of capital, f (k)/k,
is relatively high. By assumption, households save and invest a constant fraction, s, of this
product. Hence, when k is relatively low, the gross investment per unit of capital, s · f (k)/k,
is relatively high. Capital per worker, k, effectively depreciates at the constant rate n + δ.
Consequently, the growth rate, k̇/k, is also relatively high.

An analogous argument demonstrates that if the economy starts above the steady state,
k(0) > k∗, then the growth rate of k is negative, and k falls over time. (Note from figure 1.4
that, for k > k∗, the n + δ line lies above the s · f (k)/k curve, and, hence, k̇/k < 0.) The
growth rate increases and approaches 0 as k approaches k∗. Thus, the system is globally
stable: for any initial value, k(0) > 0, the economy converges to its unique steady state,
k∗ > 0.

We can also study the behavior of output along the transition. The growth rate of output
per capita is given by

ẏ/y = f ′(k) · k̇/ f (k) = [k · f ′(k)/ f (k)] · (k̇/k) (1.24)

The expression in brackets on the far right is the capital share, that is, the share of the rental
income on capital in total income.17

Equation (1.24) shows that the relation between ẏ/y and k̇/k depends on the behavior
of the capital share. In the Cobb–Douglas case (equation [1.11]), the capital share is the
constant α, and ẏ/y is the fraction α of k̇/k. Hence, the behavior of ẏ/y mimics that of k̇/k.

More generally, we can substitute for k̇/k from equation (1.23) into equation (1.24) to
get

ẏ/y = s · f ′(k) − (n + δ) · Sh(k) (1.25)

where Sh(k) ≡ k · f ′(k)/ f (k) is the capital share. If we differentiate with respect to k and
combine terms, we get

∂(ẏ/y)/∂k =
[

f ′′(k) · k

f (k)

]
· (k̇/k) − (n + δ) f ′(k)

f (k)
· [1 − Sh(k)]

Since 0 < Sh(k) < 1, the last term on the right-hand side is negative. If k̇/k ≥ 0, the first term

17. We showed before that, in a competitive market equilibrium, each unit of capital receives a rental equal to its
marginal product, f ′(k). Hence, k · f ′(k) is the income per person earned by owners of capital, and k · f ′(k)/ f (k)—
the term in brackets—is the share of this income in total income per person.
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on the right-hand side is nonpositive, and, hence, ∂(ẏ/y)/∂k < 0. Thus, ẏ/y necessarily
falls as k rises (and therefore as y rises) in the region in which k̇/k ≥ 0, that is, if k ≤ k∗. If
k̇/k < 0 (k > k∗), the sign of ∂(ẏ/y)/∂k is ambiguous for a general form of the production
function, f (k). However, if the economy is close to its steady state, the magnitude of k̇/k
will be small, and ∂(ẏ/y)/∂k < 0 will surely hold even if k > k∗.

In the Solow–Swan model, which assumes a constant saving rate, the level of consumption
per person is given by c = (1 − s) · y. Hence, the growth rates of consumption and income
per capita are identical at all points in time, ċ/c = ẏ/y. Consumption, therefore, exhibits
the same dynamics as output.

1.2.7 Behavior of Input Prices During the Transition

We showed before that the Solow–Swan framework is consistent with a competitive market
economy in which firms maximize profits and households choose to save a constant fraction
of gross income. It is interesting to study the behavior of wages and interest rates along
the transition as the capital stock increases toward the steady state. We showed that the
interest rate equals the marginal product of capital minus the constant depreciation rate,
r = f ′(k) − δ. Since the interest rate depends on the marginal product of capital, which
depends on the capital stock per person, the interest rate moves during the transition as
capital changes. The neoclassical production function exhibits diminishing returns to capital,
f ′′(k) < 0, so the marginal product of capital declines as capital grows. It follows that the
interest rate declines monotonically toward its steady-state value, given by r∗ = f ′(k∗)−δ.

We also showed that the competitive wage rate was given by w = f (k)−k · f ′(k). Again,
the wage rate moves as capital increases. To see the behavior of the wage rate, we can take
the derivative of w with respect to k to get

∂w

∂k
= f ′(k) − f ′(k) − k · f ′′(k) = −k · f ′′(k) > 0

The wage rate, therefore, increases monotonically as the capital stock grows. In the steady
state, the wage rate is given by w∗ = f (k∗) − k∗ · f ′(k∗).

The behavior of wages and interest rates can be seen graphically in figure 1.5. The curve
shown in the figure is again the production function, f (k). The income per worker received
by individual households is given by

y = w + Rk (1.26)

where R = r + δ is the rental price of capital. Once the interest rate and the wage rate are
determined, y is a linear function of k, with intercept w and slope R.
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Figure 1.5
Input prices during the transition. At k0, the straight line that is tangent to the production function has a slope
that equals the rental price R0 and an intercept that equals the wage rate w0. As k rises toward k1, the rental price
falls toward R1, and the wage rate rises toward w1.

Of course, R depends on k through the marginal productivity condition, f ′(k) = R = r + δ.
Therefore, R, the slope of the income function in equation (1.26), must equal the slope of
f (k) at the specified value of k. The figure shows two values, k0 and k1. The income func-
tions at these two values are given by straight lines that are tangent to f (k) at k0 and k1,
respectively. As k rises during the transition, the figure shows that the slope of the tangent
straight line declines from R0 to R1. The figure also shows that the intercept—which equals
w—rises from w0 to w1.

1.2.8 Policy Experiments

Suppose that the economy is initially in a steady-state position with the capital per person
equal to k∗

1 . Imagine that the saving rate rises permanently from s1 to a higher value s2,
possibly because households change their behavior or the government introduces some
policy that raises the saving rate. Figure 1.6 shows that the s · f (k)/k schedule shifts to
the right. Hence, the intersection with the n + δ line also shifts to the right, and the new
steady-state capital stock, k∗

2 , exceeds k∗
1 .

How does the economy adjust from k∗
1 to k∗

2? At k = k∗
1 , the gap between the s1 · f (k)/k

curve and the n + δ line is positive; that is, saving is more than enough to generate an
increase in k. As k increases, its growth rate falls and approaches 0 as k approaches k∗

2 .
The result, therefore, is that a permanent increase in the saving rate generates temporarily
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n � �
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s1 � f (k)�k

s2 � f (k)�k
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Figure 1.6
Effects from an increase in the saving rate. Starting from the steady-state capital per person k∗

1 , an increase
in s from s1 to s2 shifts the s · f (k)/k curve to the right. At the old steady state, investment exceeds effective
depreciation, and the growth rate of k becomes positive. Capital per person rises until the economy approaches its
new steady state at k∗

2 > k∗
1 .

positive per capita growth rates. In the long run, the levels of k and y are permanently higher,
but the per capita growth rates return to zero.

The positive transitional growth rates may suggest that the economy could grow forever
by raising the saving rate over and over again. One problem with this line of reasoning
is that the saving rate is a fraction, a number between zero and one. Since people cannot
save more than everything, the saving rate is bounded by one. Notice that, even if people
could save all their income, the saving curve would still cross the depreciation line and,
as a result, long-run per capita growth would stop.18 The reason is that the workings of
diminishing returns to capital eventually bring the economy back to the zero-growth steady
state. Therefore, we can now answer the question that motivated the beginning of this
chapter: “Can income per capita grow forever by simply saving and investing physical
capital?” If the production function is neoclassical, the answer is “no.”

We can also assess permanent changes in the growth rate of population, n. These changes
could reflect shifts of household behavior or changes in government policies that influence
fertility. A decrease in n shifts the depreciation line downward, so that the steady-state level
of capital per worker would be larger. However, the long-run growth rate of capital per
person would remain at zero.

18. Before reaching s = 1, the economy would reach sgold, so that further increases in saving rates would put the
economy in the dynamically inefficient region.
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A permanent, once-and-for-all improvement in the level of the technology has similar,
temporary effects on the per capita growth rates. If the production function f (k) shifts
upward in a proportional manner, then the saving curve shifts upward, just as in figure 1.6.
Hence, k̇/k again becomes positive temporarily. In the long run, the permanent improvement
in technology generates higher levels of k and y but no changes in the per capita growth
rates. The key difference between improvements in knowledge and increases in the saving
rate is that improvements in knowledge are not bounded. That is, the production function
can shift over and over again because, in principle, there are no limits to human knowledge.
The saving rate, however, is physically bounded by one. It follows that, if we want to
generate growth in long-run per capita income and consumption within the neoclassical
framework, growth must come from technological progress rather than from physical capital
accumulation.

We observed before (note 3) that differences in government policies and institutions can
amount to variations in the level of the technology. For example, high tax rates on capital
income, failures to protect property rights, and distorting government regulations can be
economically equivalent to a poorer level of technology. However, it is probably infeasible
to achieve perpetual growth through an unending sequence of improvements in government
policies and institutions. Therefore, in the long run, sustained growth would still depend on
technological progress.

1.2.9 An Example: Cobb–Douglas Technology

We can illustrate the results for the case of a Cobb–Douglas production function (equa-
tion [1.11]). The steady-state capital-labor ratio is determined from equation (1.20) as

k∗ = [s A/(n + δ)]1/(1−α) (1.27)

Note that, as we saw graphically for a more general production function f (k), k∗ rises with
the saving rate s and the level of technology A, and falls with the rate of population growth
n and the depreciation rate δ. The steady-state level of output per capita is given by

y∗ = A1/(1−α) · [s/(n + δ)]α/(1−α)

Thus y∗ is a positive function of s and A, and a negative function of n and δ.
Along the transition, the growth rate of k is given from equation (1.23) by

k̇/k = s Ak−(1−α) − (n + δ) (1.28)

If k(0) < k∗, then k̇/k in equation (1.28) is positive. This growth rate declines as k rises
and approaches 0 as k approaches k∗. Since equation (1.24) implies ẏ/y = α · (k̇/k), the
behavior of ẏ/y mimics that of k̇/k. In particular, the lower y(0), the higher ẏ/y.
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A Closed-Form Solution It is interesting to notice that, when the production function is
Cobb–Douglas and the saving rate is constant, it is possible to get a closed-form solution
for the exact time path of k. Equation (1.28) can be written as

k̇ · k−α + (n + δ) · k1−α = s A

If we define v ≡ k1−α , we can transform the equation to(
1

1 − α

)
· v̇ + (n + δ) · v = s A

which is a first-order, linear differential equation in v. The solution to this equation is

v ≡ k1−α = s A

(n + δ)
+

{
[k(0)]1−α − s A

(n + δ)

}
· e−(1−α) · (n+δ) · t

The last term is an exponential function with exponent equal to −(1 − α) · (n + δ). Hence,
the gap between k1−α and its steady-state value, s A/(n+δ), vanishes exactly at the constant
rate (1 − α) · (n + δ).

1.2.10 Absolute and Conditional Convergence

The fundamental equation of the Solow–Swan model (equation [1.23]) implies that the
derivative of k̇/k with respect to k is negative:

∂(k̇/k)/∂k = s · [ f ′(k) − f (k)/k]/k < 0

Other things equal, smaller values of k are associated with larger values of k̇/k. An important
question arises: does this result mean that economies with lower capital per person tend to
grow faster in per capita terms? In other words, does there tend to be convergence across
economies?

To answer these questions, consider a group of closed economies (say, isolated regions or
countries) that are structurally similar in the sense that they have the same values of the pa-
rameters s, n, and δ and also have the same production function f ( · ). Thus, the economies
have the same steady-state values k∗ and y∗. Imagine that the only difference among the
economies is the initial quantity of capital per person k(0). These differences in starting val-
ues could reflect past disturbances, such as wars or transitory shocks to production functions.
The model then implies that the less-advanced economies—with lower values of k(0) and
y(0)—have higher growth rates of k and, in the typical case, also higher growth rates of y.19

19. This conclusion is unambiguous if the production function is Cobb–Douglas, if k ≤ k∗, or if k is only a small
amount above k∗.
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Figure 1.4 distinguished two economies, one with the low initial value, k(0)poor, and the
other with the high initial value, k(0)rich. Since each economy has the same underlying
parameters, the dynamics of k are determined in each case by the same s · f (k)/k and n + δ

curves. Hence, the growth rate k̇/k is unambiguously higher for the economy with the lower
initial value, k(0)poor. This result implies a form of convergence: regions or countries with
lower starting values of the capital-labor ratio have higher per capita growth rates k̇/k, and
tend thereby to catch up or converge to those with higher capital-labor ratios.

The hypothesis that poor economies tend to grow faster per capita than rich ones—
without conditioning on any other characteristics of economies—is referred to as absolute
convergence. This hypothesis receives only mixed reviews when confronted with data on
groups of economies. We can look, for example, at the growth experience of a broad cross
section of countries over the period 1960 to 2000. Figure 1.7 plots the average annual growth
rate of real per capita GDP against the log of real per capita GDP at the start of the period,
1960, for 114 countries. The growth rates are actually positively correlated with the initial
position; that is, there is some tendency for the initially richer countries to grow faster in
per capita terms. Thus, this sample rejects the hypothesis of absolute convergence.
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Figure 1.7
Convergence of GDP across countries: Growth rate versus initial level of real per capita GDP for 114 coun-
tries. For a sample of 114 countries, the average growth rate of GDP per capita from 1960 to 2000 (shown on
the vertical axis) has little relation with the 1960 level of real per capita GDP (shown on the horizontal axis).
The relation is actually slightly positive. Hence, absolute convergence does not apply for a broad cross section of
countries.
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Figure 1.8
Convergence of GDP across OECD countries: Growth rate versus initial level of real per capita GDP for
18 OECD countries. If the sample is limited to 18 original OECD countries (from 1961), the average growth rate
of real per capita GDP from 1960 to 2000 is negatively related to the 1960 level of real per capita GDP. Hence,
absolute convergence applies for these OECD countries.

The hypothesis fares better if we examine a more homogeneous group of economies.
Figure 1.8 shows the results if we limit consideration to 18 relatively advanced countries that
were members of the Organization for Economic Cooperation and Development (OECD)
from the start of the organization in 1961.20 In this case, the initially poorer countries did
experience significantly higher per capita growth rates.

This type of result becomes more evident if we consider an even more homogeneous
group, the continental U.S. states, each viewed as a separate economy. Figure 1.9 plots the
growth rate of per capita personal income for each state from 1880 to 2000 against the log
of per capita personal income in 1880.21 Absolute convergence—the initially poorer states
growing faster in per capita terms—holds clearly in this diagram.

We can accommodate the theory to the empirical observations on convergence if we
allow for heterogeneity across economies, in particular, if we drop the assumption that all
economies have the same parameters, and therefore, the same steady-state positions. If the

20. Germany is omitted because of missing data, and Turkey is omitted because it was not an advanced economy
in 1960.

21. There are 47 observations on U.S. states or territories. Oklahoma is omitted because 1880 preceded the
Oklahoma land rush, and the data are consequently unavailable.
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Figure 1.9
Convergence of personal income across U.S. states: 1880 personal income and income growth from 1880
to 2000. The relation between the growth rate of per capita personal income from 1880 to 2000 (shown on the
vertical axis) is negatively related to the level of per capita income in 1880 (shown on the horizontal axis). Thus
absolute convergence holds for the states of the United States.

steady states differ, we have to modify the analysis to consider a concept of conditional
convergence. The main idea is that an economy grows faster the further it is from its own
steady-state value.

We illustrate the concept of conditional convergence in figure 1.10 by considering two
economies that differ in only two respects: first, they have different initial stocks of capital
per person, k(0)poor < k(0)rich, and second, they have different saving rates, spoor �= srich. Our
previous analysis implies that differences in saving rates generate differences in the same
direction in the steady-state values of capital per person, that is, k∗

poor �= k∗
rich. [In figure 1.10,

these steady-state values are determined by the intersection of the si · f (k)/k curves with
the common n + δ line.] We consider the case in which spoor < srich and, hence, k∗

poor < k∗
rich

because these differences likely explain why k(0)poor < k(0)rich applies at the initial date.
(It is also true empirically, as discussed in the introduction, that countries with higher levels
of real per capita GDP tend to have higher saving rates.)
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n � �

srich� f (k)�k

spoor� f (k)�k
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Figure 1.10
Conditional convergence. If a rich economy has a higher saving rate than a poor economy, the rich economy
may be proportionately further from its steady-state position. In this case, the rich economy would be predicted
to grow faster per capita than the poor economy; that is, absolute convergence would not hold.

The question is, Does the model predict that the poor economy will grow faster than the
rich one? If they have the same saving rate, then the per capita growth rate—the distance
between the s · f (k)/k curve and the n+δ line—would be higher for the poor economy, and
(k̇/k)poor > (k̇/k)rich would apply. However, if the rich economy has a higher saving rate, as
in figure 1.10, then (k̇/k)poor < (k̇/k)rich might hold, so that the rich economy grows faster.
The intuition is that the low saving rate of the poor economy offsets its higher average
product of capital as a determinant of economic growth. Hence, the poor economy may
grow at a slower rate than the rich one.

The neoclassical model does predict that each economy converges to its own steady state
and that the speed of this convergence relates inversely to the distance from the steady state.
In other words, the model predicts conditional convergence in the sense that a lower starting
value of real per capita income tends to generate a higher per capita growth rate, once we
control for the determinants of the steady state.

Recall that the steady-state value, k∗, depends on the saving rate, s, and the level of the
production function, f ( · ). We have also mentioned that government policies and institutions
can be viewed as additional elements that effectively shift the position of the production
function. The findings on conditional convergence suggest that we should hold constant
these determinants of k∗ to isolate the predicted inverse relationship between growth rates
and initial positions.
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Algebraically, we can illustrate the concept of conditional convergence by returning to
the formula for k̇/k in equation (1.23). One of the determinants of k̇/k is the saving rate s.
We can use the steady-state condition from equation (1.20) to express s as follows:

s = (n + δ) · k∗/ f (k∗)

If we replace s by this expression in equation (1.23), then k̇/k can be expressed as

k̇/k = (n + δ) ·
[

f (k)/k

f (k∗)/k∗ − 1

]
(1.29)

Equation (1.29) is consistent with k̇/k = 0 when k = k∗. For given k∗, the formula implies
that a reduction in k, which raises the average product of capital, f (k)/k, increases k̇/k. But
a lower k matches up with a higher k̇/k only if the reduction is relative to the steady-state
value, k∗. In particular, f (k)/k must be high relative to the steady-state value, f (k∗)/k∗.
Thus a poor country would not be expected to grow rapidly if its steady-state value, k∗, is
as low as its current value, k.

In the case of a Cobb–Douglas technology, the saving rate can be written as

s = (n + δ)

A
· k∗(1−α)

which we can substitute into equation (1.23) to get

k̇/k = (n + δ) ·
[(

k

k∗

)α−1

− 1

]
(1.30)

We see that the growth rate of capital, k, depends on the ratio k/k∗; that is, it depends on
the distance between the current and steady-state capital-labor ratio.

The result in equation (1.29) suggests that we should look empirically at the relation
between the per capita growth rate, ẏ/y, and the starting position, y(0), after holding
fixed variables that account for differences in the steady-state position, y∗. For a relatively
homogeneous group of economies, such as the U.S. states, the differences in steady-state
positions may be minor, and we would still observe the convergence pattern shown in
figure 1.9. For a broad cross section of 114 countries, however, as shown in figure 1.7, the
differences in steady-state positions are likely to be substantial. Moreover, the countries
with low starting levels, y(0), are likely to be in this position precisely because they have
low steady-state values, y∗, perhaps because of chronically low saving rates or persistently
bad government policies that effectively lower the level of the production function. In other
words, the per capita growth rate may have little correlation with log[y(0)], as in figure 1.7,
because log[y(0)] is itself uncorrelated with the gap from the steady state, log[y(0)/y∗]. The
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perspective of conditional convergence indicates that this gap is the variable that matters
for the subsequent per capita growth rate.

We show in chapter 12 that the inclusion of variables that proxy for differences in steady-
state positions makes a major difference in the results for the broad cross section of countries.
When these additional variables are held constant, the relation between the per capita growth
rate and the log of initial real per capita GDP becomes significantly negative, as predicted
by the neoclassical model. In other words, the cross-country data support the hypothesis of
conditional convergence.

1.2.11 Convergence and the Dispersion of Per Capita Income

The concept of convergence considered thus far is that economies with lower levels of per
capita income (expressed relative to their steady-state levels of per capita income) tend to
grow faster in per capita terms. This behavior is often confused with an alternative meaning
of convergence, that the dispersion of real per capita income across a group of economies
or individuals tends to fall over time.22 We show now that, even if absolute convergence
holds in our sense, the dispersion of per capita income need not decline over time.

Suppose that absolute convergence holds for a group of economies i = 1, . . . , N , where
N is a large number. In discrete time, corresponding for example to annual data, the real
per capita income for economy i can then be approximated by the process

log(yit ) = a + (1 − b) · log(yi,t−1) + uit (1.31)

where a and b are constants, with 0 < b < 1, and uit is a disturbance term. The condition b > 0
implies absolute convergence because the annual growth rate, log(yit/yi,t−1), is inversely
related to log(yi,t−1). A higher coefficient b corresponds to a greater tendency toward
convergence.23 The disturbance term picks up temporary shocks to the production function,
the saving rate, and so on. We assume that uit has zero mean, the same variance σ 2

u for all
economies, and is independent over time and across economies.

One measure of the dispersion or inequality of per capita income is the sample variance
of the log(yit ):

Dt ≡ 1

N
·

N∑
i=1

[log(yit ) − µt ]
2

22. See Sala-i-Martin (1990) and Barro and Sala-i-Martin (1992a) for further discussion of the two concepts of
convergence.

23. The condition b < 1 rules out a leapfrogging or overshooting effect, whereby an economy that starts out behind
another economy would be predicted systematically to get ahead of the other economy at some future date. This
leapfrogging effect cannot occur in the neoclassical model but can arise in some models of technological adaptation
that we discuss in chapter 8.



Growth Models with Exogenous Saving Rates 51

where µt is the sample mean of the log(yit ). If there are a large number N of observations,
the sample variance is close to the population variance, and we can use equation (1.31) to
derive the evolution of Dt over time:

Dt ≈ (1 − b)2 · Dt−1 + σ 2
u

This first-order difference equation for dispersion has a steady state given by

D∗ = σ 2
u /[1 − (1 − b)2]

Hence, the steady-state dispersion falls with b (the strength of the convergence effect) but
rises with the variance σ 2

u of the disturbance term. In particular, D∗ > 0 even if b > 0, as
long as σ 2

u > 0.

The evolution of Dt can be expressed as

Dt = D∗ + (1 − b)2 · (Dt−1 − D∗) = D∗ + (1 − b)2t · (D0 − D∗) (1.32)

where D0 is the dispersion at time 0. Since 0 < b < 1, Dt monotonically approaches its
steady-state value, D∗, over time. Equation (1.32) implies that Dt rises or falls over time
depending on whether D0 begins below or above the steady-state value.24 Note especially
that a rising dispersion is consistent with absolute convergence (b > 0).

These results about convergence and dispersion are analogous to Galton’s fallacy about
the distribution of heights in a population (see Quah, 1993, and Hart, 1995, for discussions).
The observation that heights in a family tend to regress toward the mean across generations
(a property analogous to our convergence concept for per capita income) does not imply that
the dispersion of heights across the full population (a measure that parallels the dispersion
of per capita income across economies) tends to narrow over time.

1.2.12 Technological Progress

Classification of Inventions We have assumed thus far that the level of technology is
constant over time. As a result, we found that all per capita variables were constant in the
long run. This feature of the model is clearly unrealistic; in the United States, for example,
the average per capita growth rate has been positive for over two centuries. In the absence of
technological progress, diminishing returns would have made it impossible to maintain per
capita growth for so long just by accumulating more capital per worker. The neoclassical
economists of the 1950s and 1960s recognized this problem and amended the basic model

24. We could extend the model by allowing for temporary shocks to σ 2
u or for major disturbances like wars or oil

shocks that affect large subgroups of economies in a common way. In this extended model, the dispersion could
depart from the deterministic path that we derived; for example, Dt could rise in some periods even if D0 began
above its steady-state value.
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to allow the technology to improve over time. These improvements provided an escape from
diminishing returns and thus enabled the economy to grow in per capita terms in the long
run. We now explore how the model works when we allow for such technological advances.

Although some discoveries are serendipitous, most technological improvements reflect
purposeful activity, such as research and development (R&D) carried out in universities
and corporate or government laboratories. This research is sometimes financed by private
institutions and sometimes by governmental agencies, such as the National Science Foun-
dation. Since the amount of resources devoted to R&D depends on economic conditions,
the evolution of the technology also depends on these conditions. This relation will be the
subject of our analysis in chapters 6–8. At present, we consider only the simpler case in
which the technology improves exogenously.

The first issue is how to introduce exogenous technological progress into the model.
This progress can take various forms. Inventions may allow producers to generate the same
amount of output with either relatively less capital input or relatively less labor input, cases
referred to as capital-saving or labor-saving technological progress, respectively. Inventions
that do not save relatively more of either input are called neutral or unbiased.

The definition of neutral technological progress depends on the precise meaning of capital
saving and labor saving. Three popular definitions are due to Hicks (1932), Harrod (1942),
and Solow (1969).

Hicks says that a technological innovation is neutral (Hicks neutral) if the ratio of marginal
products remains unchanged for a given capital-labor ratio. This property corresponds to a
renumbering of the isoquants, so that Hicks-neutral production functions can be written as

Y = T (t) · F(K , L) (1.33)

where T (t) is the index of the state of the technology, and Ṫ (t) ≥ 0.

Harrod defines an innovation as neutral (Harrod neutral) if the relative input shares,
(K · FK )/(L · FL), remain unchanged for a given capital-output ratio. Robinson (1938) and
Uzawa (1961) showed that this definition implied that the production function took the form

Y = F[K , L · T (t)] (1.34)

where T (t) is the index of the technology, and Ṫ (t) ≥ 0. This form is called labor-augmenting
technological progress because it raises output in the same way as an increase in the stock
of labor. (Notice that the technology factor, T (t), appears in the production function as a
multiple of L .)

Finally, Solow defines an innovation as neutral (Solow neutral) if the relative input shares,
(L · FL)/(K · FK ), remain unchanged for a given labor/output ratio. This definition can be
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shown to imply a production function of the form

Y = F[K · T (t), L] (1.35)

where T (t) is the index of the technology, and Ṫ (t) ≥ 0. Production functions of this form
are called capital augmenting because a technological improvement increases production
in the same way as an increase in the stock of capital.

The Necessity for Technological Progress to Be Labor Augmenting Suppose that we
consider only constant rates of technological progress. Then, in the neoclassical growth
model with a constant rate of population growth, only labor-augmenting technological
change turns out to be consistent with the existence of a steady state, that is, with constant
growth rates of the various quantities in the long run. This result is proved in the appendix
to this chapter (section 1.5).

If we want to consider models that possess a steady state, we have to assume that tech-
nological progress takes the labor-augmenting form. Another approach, which would be
substantially more complicated, would be to deal with models that lack steady states, that is,
in which the various growth rates do not approach constants in the long run. However, one
reason to stick with the simpler framework that possesses a steady state is that the long-term
experiences of the United States and some other developed countries indicate that per capita
growth rates can be positive and trendless over long periods of time (see chapter 12). This
empirical phenomenon suggests that a useful theory would predict that per capita growth
rates approach constants in the long run; that is, the model would possess a steady state.

If the production function is Cobb–Douglas, Y = AK α L1−α in equation (1.11), then
it is clear from inspection that the form of technological progress—augmenting A, K ,
or L—will not matter for the results (see the appendix for discussion). Thus, in the
Cobb–Douglas case, we will be safe in assuming that technological progress is labor aug-
menting. Recall that the key property of the Cobb–Douglas function is that, in a competitive
setting, the factor-income shares are constant. Thus, if factor-income shares are reasonably
stable—as seems to be true for the U.S. economy but not for some others—we may be
okay in regarding the production function as approximately Cobb–Douglas and, hence, in
assuming that technogical progress is labor augmenting.

Another approach, when the production function is not Cobb–Douglas, is to derive the
form of technological progress from a theory of technological change. Acemoglu (2002)
takes this approach, using a variant of the model of endogenous technological change that
we develop in chapter 6. He finds that, under some conditions, the form of technological
progress would be asymptotically labor augmenting.
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The Solow–Swan Model with Labor-Augmenting Technological Progress We assume
now that the production function includes labor-augmenting technological progress, as
shown in equation (1.34), and that the technology term, T (t), grows at the constant rate x .
The condition for the change in the capital stock is

K̇ = s · F[K , L · T (t)] − δK

If we divide both sides of this equation by L , we can derive an expression for the change in
k over time:

k̇ = s · F[k, T (t)] − (n + δ) · k (1.36)

The only difference from equation (1.13) is that output per person now depends on the level
of the technology, T (t).

Divide both sides of equation (1.36) by k to compute the growth rate:

k̇/k = s · F[k, T (t)]/k − (n + δ) (1.37)

As in equation (1.23), k̇/k equals the difference between two terms, where the first term is
the product of s and the average product of capital, and the second term is n + δ. The only
difference is that now, for given k, the average product of capital, F[k, T (t)]/k, increases
over time because of the growth in T (t) at the rate x . In terms of figure 1.4, the downward-
sloping curve, s · F( · )/k, shifts continually to the right, and, hence, the level of k that
corresponds to the intersection between this curve and the n + δ line also shifts continually
to the right. We now compute the growth rate of k in the steady state.

By definition, the steady-state growth rate, (k̇/k)∗, is constant. Since s, n, and δ are
also constants, equation (1.37) implies that the average product of capital, F[k, T (t)]/k,
is constant in the steady state. Because of constant returns to scale, the expression for the
average product equals F[1, T (t)/k] and is therefore constant only if k and T (t) grow at
the same rate, that is, (k̇/k)∗ = x .

Output per capita is given by

y = F[k, T (t)] = k · F[1, T (t)/k]

Since k and T (t) grow in the steady state at the rate x , the steady-state growth rate of y
equals x . Moreover, since c = (1 − s) · y, the steady-state growth rate of c also equals x .

To analyze the transitional dynamics of the model with technological progress, it will be
convenient to rewrite the system in terms of variables that remain constant in the steady
state. Since k and T (t) grow in the steady state at the same rate, we can work with the ratio
k̂ ≡ k/T (t)= K/[L · T (t)]. The variable L · T (t) ≡ L̂ is often called the effective amount of
labor—the physical quantity of labor, L , multiplied by its efficiency, T (t). (The terminology
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effective labor is appropriate because the economy operates as if its labor input were L̂ .)
The variable k̂ is then the quantity of capital per unit of effective labor.

The quantity of output per unit of effective labor, ŷ ≡ Y/[L · T (t)], is given by

ŷ = F(k̂, 1) ≡ f (k̂) (1.38)

Hence, we can again write the production function in intensive form if we replace y and k
by ŷ and k̂, respectively. If we proceed as we did before to get equations (1.13) and (1.23),
but now use the condition that A(t) grows at the rate x , we can derive the dynamic equation
for k̂:

˙̂k/k̂ = s · f (k̂)/k̂ − (x + n + δ) (1.39)

The only difference between equations (1.39) and (1.23), aside from the hats (ˆ), is that
the last term on the right-hand side includes the parameter x . The term x + n + δ is now the
effective depreciation rate for k̂ ≡ K/L̂ . If the saving rate, s, were zero, k̂ would decline
partly due to depreciation of K at the rate δ and partly due to growth of L̂ at the rate x + n.

Following an argument similar to that of section 1.2.4, we can show that the steady-state
growth rate of k̂ is zero. The steady-state value k̂∗ satisfies the condition

s · f (k̂∗) = (x + n + δ) · k̂∗ (1.40)

The transitional dynamics of k̂ are qualitatively similar to those of k in the previous model.
In particular, we can construct a picture like figure 1.4 in which the horizontal axis involves
k̂, the downward-sloping curve is now s · f (k̂)/k̂, and the horizontal line is at the level
x + n + δ, rather than n + δ. The new construction is shown in figure 1.11. We can use this
figure, as we used figure 1.4 before, to assess the relation between the initial value, k̂(0),
and the growth rate, ˙̂k/k̂.

In the steady state, the variables with hats—k̂, ŷ, ĉ—are now constant. Therefore, the per
capita variables—k, y, c—now grow in the steady state at the exogenous rate of technological
progress, x .25 The level variables—K , Y , C—grow accordingly in the steady state at the
rate n + x , that is, the sum of population growth and technological change. Note that, as in
the prior analysis that neglected technological progress, shifts to the saving rate or the level
of the production function affect long-run levels—k̂∗, ŷ∗, ĉ∗—but not steady-state growth
rates. As before, these kinds of disturbances influence growth rates during the transition
from an initial position, represented by k̂(0), to the steady-state value, k̂∗.

25. We always have the condition (1/k̂) · (dk̂/dt) = k̇/k − x . Therefore, (1/k̂) · (dk̂/dt) = 0 implies k̇/k = x ,
and similarly for ẏ/y and ċ/c.
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x � n � �

s � f (k̂)�k̂

k̂*
k̂

Figure 1.11
The Solow–Swan model with technological progress. The growth rate of capital per effective worker (k̂ ≡
K/LT ) is given by the vertical distance between the s · f (k̂)/k̂ curve and the effective depreciation line, x +n +δ.
The economy is at a steady state when k̂ is constant. Since T grows at the constant rate x , the steady-state growth
rate of capital per person, k, also equals x .

1.2.13 A Quantitative Measure of the Speed of Convergence

It is important to know the speed of the transitional dynamics. If convergence is rapid, we
can focus on steady-state behavior, because most economies would typically be close to
their steady states. Conversely, if convergence is slow, economies would typically be far
from their steady states, and, hence, their growth experiences would be dominated by the
transitional dynamics.

We now provide a quantitative assessment of how fast the economy approaches its steady
state for the case of a Cobb–Douglas production function, shown in equation (1.11). (We
generalize later to a broader class of production functions.) We can use equation (1.39),
with L replaced by L̂ , to determine the growth rate of k̂ in the Cobb–Douglas case as

˙̂k/k̂ = s A · (k̂)−(1−α) − (x + n + δ) (1.41)

The speed of convergence, β, is measured by how much the growth rate declines as the
capital stock increases in a proportional sense, that is,

β ≡ −∂( ˙̂k/k̂)

∂ log k̂
(1.42)
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Notice that we define β with a negative sign because the derivative is negative, so that β is
positive.

To compute β, we have to rewrite the growth rate in equation (1.41) as a function of
log(k̂):

˙̂k/k̂ = s A · e−(1−α) · log(k̂) − (x + n + δ) (1.43)

We can take the derivative of equation (1.43) with respect to log(k̂) to get an expression
for β:

β = (1 − α) · s A · (k̂)−(1−α) (1.44)

Notice that the speed of convergence is not constant but, rather, declines monotonically as
the capital stock increases toward its steady-state value. At the steady state, s A · (k̂)−(1−α) =
(x + n + δ) holds. Therefore, in the neighborhood of the steady state, the speed of conver-
gence equals

β∗ = (1 − α) · (x + n + δ) (1.45)

During the transition to the steady state, the convergence rate, β, exceeds β∗ but declines
over time.

Another way to get the formula for β∗ is to consider a log-linear approximation of
equation (1.41) in the neighborhood of the steady state:

˙̂k/k̂ ∼= −β∗ · [log(k̂/k̂∗)] (1.46)

where the coefficient β∗ comes from a log-linearization of equation (1.41) around the steady
state. The resulting coefficient can be shown to equal the right-hand side of equation (1.45).
See the appendix at the end of this chapter (section 1.5) for the method of derivation of this
log-linearization.

Before we consider further the implications of equation (1.45), we will show that it
applies also to the growth rate of ŷ. For a Cobb–Douglas production function, shown in
equation (1.11), we have

˙̂y/ŷ = α · ( ˙̂k/k̂)

log(ŷ/ŷ∗) = α · log(k̂/k̂∗)

If we substitute these formulas into equation (1.46), we get

˙̂y/ŷ ≈ −β∗ · [log(ŷ/ŷ∗)] (1.47)

Hence, the convergence coefficient for ŷ is the same as that for k̂.
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The termβ∗ = (1−α) · (x + n + δ) in equation (1.45) indicates how rapidly an economy’s
output per effective worker, ŷ, approaches its steady-state value, ŷ∗, in the neighborhood
of the steady state. For example, if β∗ = 0.05 per year, 5 percent of the gap between ŷ
and ŷ∗ vanishes in one year. The half-life of convergence—the time that it takes for half
the initial gap to be eliminated—is thus about 14 years.26 It would take about 28 years for
three-quarters of the gap to vanish.

Consider what the theory implies quantitatively about the convergence coefficient, β∗ =
(1 − α) · (x + n + δ), in equation (1.45). One property is that the saving rate, s, does not
affect β∗. This result reflects two offsetting forces that exactly cancel in the Cobb–Douglas
case. First, given k̂, a higher saving rate leads to greater investment and, therefore, to a
faster speed of convergence. Second, a higher saving rate raises the steady-state capital
intensity, k̂∗, and thereby lowers the average product of capital in the vicinity of the steady
state. This effect reduces the speed of convergence. The coefficient β∗ is also independent
of the overall level of efficiency of the economy, A. Differences in A, like differences in s,
have two offsetting effects on the convergence speed, and these effects exactly cancel in the
Cobb–Douglas case.

To see the quantitative implications of the parameters that enter into equation (1.45),
consider the benchmark values x = 0.02 per year, n = 0.01 per year, and δ = 0.05 per year.
These values appear reasonable, for example, for the U.S. economy. The long-term growth
rate of real GDP, which is about 2 percent per year, corresponds in the theory to the
parameter x . The rate of population growth in recent decades is about 1 percent per year,
and the measured depreciation rate for the overall stock of structures and equipment is
around 5 percent per year.

For given values of the parameters x , n, and δ, the coefficient β∗ in equation (1.45) is
determined by the capital-share parameter, α. A conventional share for the gross income
accruing to a narrow concept of physical capital (structures and equipment) is about 1

3
(see Denison, 1962; Maddison, 1982; and Jorgenson, Gollop, and Fraumeni, 1987). If we
use α = 1

3 , equation (1.45) implies β∗ = 5.6 percent per year, which implies a half-life of
12.5 years. In other words, if the capital share is 1

3 , the neoclassical model predicts relatively
short transitions.

26. Equation (1.47) is a differential equation in log[ŷ(t)] with the solution

log[ŷ(t)] = (1 − e−β∗t ) · log(ŷ∗) + e−β∗t · log[ŷ(0)]

The time t for which log[ŷ(t)] is halfway between log[ŷ(0)] and log(ŷ∗) satisfies the condition e−β∗t = 1/2. The
half-life is therefore log(2)/β∗ = 0.69/β∗. Hence, if β∗ = 0.05 per year, the half-life is 14 years.
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In chapters 11 and 12 we argue that this predicted speed of convergence is much too
high to accord with the empirical evidence. A convergence coefficient, β, in the range of
1.5 percent to 3.0 percent per year appears to fit better with the data. If β∗ = 2.0 percent
per year, the half-life is about 35 years, and the time needed to eliminate three-quarters of
an initial gap from the steady-state position is about 70 years. In other words, convergence
speeds that are consistent with the empirical evidence imply that the time required for
substantial convergence is typically on the order of several generations.

To accord with an observed rate of convergence of about 2 percent per year, the neoclassi-
cal model requires a much higher capital-share coefficient. For example, the value α = 0.75,
together with the benchmark values for the other parameters, implies β∗ = 2.0 percent
per year. Although a capital share of 0.75 is too high for a narrow concept of physi-
cal capital, this share is reasonable for an expanded measure that also includes human
capital.

An Extended Solow–Swan Model with Physical and Human Capital One way to
increase the capital share is to add human capital to the model. Consider a Cobb–Douglas
production function that uses physical capital, K , human capital, H ,27 and raw labor, L:

Y = AK α Hη[T (t) · L]1−α−η (1.48)

where T (t) again grows at the exogenous rate x . Divide the production function by T (t) · L
to get output per unit of effective labor:

ŷ = Ak̂α ĥη (1.49)

Output can be used on a one-to-one basis for consumption or investment in either type
of capital. Following Solow and Swan, we still assume that people consume a constant
fraction, 1 − s, of their gross income, so the accumulation is given by

˙̂k + ˙̂h = s Ak̂α ĥη − (δ + n + x) · (k̂ + ĥ) (1.50)

where we have assumed that the two capital goods depreciate at the same constant rate.
The key question is how overall savings will be allocated between physical and human

capital. It is reasonable to think that households will invest in the capital good that delivers
the higher return, so that the two rates of return—and, hence, the two marginal products of
capital—will have to be equated if both forms of investment are taking place. Therefore,

27. Chapters 4 and 5 discuss human capital in more detail.
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we have the condition28

α · ŷ

k̂
− δ = η · ŷ

ĥ
− δ (1.51)

The equality between marginal products implies a one-to-one relationship between phys-
ical and human capital:

ĥ = η

α
· k̂ (1.52)

We can use this relation to eliminate ĥ from equation (1.50) to get

˙̂k = s Ãk̂α+η − (δ + n + x) · k̂ (1.53)

where Ã ≡ (
ηηα(1−η)

α+η
) · A is a constant. Notice that this accumulation equation is the same as

equation (1.41), except that the exponent on the capital stock per worker is now the sum of
the physical and human capital shares, α + η, instead of α. Using a derivation analogous to
that of the previous section, we therefore get an expression for the convergence coefficient
in the steady state:

β∗ = (1 − α − η) · (δ + n + x) (1.54)

Jorgenson, Gollop, and Fraumeni (1987) estimate a human-capital share of between 0.4 and
0.5. With η = 0.4 and with the benchmark parameters of the previous section, including
α = 1

3 , the predicted speed of convergence would be β∗ = 0.021. Thus, with a broad concept
of capital that includes human capital, the Solow–Swan model can generate the rates of
convergence that have been observed empirically.

Mankiw, Romer, and Weil (1992) use a production function analogous to equation (1.48).
However, instead of making the Solow–Swan assumption that the overall gross saving rate
is constant and exogenous, they assume that the investment rates in the two forms of capital
are each constant and exogenous. For physical capital, the growth rate is therefore

˙̂k = sk Ãk̂α−1ĥη − (δ + n + x) = sk Ã · e−(1−α) ln k̂ · eη ln ĥ − (δ + n + x) (1.55)

28. In a market setup, profit would be π = AK α
t Hη

t (Tt Lt )
1−α−η − Rk K − Rh H − wL , where Rk and Rh are

the rental rates of physical and human capital, respectively. The first-order conditions for the firm require that
the marginal products of each of the capital goods be equalized to the rental rates, Rk = α

ŷ
k̂

and Rh = η
ŷ
ĥ

. In
an environment without uncertainty, like the one we are considering, physical capital, human capital, and loans
are perfect substitutes as stores of value and, as a result, their net returns must be the same. In other words,
r = Rk − δ = Rh − δ. Optimizing firms will, therefore, rent physical and human capital up to the point where
their marginal products are equal.
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where sk is an exogenous constant. Similarly, for human capital, the growth rate is

˙̂h = sh Ãk̂α ĥη−1 − (δ + n + x) = sh Ã · eα ln k̂ · e−(1−η) ln ĥ − (δ + n + x) (1.56)

where sh is another exogenous constant. A shortcoming of this approach is that the rates of
return to physical and human capital are not equated.

The growth rate of ŷ is a weighted average of the growth rates of the two inputs:

˙̂y/ŷ = α · ( ˙̂k/k̂) + η · ( ˙̂h/ĥ)

If we use equations (1.55) and (1.56) and take a two-dimensional first-order Taylor-series
expansion, we get

˙̂y/ŷ = [
αsk Ã · e−(1−α) ln k̂∗ · eη ln ĥ∗ · [−(1 − α)]

+ ηsh Ã · eα ln k̂∗ · e−(1−η) ln ĥ∗ · α]· (ln k̂ − ln k̂∗)

+ [
αsk Ã · e−(1−α) ln k∗ · eη̂ ln h∗ · η

+ ηsh Ã · eα ln k̂ · e−(1−η) ln ĥ∗ · [−(1 − η)]
]· (ln ĥ − ln ĥ∗)

The steady-state conditions derived from equations (1.55) and (1.56) can be used to get

˙̂y/ŷ = −(1 − α − η) · (δ + n + x) · [α · (ln k̂ − ln k̂∗) + η · (ln ĥ − ln ĥ∗)]
= −β∗ · (ln ŷ − ln ŷ∗) (1.57)

Therefore, in the neighborhood of the steady state, the convergence coefficient is β∗ =
(1 − α − η) · (δ + n + x), just as in equation (1.54).

1.3 Models of Endogenous Growth

1.3.1 Theoretical Dissatisfaction with Neoclassical Theory

In the mid-1980s it became increasingly clear that the standard neoclassical growth model
was theoretically unsatisfactory as a tool to explore the determinants of long-run growth.
We have seen that the model without technological change predicts that the economy will
eventually converge to a steady state with zero per capita growth. The fundamental reason is
the diminishing returns to capital. One way out of this problem was to broaden the concept
of capital, notably to include human components, and then assume that diminishing returns
did not apply to this broader class of capital. This approach is the one outlined in the
next section and explored in detail in chapters 4 and 5. However, another view was that
technological progress in the form of the generation of new ideas was the only way that an
economy could escape from diminishing returns in the long run. Thus it became a priority to
go beyond the treatment of technological progress as exogenous and, instead, to explain this
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progress within the model of growth. However, endogenous approaches to technological
change encountered basic problems within the neoclassical model—the essential reason is
the nonrival nature of the ideas that underlie technology.

Remember that a key characteristic of the state of technology, T , is that it is a nonrival
input to the production process. Hence, the replication argument that we used before to
justify the assumption of constant returns to scale suggests that the correct measure of scale
is the two rival inputs, capital and labor. Hence, the concept of constant returns to scale that
we used is homogeneity of degree one in K and L:

F(λK , λL , T ) = λ · F(K , L , T )

Recall also that Euler’s theorem implies that a function that is homogeneous of degree one
can be decomposed as

F(K , L , T ) = FK · K + FL · L (1.58)

In our analysis up to this point, we have been assuming that the same technology, T , is
freely available to all firms. This availability is technically feasible because T is nonrival.
However, it may be that T is at least partly excludable—for example, patent protection,
secrecy, and experience might allow some producers to have access to technologies that
are superior to those available to others. For the moment, we maintain the assumption that
technology is nonexcludable, so that all producers have the same access. This assumption
also means that a technological advance is immediately available to all producers.

We know from our previous analysis that perfectly competitive firms that take the input
prices, R and w, as given end up equating the marginal products to the respective input
prices, that is, FK = R and FL = w. It follows from equation (1.58) that the factor payments
exhaust the output, so that each firm’s profit equals zero at every point in time.

Suppose that a firm has the option to pay a fixed cost, κ , to improve the technology from
T to T ′. Since the new technology would, by assumption, be freely available to all other
producers, we know that the equilibrium values of R and w would again entail a zero flow of
profit for each firm. Therefore, the firm that paid the fixed cost, κ , will end up losing money
overall, because the fixed cost would not be recouped by positive profits at any future dates.
It follows that the competitive, neoclassical model cannot sustain purposeful investment in
technical change if technology is nonexcludable (as well as nonrival).

The obvious next step is to allow the technology to be at least partly excludable. To
bring out the problems with this extension, consider the polar case of full excludability,
that is, where each firm’s technology is completely private. Assume, however, that there are
infinitely many ways in which firms can improve knowledge from T to T ′ by paying the fixed
cost κ—in other words, there is free entry into the business of creating formulas. Suppose



64 Chapter 1

If we substitute f (k)/k = A in equation (1.13), we get

k̇/k = s A − (n + δ)

We return here to the case of zero technological progress, x = 0, because we want to show
that per capita growth can now occur in the long run even without exogenous technological
change. For a graphical presentation, the main difference is that the downward-sloping
saving curve, s · f (k)/k, in figure 1.4 is replaced in figure 1.12 by the horizontal line at
the level s A. The depreciation curve is still the same horizontal line at n + δ. Hence,
k̇/k is the vertical distance between the two lines, s A and n + δ. We depict the case in
which s A > (n + δ), so that k̇/k > 0. Since the two lines are parallel, k̇/k is constant;
in particular, it is independent of k. Therefore, k always grows at the steady-state rate,
(k̇/k)∗ = s A − (n + δ).

Since y = Ak, ẏ/y = k̇/k at every point in time. In addition, since c = (1−s) · y, ċ/c =
k̇/k also applies. Hence, all the per capita variables in the model always grow at the same,
constant rate, given by

γ ∗ = s A − (n + δ) (1.60)

Note that an economy described by the AK technology can display positive long-run
per capita growth without any technological progress. Moreover, the per capita growth rate

n � �

k

sA

�k � 0 for all k

Figure 1.12
The AK Model. If the technology is AK , the saving curve, s · f (k)/k, is a horizontal line at the level s A. If
s A > n + δ, perpetual growth of k occurs, even without technological progress.
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that all firms begin with the technology T . Would an individual firm then have the incentive
to pay κ to improve the technology to T ′? In fact, the incentive appears to be enormous.
At the existing input prices, R and w, a neoclassical firm with a superior technology would
make a pure profit on each unit produced. Because of the assumed constant returns to scale,
the firm would be motivated to hire all the capital and labor available in the economy. In
this case, the firm would have lots of monopoly power and would likely no longer act as a
perfect competitor in the goods and factor markets. So, the assumptions of the competitive
model would break down.

A more basic problem with this result is that other firms would have perceived the same
profit opportunity and would also have paid the cost κ to acquire the better technology, T ′.
However, when many firms improve their technology by the same amount, the competition
pushes up the factor prices, R and w, so that the flow of profit is again zero. In this case,
none of the firms can cover their fixed cost, κ , just as in the model in which technology
was nonexcludable. Therefore, it is not an equilibrium for technological advance to occur
(because all innovators make losses) and it is also not an equilibrium for this advance not
to occur (because the potential profit to a single innovator is enormous).

These conceptual difficulties motivated researchers to introduce some aspects of imper-
fect competition to construct satisfactory models in which the level of the technology can be
advanced by purposeful activity, such as R&D expenditures. This potential for endogenous
technological progress and, hence, endogenous growth, may allow an escape from dimin-
ishing returns at the aggregate level. Models of this type were pioneered by Romer (1990)
and Aghion and Howitt (1992); we consider them in chapters 6–8. For now, we deal only
with models in which technology is either fixed or varying in an exogenous manner.

1.3.2 The AK Model

The key property of this class of endogenous-growth models is the absence of diminishing
returns to capital. The simplest version of a production function without diminishing returns
is the AK function:29

Y = AK (1.59)

where A is a positive constant that reflects the level of the technology. The global absence
of diminishing returns may seem unrealistic, but the idea becomes more plausible if we
think of K in a broad sense to include human capital.30 Output per capita is y = Ak, and
the average and marginal products of capital are constant at the level A > 0.

29. We think that the first economist to use a production function of the AK type was von Neumann (1937).

30. Knight (1944) stressed the idea that diminishing returns might not apply to a broad concept of capital.
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shown in equation (1.60) depends on the behavioral parameters of the model, including s,
A, and n. For example, unlike the neoclassical model, a higher saving rate, s, leads to a
higher rate of long-run per capita growth, γ ∗.31 Similarly if the level of the technology,
A, improves once and for all (or if the elimination of a governmental distortion effectively
raises A), then the long-run growth rate is higher. Changes in the rates of depreciation, δ,
and population growth, n, also have permanent effects on the per capita growth rate.

Unlike the neoclassical model, the AK formulation does not predict absolute or condi-
tional convergence, that is, ∂(ẏ/y)/∂y = 0 applies for all levels of y. Consider a group of
economies that are structurally similar in that the parameters s, A, n, and δ are the same. The
economies differ only in terms of their initial capital stocks per person, k(0), and, hence,
in y(0) and c(0). Since the model says that each economy grows at the same per capita
rate, γ ∗, regardless of its initial position, the prediction is that all the economies grow at the
same per capita rate. This conclusion reflects the absence of diminishing returns. Another
way to see this result is to observe that the AK model is just a Cobb–Douglas model with
a unit capital share, α = 1. The analysis of convergence in the previous section showed
that the speed of convergence was given in equation (1.45) by β∗ = (1 − α) · (x + n + δ);
hence, α = 1 implies β∗ = 0. This prediction is a substantial failing of the model, because
conditional convergence appears to be an empirical regularity. See chapters 11 and 12 for
a detailed discussion.

We mentioned that one way to think about the absence of diminishing returns to capital
in the AK production function is to consider a broad concept of capital that encompassed
physical and human components. In chapters 4 and 5 we consider in more detail models
that allow for these two types of capital.

Other approaches have been used to eliminate the tendency for diminishing returns in
the neoclassical model. We study in chapter 4 the notion of learning by doing, which was
introduced by Arrow (1962) and used by Romer (1986). In these models, the experience with
production or investment contributes to productivity. Moreover, the learning by one producer
may raise the productivity of others through a process of spillovers of knowledge from one
producer to another. Therefore, a larger economy-wide capital stock (or a greater cumulation
of the aggregate of past production) improves the level of the technology for each producer.
Consequently, diminishing returns to capital may not apply in the aggregate, and increasing
returns are even possible. In a situation of increasing returns, each producer’s average

31. With the AK production function, we can never get the kind of inefficient oversaving that is possible in the
neoclassical model. A shift at some point in time to a permanently higher s means a lower level of c at that point
but a permanently higher per capita growth rate, γ ∗, and, hence, higher levels of c after some future date. This
change cannot be described as inefficient because it may be desirable or undesirable depending on how households
discount future levels of consumption.
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product of capital, f (k)/k, tends to rise with the economy-wide value of k. Consequently,
the s · f (k)/k curve in figure 1.4 tends to be upward sloping, at least over some range,
and the growth rate, k̇/k, rises with k in this range. Thus these kinds of models predict at
least some intervals of per capita income in which economies tend to diverge. It is unclear,
however, whether these divergence intervals are present in the data.

1.3.3 Endogenous Growth with Transitional Dynamics

The AK model delivers endogenous growth by avoiding diminishing returns to capital in
the long run. This particular production function also implies, however, that the marginal
and average products of capital are always constant and, hence, that growth rates do not
exhibit the convergence property. It is possible to retain the feature of constant returns to
capital in the long run, while restoring the convergence property—an idea brought out by
Jones and Manuelli (1990).32

Consider again the expression for the growth rate of k from equation (1.13):

k̇/k = s · f (k)/k − (n + δ) (1.61)

If a steady state exists, the associated growth rate, (k̇/k)∗, is constant by definition. A positive
(k̇/k)∗ means that k grows without bound. Equation (1.13) implies that it is necessary and
sufficient for (k̇/k)∗ to be positive to have the average product of capital, f (k)/k, remain
above (n + δ)/s as k approaches infinity. In other words, if the average product approaches
some limit, then limk→∞[ f (k)/k] > (n + δ)/s is necessary and sufficient for endogenous,
steady-state growth.

If f (k) → ∞ as k → ∞, then an application of l’Hôpital’s rule shows that the limits
as k approaches infinity of the average product, f (k)/k, and the marginal product, f ′(k),
are the same. (We assume here that limk→∞[ f ′(k)] exists.) Hence, the key condition for
endogenous, steady-state growth is that f ′(k) be bounded sufficiently far above 0:

lim
k→∞

[ f (k)/k] = lim
k→∞

[ f ′(k)] > (n + δ)/s > 0

This inequality violates one of the standard Inada conditions in the neoclassical model,
limk→∞[ f ′(k)] = 0. Economically, the violation of this condition means that the tendency
for diminishing returns to capital tends to disappear. In other words, the production function
can exhibit diminishing or increasing returns to k when k is low, but the marginal product
of capital must be bounded from below as k becomes large. A simple example, in which
the production function converges asymptotically to the AK form, is

Y = F(K , L) = AK + BK α L1−α (1.62)

32. See Kurz (1968) for a related discussion.
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where A > 0, B > 0, and 0 < α < 1. Note that this production function is a combination of
the AK and Cobb–Douglas functions. It exhibits constant returns to scale and positive and
diminishing returns to labor and capital. However, one of the Inada conditions is violated
because limK→∞(FK ) = A > 0.

We can write the function in per capita terms as

y = f (k) = Ak + Bkα

The average product of capital is given by

f (k)/k = A + Bk−(1−α)

which is decreasing in k but approaches A as k tends to infinity.
The dynamics of this model can be analyzed with the usual expression from equa-

tion (1.13):

k̇/k = s · [A + Bk−(1−α)
] − (n + δ) (1.63)

Figure 1.13 shows that the saving curve is downward sloping, and the line n + δ is horizontal.
The difference from figure 1.4 is that, as k goes to infinity, the saving curve in figure 1.13
approaches the positive quantity s A, rather than 0. If s A > n + δ, as assumed in the figure,
the steady-state growth rate, (k̇/k)∗, is positive.

n � �

k
k(0)

�k

s � f (k)�k
sA

Figure 1.13
Endogenous growth with transitional dynamics. If the technology is F(K , L) = AK + BK α L1−α , the growth
rate of k is diminishing for all k. If s A > n + δ, the growth rate of k asymptotically approaches a positive constant,
given by s A − n − δ. Hence, endogenous growth coexists with a transition in which the growth rate diminishes
as the economy develops.
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This model yields endogenous, steady-state growth but also predicts conditional conver-
gence, as in the neoclassical model. The reason is that the convergence property derives
from the inverse relation between f (k)/k and k, a relation that still holds in the model.
Figure 1.13 shows that if two economies differ only in terms of their initial values, k(0),
the one with the smaller capital stock per person will grow faster in per capita terms.

1.3.4 Constant-Elasticity-of-Substitution Production Functions

Consider as another example the production function (due to Arrow et al., 1961) that has a
constant elasticity of substitution (CES) between labor and capital:

Y = F(K , L) = A · {a · (bK )ψ + (1 − a) · [(1 − b) · L]ψ }1/ψ (1.64)

where 0 < a < 1, 0 < b < 1,33 and ψ < 1. Note that the production function exhibits con-
stant returns to scale for all values of ψ . The elasticity of substitution between capital
and labor is 1/(1 − ψ) (see the appendix, section 1.5.4). As ψ → − ∞, the produc-
tion function approaches a fixed-proportions technology (discussed in the next section),
Y = min[bK , (1 − b)L], where the elasticity of substitution is 0. As ψ → 0, the production
function approaches the Cobb–Douglas form, Y = (constant) · K a L1−a , and the elasticity
of substitution is 1 (see the appendix, section 1.5.4). For ψ = 1, the production function is
linear, Y = A · [abK + (1 − a) · (1 − b) · L], so that K and L are perfect substitutes (infinite
elasticity of substitution).

Divide both sides of equation (1.64) by L to get an expression for output per capita:

y = f (k) = A · [a · (bk)ψ + (1 − a) · (1 − b)ψ ]1/ψ

The marginal and average products of capital are given, respectively, by

f ′(k) = Aabψ [abψ + (1 − a) · (1 − b)ψ · k−ψ ](1−ψ)/ψ

f (k)/k = A[abψ + (1 − a) · (1 − b)ψ · k−ψ ]1/ψ

Thus, f ′(k) and f (k)/k are each positive and diminishing in k for all values of ψ .
We can study the dynamic behavior of a CES economy by returning to the expression

from equation (1.13):

k̇/k = s · f (k)/k − (n + δ) (1.65)

33. The standard formulation does not include the terms b and 1 − b. The implication then is that the shares of K
and L in total product each approach one-half as ψ → −∞. In our formulation, the shares of K and L approach
b and 1 − b, respectively, as ψ → −∞.
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If we graph versus k, then s · f (k)/k is a downward-sloping curve, n + δ is a horizontal
line, and k̇/k is still represented by the vertical distance between the curve and the line. The
behavior of the growth rate now depends, however, on the parameter ψ , which governs the
elasticity of substitution between L and K .

Consider first the case 0 < ψ < 1, that is, a high degree of substitution between L and K .
The limits of the marginal and average products of capital in this case are

lim
k→∞

[ f ′(k)] = lim
k→∞

[ f (k)/k] = Aba1/ψ > 0

lim
k→0

[ f ′(k)] = lim
k→0

[ f (k)/k] = ∞
Hence, the marginal and average products approach a positive constant, rather than 0, as k
goes to infinity. In this sense, the CES production function with high substitution between
the factors (0 < ψ < 1) looks like the example in equation (1.62) in which diminishing
returns vanished asymptotically. We therefore anticipate that this CES model can generate
endogenous, steady-state growth.

Figure 1.14 shows the results graphically. The s · f (k)/k curve is downward sloping, and
it asymptotes to the positive constant s Ab · a1/ψ . If the saving rate is high enough, so that
s Ab · a1/ψ > n + δ—as assumed in the figure—then the s · f (k)/k curve always lies above
the n + δ line. In this case, the per capita growth rate is always positive, and the model

n � �

k
k(0)

�k � 0

s � f (k)�k

sAba(1��)

Figure 1.14
The CES model with 0 < ψ < 1 and s Ab · a1/ψ > n + δ. If the CES technology exhibits a high elasticity of
substitution (0 < ψ < 1), endogenous growth arises if the parameters satisfy the inequality s Ab · a1/ψ > n + δ.
Along the transition, the growth rate of k diminishes.
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n � �

k

�k � 0

sAba(1��)

s � f (k)�k

Figure 1.15
The CES model withψ < 0 and s Ab · a1/ψ < n + δ. If the CES technology exhibits a low elasticity of substitution
(ψ < 0), the growth rate of k would be negative for all levels of k if s Ab · a1/ψ < n + δ.

generates endogenous, steady-state growth at the rate

γ ∗ = s Ab · a1/ψ − (n + δ)

The dynamics of this model are similar to those described in figure 1.13.34

Assume now ψ < 0, that is, a low degree of substitution between L and K . The limits
of the marginal and average products of capital in this case are

lim
k→∞

[ f ′(k)] = lim
k→∞

[ f (k)/k] = 0

lim
k→0

[ f ′(k)] = lim
k→0

[ f (k)/k] = Ab · a1/ψ < ∞
Since the marginal and average products approach 0 as k approaches infinity, the key
Inada condition is satisfied, and the model does not generate endogenous growth. In this
case, however, the violation of the Inada condition as k approaches 0 may cause problems.
Suppose that the saving rate is low enough so that s Ab · a1/ψ < n + δ. In this case, the
s · f (k)/k curve starts at a point below n + δ, and it converges to 0 as k approaches infinity.
Figure 1.15 shows, accordingly, that the curve never crosses the n + δ line, and, hence, no
steady state exists with a positive value of k. Since the growth rate k̇/k is always negative,
the economy shrinks over time, and k, y, and c all approach 0.35

34. If 0 < ψ < 1 and s Ab · a1/ψ < n + δ, then the s · f (k)/k curve crosses n + δ at the steady-state value k∗, as
in the standard neoclassical model of figure 1.4. Endogenous growth does not apply in this case.

35. If ψ < 0 and s Ab · a1/ψ > n + δ, then the s · f (k)/k curve again intersects the n + δ line at the steady-state
value k∗.
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Since the average product of capital, f (k)/k, is a negative function of k for all values
of ψ , the growth rate k̇/k is also a negative function of k. The CES model therefore
always exhibits the convergence property: for two economies with identical parameters and
different initial values, k(0), the one with the lower value of k(0) has the higher value of k̇/k.
When the parameters differ across economies, the model predicts conditional convergence,
as described before.

We can use the method developed earlier for the case of a Cobb–Douglas production
function to derive a formula for the convergence coefficient in the neighborhood of the
steady state. The result for a CES production function, which extends equation (1.45), is36

β∗ = −(x + n + δ) ·
[

1 − a ·
(

bs A

x + n + δ

)ψ
]

(1.66)

For the Cobb–Douglas case, where ψ = 0 and a = α, equation (1.66) reduces to equa-
tion (1.45). For ψ �= 0, a new result is that β∗ in equation (1.66) depends on s and A. If ψ > 0
(high substitutability between L and K ), then β∗ falls with s A, and vice versa if ψ < 0. The
coefficient β∗ is independent of s and A only in the Cobb–Douglas case, where ψ = 0.

1.4 Other Production Functions . . . Other Growth Theories

1.4.1 The Leontief Production Function and the Harrod–Domar Controversy

A production function that was used prior to the neoclassical one is the Leontief (1941), or
fixed-proportions, function,

Y = F(K , L) = min(AK , BL) (1.67)

where A > 0 and B > 0 are constants. This specification, which corresponds to ψ → −∞
in the CES form in equation (1.64), was used by Harrod (1939) and Domar (1946). With
fixed proportions, if the available capital stock and labor force happen to be such that
AK = BL , then all workers and machines are fully employed. If K and L are such that
AK > BL , then only the quantity of capital (B/A) · L is used, and the remainder remains
idle. Conversely, if AK < BL , then only the amount of labor (A/B) · K is used, and the
remainder is unemployed. The assumption of no substitution between capital and labor led
Harrod and Domar to predict that capitalist economies would have undesirable outcomes
in the form of perpetual increases in unemployed workers or machines. We provide here a
brief analysis of the Harrod–Domar model using the tools developed earlier in this chapter.

36. See Chua (1993) for additional discussion. The formula for β in equation (1.66) applies only for cases in
which the steady-state level k∗ exists. If 0 < ψ < 1, it applies for bs A · a1/ψ < x + n + δ. If ψ < 0, it applies
for bs A · a1/ψ > x + n + δ.
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k

B f (k)

f (k)

Slope � A

B�A

Figure 1.16
The Leontief production function in per capita terms. In per capita terms, the Leontief production function
can be written as y = min(Ak, B). For k < B/A, output per capita is given by y = Ak. For k > B/A, output per
capita is given by y = B.

Divide both sides of equation (1.67) by L to get output per capita:

y = min(Ak, B)

For k < B/A, capital is fully employed, and y = Ak. Hence, figure 1.16 shows that the
production function in this range is a straight line from the origin with slope A. For k > B/A,
the quantity of capital used is constant, and Y is the constant multiple B of labor, L . Hence,
output per worker, y, equals the constant B, as shown by the horizontal part of f (k) in the
figure. Note that, as k approaches infinity, the marginal product of capital, f ′(k), is zero.
Hence, the key Inada condition is satisfied, and we do not expect this production function
to yield endogenous steady-state growth.

We can use the expression from equation (1.13) to get

k̇/k = s · [min(Ak, B)]/k − (n + δ) (1.68)

Figures 1.17a and 1.17b show that the first term, s · [min(Ak, B)]/k, is a horizontal line
at s A for k ≤ B/A. For k > B/A, this term is a downward-sloping curve that approaches
zero as k goes to infinity. The second term in equation (1.68) is the usual horizontal line at
n + δ.

Assume first that the saving rate is low enough so that s A < n + δ, as depicted in
figure 1.17. The saving curve, s · f (k)/k, then never crosses the n + δ line, so there is no



Growth Models with Exogenous Saving Rates 73

k

(b)

n � � n � �

k
k̄ k̄ k*
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Figure 1.17
The Harrod–Domar model. In panel a, which assumes s A < n + δ, the growth rate of k is negative for all k.
Therefore, the economy approaches k = 0. In panel b, which assumes s A > n + δ, the growth rate of k is positive
for k < k∗ and negative for k > k∗, where k∗ is the stable steady-state value. Since k∗ exceeds B/A, a part of the
capital stock always remains idle. Moreover, the quantity of idle capital grows steadily (along with K and L).

positive steady-state value, k∗. Moreover, the growth rate of capital, k̇/k, is always negative,
so the economy shrinks in per capita terms, and k, y, and c all approach 0. The economy
therefore ends up to the left of B/A and has permanent and increasing unemployment.

Suppose now that the saving rate is high enough so that s A > n + δ, as shown in
figure 1.17b. Since the s · f (k)/k curve approaches 0 as k tends to infinity, this curve
eventually crosses the n + δ line at the point k∗ > B/A. Therefore, if the economy begins
at k(0) < k∗, k̇/k equals the constant s A − n − δ > 0 until k attains the value B/A. At
that point, k̇/k falls until it reaches 0 at k = k∗. If the economy starts at k(0) > k∗, k̇/k is
initially negative and approaches 0 as k approaches k∗.

Since k∗ > B/A, the steady state features idle machines but no unemployed workers.
Since k is constant in the steady state, the quantity K grows along with L at the rate n. Since
the fraction of machines that are employed remains constant, the quantity of idle machines
also grows at the rate n (yet households are nevertheless assumed to keep saving at the
rate s).

The only way to reach a steady state in which all capital and labor are employed is for the
parameters of the model to satisfy the condition s A = n + δ. Since the four parameters that
appear in this condition are all exogenous, there is no reason for the equality to hold. Hence,
the conclusion from Harrod and Domar was that an economy would, in all probability, reach
one of two undesirable outcomes: perpetual growth of unemployment or perpetual growth
of idle machinery.
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We know now that there are several implausible assumptions in the arguments of Harrod
and Domar. First, the Solow–Swan model showed that Harrod and Domar’s parameter A—
the average product of capital—would typically depend on k, and k would adjust to satisfy
the equality s · f (k)/k = n + δ in the steady state. Second, the saving rate could adjust to
satisfy this condition. In particular, if agents maximize utility (as we assume in the next
chapter), they would not find it optimal to continue to save at the constant rate s when the
marginal product of capital was zero. This adjustment of the saving rate would rule out an
equilibrium with permanently idle machinery.

1.4.2 Growth Models with Poverty Traps

One theme in the literature of economic development concerns poverty traps.37 We can think
of a poverty trap as a stable steady state with low levels of per capita output and capital
stock. This outcome is a trap because, if agents attempt to break out of it, the economy has
a tendency to return to the low-level, stable steady state.

We observed that the average product of capital, f (k)/k, declines with k in the neoclas-
sical model. We also noted, however, that this average product may rise with k in some
models that feature increasing returns, for example, in formulations that involve learning
by doing and spillovers. One way for a poverty trap to arise is for the economy to have
an interval of diminishing average product of capital followed by a range of rising average
product. (Poverty traps also arise in some models with nonconstant saving rates; see Galor
and Ryder, 1989.)

We can get a range of increasing returns by imagining that a country has access to a
traditional, as well as a modern, technology.38 Imagine that producers can use a primitive
production function, which takes the usual Cobb–Douglas form,

YA = AK α L1−α (1.69)

The country also has access to a modern, higher productivity technology,39

YB = BK α L1−α (1.70)

where B > A. However, in order to exploit this better technology, the country as a whole
is assumed to have to pay a setup cost at every moment in time, perhaps to cover the
necessary public infrastructure or legal system. We assume that this cost is proportional to

37. See especially the big-push model of Lewis (1954). A more modern formulation of this idea appears in Murphy,
Shleifer, and Vishny (1989).

38. This section is an adaptation of Galor and Zeira (1993), who use two technologies in the context of education.

39. More generally, the capital intensity for the advanced technology would differ from that for the primitive
technology. However, this extension complicates the algebra without making any substantive differences.
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the labor force and given by bL , where b > 0. We assume further that this cost is borne by
the government and financed by a tax at rate b on each worker. The results are the same
whether the tax is paid by producers or workers (who are, in any event, the same persons
an economy with household-producers).

In per worker terms, the first production function is

yA = Akα (1.71)

The second production function, when considered net of the setup cost and in per worker
terms, is

yB = Bkα − b (1.72)

The two production functions are drawn in figure 1.18.
If the government has decided to pay the setup cost, which equals b per worker, all

producers will use the modern technology (because the tax b for each worker must be paid
in any case). If the government has not paid the setup cost, all producers must use the
primitive technology. A sensible government would pay the setup cost if the shift to the
modern technology leads to an increase in output per worker at the existing value of k and
when measured net of the setup cost. In the present setting, the shift is warranted if k exceeds
a critical level, given by k̃ = [b/(B − A)]1/α . Thus, the critical value of k rises with the
setup cost parameter, b, and falls with the difference in the productivity parameters, B − A.
We assume that the government pays the setup cost if k ≥ k̃ and does not pay it if k < k̃.

M T2T1

�F

y � R �k � w

y B

A

Figure 1.18
Traditional and modern production functions. The traditional production function has relatively low produc-
tivity. The modern production function exhibits higher productivity but is assumed to require a fixed cost to
operate.
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The growth rate of capital per worker is still given by the fundamental equation of the
Solow–Swan model, equation (1.23), as

k̇/k = s · f (k)/k − (δ + n)

where f (k) = Akα if k < k̃ and f (k) = Bkα − b if k ≥ k̃. The average product of capital,
f (k)/k, can be measured graphically in figure 1.18 by the slope of the cord that goes from
the origin to the effective production function. We can see that there is a range of k ≥ k̃ where
the average product is increasing. The saving curve therefore looks like the one depicted in
figure 1.19: it has the familiar negative slope at low levels of k, is then followed by a range
with a positive slope, and again has a negative slope at very high levels of k.

Figure 1.19 shows that the s · f (k)/k curve first crosses the n + δ line at the low steady-
state value, k∗

low, where we assume here that k∗
low < k̃. This steady state has the properties

that are familiar from the neoclassical model. In particular, k̇/k > 0 for k < k∗
low, and k̇/k < 0

at least in an interval of k > k∗
low. Hence, k∗

low is a stable steady state: it is a poverty trap in
the sense described before.

The tendency for increasing returns in the middle range of k is assumed to be strong
enough so that the s · f (k)/k curve eventually rises to cross the n + δ line again at the

n � �

s � f (k)�k

k
k*

high
(stable)

k*
middle

(unstable)
k*

low
(stable)

Figure 1.19
A poverty trap. The production function is assumed to exhibit diminishing returns to k when k is low, increasing
returns for a middle range of k, and either constant or diminishing returns when k is high. The curve s · f (k)/k
is therefore downward sloping for low values of k, upward sloping for an intermediate range of k, and downward
sloping or horizontal for high values of k. The steady-state value k∗

low is stable and therefore constitutes a poverty
trap for countries that begin with k between 0 and k∗

middle. If a country begins with k > k∗
middle, it converges to k∗

high
if diminishing returns to k ultimately set in. If the returns to capital are constant at high values of k, as depicted
by the dashed portion of the curve, the country converges to a positive long-run growth rate of k.
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steady-state value k∗
middle. This steady state is, however, unstable, because k̇/k < 0 applies to

the left, and k̇/k > 0 holds to the right. Thus, if the economy begins with k∗
low < k(0) < k∗

middle,
its natural tendency is to return to the development trap at k∗

low, whereas if it manages some-
how to get to k(0) > k∗

middle, it tends to grow further to reach still higher levels of k.
In the range where k > k∗

middle, the economy’s tendency toward diminishing returns even-
tually brings s · f (k)/k down enough to equal n + δ at the steady-state value k∗

high. This
steady state, corresponding to a high level of per capita income but to zero long-term per
capita growth, is familiar from our study of the neoclassical model. The key problem for a
less-developed economy at the trap level k∗

low is to get over the hump and thereby attain a
high long-run level of per capita income.

One empirical implication of the model described by figure 1.19 is that there would exist a
middle range of values of k—around k∗

middle—for which the growth rate, k̇/k, is increasing
in k and, hence, in y. That is, a divergence pattern should hold over this range of per
capita incomes. Our reading of the evidence across countries, discussed in chapter 12, does
not support this hypothesis. These results are, however, controversial—see, for example,
Quah (1996).

1.5 Appendix: Proofs of Various Propositions

1.5.1 Proof That Each Input Is Essential for Production
with a Neoclassical Production Function

We noted in the main body of this chapter that the neoclassical properties of the production
function imply that the two inputs, K and L , are each essential for production. To verify
this proposition, note first that if Y → ∞ as K → ∞, then

lim
K→∞

Y

K
= lim

K→∞
∂Y

∂K
= 0

where the first equality comes from l’Hôpital’s rule and the second from the Inada condition.
If Y remains bounded as K tends to infinity, then

lim
K→∞

(Y/K ) = 0

follows immediately. We also know from constant returns to scale that, for any finite L ,

lim
K→∞

(Y/K ) = lim
K→∞

[F(1, L/K )] = F(1, 0)

so that F(1, 0) = 0. The condition of constant returns to scale then implies

F(K , 0) = K · F(1, 0) = 0
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for any finite K . We can show from an analogous argument that F(0, L) = 0 for any finite L .
These results verify that each input is essential for production.

To demonstrate that output goes to infinity when either input goes to infinity, note that

F(K , L) = L · f (k) = K · [ f (k)/k]

Therefore, for any finite K ,

lim
L→∞

[F(K , L)] = K · lim
k→0

[ f (k)/k] = K · lim
k→0

[ f ′(k)] = ∞
where the last equalities follow from l’Hôpital’s rule (because essentiality implies f [0] = 0)
and the Inada condition. We can show from an analogous argument that limK→∞
[F(K , L)] = ∞. Therefore, output goes to infinity when either input goes to infinity.

1.5.2 Properties of the Convergence Coefficient in the Solow–Swan Model

Equation (1.46) is a log-linearization of equation (1.41) around the steady-state position.
To obtain equation (1.46), we have to rewrite equation (1.41) in terms of log(k̂). Note that
˙̂k/k̂ is the time derivative of log(k̂), and (k̂)−(1−α) can be written as e−(1−α) · log(k̂). The
steady-state value of s A(k̂)−(1−α) equals x + n + δ. We can now take a first-order Taylor
expansion of log(k̂) around log(k̂∗) to get equation (1.46). See the appendix on mathematics
at the end of the book for additional discussion. This result appears in Sala-i-Martin (1990)
and Mankiw, Romer, and Weil (1992).

The true speed of convergence for k̂ or ŷ is not constant; it depends on the distance from
the steady state. The growth rate of ŷ can be written as

˙̂y/ŷ = α · [s · A1/α · (ŷ)−(1−α)/α − (x + n + δ)
]

If we use the condition ŷ∗ = A · [s A/(x + n + δ)]α/(1−α), we can express the growth rate as

˙̂y/ŷ = α · (x + n + δ) · [(ŷ/ŷ∗)−(1−α)/α − 1
]

The convergence coefficient is

β = −d( ˙̂y/ŷ)]/d[log(ŷ)] = (1 − α) · (x + n + δ) · (ŷ/ŷ∗)−(1−α)/α

At the steady state, ŷ = ŷ∗ and β = (1 − α) · (x + n + δ), as in equation (1.45). More
generally, β declines as ŷ/ŷ∗ rises.

1.5.3 Proof That Technological Progress Must Be Labor Augmenting

We mentioned in the text that technological progress must take the labor-augmenting form
shown in equation (1.34) in order for the model to have a steady state with constant
growth rates. To prove this result, we start by assuming a production function that includes
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labor-augmenting and capital-augmenting technological progress:

Y = F[K · B(t), L · A(t)] (1.73)

where B(t) = A(t) implies that the technological progress is Hicks neutral.
We assume that A(t) = ext and B(t) = ezt , where x ≥ 0 and z ≥ 0 are constants. If we

divide both sides of equation (1.73) by K , we can express output per unit of capital as

Y/K = ezt ·
{

F

[
1,

L · A(t)

K · B(t)

]}
= ezt · ϕ[

(L/K ) · e(x−z) · t
]

where ϕ( · ) ≡ F[1, L · A(t)
K · B(t) ]. The population, L , grows at the constant rate n. If γ ∗

K is the
constant growth rate of K in the steady state, the expression for Y/K can be written as

Y/K = ezt · ϕ[
e(n+x−z−γ ∗

K ) · t
]

(1.74)

Recall that the growth rate of K is given by

K̇/K = s · (Y/K ) − δ

In the steady state, K̇/K equals the constant γ ∗
K , and, hence, Y/K must be constant. There

are two ways to get the right-hand side of equation (1.74) to be constant. First, z = 0 and
γ ∗

K = n + x ; that is, technological progress is solely labor augmenting, and the steady-state
growth rate of capital equals n + x . In this case, the production function can be written in
the form of equation (1.34).

The second way to get the right-hand side of equation (1.74) to be constant is with z �= 0
and for the term ϕ[e(n+x−z−γ ∗

K )t ] exactly to offset the term ezt . For this case to apply, the
derivative of Y/K (in the proposed steady state) with respect to time must be identically
zero. If we take the derivative of equation (1.74), set it to zero, and rearrange terms, we get

ϕ′(χ) · χ/ϕ(χ) = −z/(n + x − z − γ ∗
K )

where χ ≡ e(n+x−z−γ ∗
K ) · t , and the right-hand side is a constant. If we integrate out, we can

write the solution as

ϕ(χ) = (constant) · χ1−α

where α is a constant. This result implies that the production function can be written as

Y = (constant) · (K ezt )α · (Lext )1−α = (constant) · K α · (Leνt )1−α

where ν = [zα + x · (1 − α)]/(1 − α). In other words, if the rate of capital-augmenting
technological progress, z, is nonzero and a steady state exists, the production function
must take the Cobb–Douglas form. Moreover, if the production function is Cobb–Douglas,
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we can always express technological change as purely labor augmenting (at the rate ν).
The conclusion, therefore, is that the existence of a steady state implies that technological
progress can be written in the labor-augmenting form.

Another approach to technological progress assumes that capital goods produced later—
that is, in a more recent vintage—are of higher quality for a given cost. If quality improves
in accordance with T (t), the equation for capital accumulation in this vintage model is

K̇ = s · T (t) · F(K , L) − δK (1.75)

where K is measured in units of constant quality. This equation corresponds to Hicks-neutral
technological progress given by T (t) in the production function. The only difference from
the standard specification is that output is Y = F(K , L)—not T (t) · F(K , L).

If we want to use a model that possesses a steady state, we would still have to assume that
F(K , L) was Cobb–Douglas. In that case, the main properties of the vintage model turn
out to be indistinguishable from those of the model that we consider in the text in which
technological progress is labor augmenting (see Phelps, 1962, and Solow, 1969, for further
discussion). One difference in the vintage model is that, although K and Y grow at constant
rates in the steady state, the growth rate of K (in units of constant quality) exceeds that of
Y . Hence, K/Y is predicted to rise steadily in the long run.

1.5.4 Properties of the CES Production Function

The elasticity of substitution is a measure of the curvature of the isoquants. The slope of an
isoquant is

d L

d K isoquant
= −∂ F( · )/∂K

∂ F( · )/∂L

The elasticity is given by[
∂(Slope)

∂(L/K )
· L/K

Slope

]−1

For the CES production function shown in equation (1.64), the slope of the isoquant is

−(L/K )1−ψ · a · bψ/[(1 − a) · (1 − b)ψ ]

and the elasticity is 1/(1 − ψ), a constant.
To compute the limit of the production function as ψ approaches 0, use equation (1.64)

to get limψ→0[log(Y )] = log(A) + 0/0, which involves an indeterminate form. Apply
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l’Hôpital’s rule to get

lim
ψ→0

[log(Y )]

= log(A) +
[

a(bK )ψ · log(bK ) + (1 − a) · [(1 − b) · L]ψ · log[(1 − b) · L]

a · (bK )ψ + (1 − a) · [(1 − b) · L]ψ

]
ψ=0

= log(A) + a · log(bK ) + (1 − a) · log[(1 − b) · L]

It follows that Y = ÃK a L1−a , where Ã = Aba · (1 − b)1−a . That is, the CES production
function approaches the Cobb–Douglas form as ψ tends to zero.

1.6 Problems

1.1 Convergence.

a. Explain the differences among absolute convergence, conditional convergence, and a
reduction in the dispersion of real per capita income across groups.

b. Under what circumstances does absolute convergence imply a decline in the dispersion
of per capita income?

1.2 Forms of technological progress. Assume that the rate of exogenous technological
progress is constant.

a. Show that a steady state can coexist with technological progress only if this progress
takes a labor-augmenting form. What is the intuition for this result?

b. Assume that the production function is Y = F[B(T ) · K , A(t) · L], where B(t) = ezt and
A(T ) = ext , with z ≥ 0 and x ≥ 0. Show that if z > 0 and a steady state exists, the production
function must take the Cobb–Douglas form.

1.3 Dependence of the saving rate, population growth rate, and depreciation rate
on the capital intensity. Assume that the production function satisfies the neoclassical
properties.

a. Why would the saving rate, s, generally depend on k? (Provide some intuition; the precise
answer will be given in chapter 2.)

b. How does the speed of convergence change if s(k) is an increasing function of k? What
if s(k) is a decreasing function of k?

Consider now an AK technology.

c. Why would the saving rate, s, depend on k in this context?

d. How does the growth rate of k change over time depending on whether s(k) is an
increasing or decreasing function of k?
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e. Suppose that the rate of population growth, n, depends on k. For an AK technology,
what would the relation between n and k have to be in order for the model to predict
convergence? Can you think of reasons why n would relate to k in this manner? (We
analyze the determination of n in chapter 9.)

f. Repeat part e in terms of the depreciation rate, δ. Why might δ depend on k?

1.4 Effects of a higher saving rate. Consider this statement: “Devoting a larger share
of national output to investment would help to restore rapid productivity growth and rising
living standards.” Under what conditions is the statement accurate?

1.5 Factor shares. For a neoclassical production function, show that each factor of pro-
duction earns its marginal product. Show that if owners of capital save all their income
and workers consume all their income, the economy reaches the golden rule of capital
accumulation. Explain the results.

1.6 Distortions in the Solow–Swan model (based on Easterly, 1993). Assume that
output is produced by the CES production function,

Y = [(
aF K η

F + aI K η
I

)ψ/η + aG K ψ
G

]1/ψ

where Y is output; KF is formal capital, which is subject to taxation; K I is informal capital,
which evades taxation; KG is public capital, provided by government and used freely by all
producers; aF , aI , aG > 0; η < 1; and ψ < 1. Installed formal and informal capital differ in
their location and form of ownership and, therefore, in their productivity.

Output can be used on a one-for-one basis for consumption or gross investment in the three
types of capital. All three types of capital depreciate at the rate δ. Population is constant,
and technological progress is nil.

Formal capital is subject to tax at the rate τ at the moment of its installation. Thus, the
price of formal capital (in units of output) is 1 + τ . The price of a unit of informal capital is
one. Gross investment in public capital is the fixed fraction sG of tax revenues. Any unused
tax receipts are rebated to households in a lump-sum manner. The sum of investment in the
two forms of private capital is the fraction s of income net of taxes and transfers. Existing
private capital can be converted on a one-to-one basis in either direction between formal
and informal capital.

a. Derive the ratio of informal to formal capital used by profit-maximizing producers.

b. In the steady state, the three forms of capital grow at the same rate. What is the ratio of
output to formal capital in the steady state?

c. What is the steady-state growth rate of the economy?

d. Numerical simulations show that, for reasonable parameter values, the graph of the
growth rate against the tax rate, τ , initially increases rapidly, then reaches a peak, and
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finally decreases steadily. Explain this nonmonotonic relation between the growth rate and
the tax rate.

1.7 A linear production function. Consider the production function Y = AK + BL ,
where A and B are positive constants.

a. Is this production function neoclassical? Which of the neoclassical conditions does it
satisfy and which ones does it not?

b. Write output per person as a function of capital per person. What is the marginal product
of k? What is the average product of k?

In what follows, we assume that population grows at the constant rate n and that capital
depreciates at the constant rate δ.

c. Write down the fundamental equation of the Solow–Swan model.

d. Under what conditions does this model have a steady state with no growth of per capita
capital, and under what conditions does the model display endogenous growth?

e. In the case of endogenous growth, how does the growth rate of the capital stock behave
over time (that is, does it increase or decrease)? What about the growth rates of output and
consumption per capita?

f. If s = 0.4, A = 1, B = 2, δ = 0.08, and n = 0.02, what is the long-run growth rate of
this economy? What if B = 5? Explain the differences.

1.8 Forms of technological progress and steady-state growth. Consider an economy
with a CES production function:

Y = D(t) · {[B(t) · K ]ψ + [A(t) · L]ψ }1/ψ

where ψ is a constant parameter different from zero. The terms D(t), B(t), and A(t)
represent different forms of technological progress. The growth rates of these three terms
are constant, and we denote them by xD , xB , and xA, respectively. Assume that population
is constant, with L = 1, and normalize the initial levels of the three technologies to one, so
that D(0) = B(0) = A(0) = 1. In this economy, capital accumulates according to the usual
equation:

K̇ = Y − C − δK

a. Show that, in a steady state (defined as a situation in which all the variables grow at
constant, perhaps different, rates), the growth rates of Y , K , and C are the same.

b. Imagine first that xB = xA = 0 and that xD > 0. Show that the steady state must have
γK = 0 (and, therefore, γY = γC = 0). (Hint: Show first that γY = xD + [K0eγk t ]ψ

1+[K0eγk t ]ψ · γK .)
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c. Using the results in parts a and b, what is the only growth rate of D(t) that is consistent
with a steady state? What, therefore, is the only possible steady-state growth rate of Y ?

d. Imagine now that xD = xA = 0 and that xB > 0. Show that, in the steady state, γK = −xB

(Hint: Show first that γY = (xB + γK ) · [Kt · Bt ]ψ

1+[Kt · Bt ]ψ
.)

e. Using the results in parts a and d, show that the only growth rate of B consistent with a
steady state is xB = 0.

f. Finally, assume that xD = xB = 0 and that xA > 0. Show that, in a steady state, the growth

rates must satisfy γK = γY = γC = xD . (Hint: Show first that γY = K ψ
t · γK +Aψ

t · xA

K ψ
t +Aψ

t
.)

g. What would be the steady-state growth rate in part f if population is not constant but,
instead, grows at the rate n > 0?



2 Growth Models with Consumer Optimization (the Ramsey Model)

One shortcoming of the models that we analyzed in chapter 1 is that the saving rate—and,
hence, the ratio of consumption to income—are exogenous and constant. By not allowing
consumers to behave optimally, the analysis did not allow us to discuss how incentives
affect the behavior of the economy. In particular, we could not think about how the economy
reacted to changes in interest rates, tax rates, or other variables. In chapter 1 we showed
that allowing for firms to behave optimally did not change any of the basic results of the
Solow–Swan model. The main reason was that the overall amount of investment in the
economy was still given by the saving of families, and that saving remained exogenous.

To paint a more complete picture of the process of economic growth, we need to allow
for the path of consumption and, hence, the saving rate to be determined by optimizing
households and firms that interact on competitive markets. We deal here with infinitely
lived households that choose consumption and saving to maximize their dynastic utility,
subject to an intertemporal budget constraint. This specification of consumer behavior is a
key element in the Ramsey growth model, as constructed by Ramsey (1928) and refined by
Cass (1965) and Koopmans (1965).

One finding will be that the saving rate is not constant in general but is instead a function
of the per capita capital stock, k. Thus we modify the Solow–Swan model in two respects:
first, we pin down the average level of the saving rate, and, second, we determine whether
the saving rate rises or falls as the economy develops. We also learn how saving rates depend
on interest rates and wealth and, in a later chapter, on tax rates and subsidies.

The average level of the saving rate is especially important for the determination of the
levels of variables in the steady state. In particular, the optimizing conditions in the Ramsey
model preclude the kind of inefficient oversaving that was possible in the Solow–Swan
model.

The tendency for saving rates to rise or fall with economic development affects the
transitional dynamics, for example, the speed of convergence to the steady state. If the
saving rate rises with k, then the convergence speed is slower than that in the Solow–
Swan model, and vice versa. We find, however, that even if the saving rate is rising, the
convergence property still holds under fairly general conditions in the Ramsey model. That
is, an economy still tends to grow faster in per capita terms when it is further from its own
steady-state position.

We show that the Solow–Swan model with a constant saving rate is a special case of the
Ramsey model; moreover, this case corresponds to reasonable parameter values. Thus, it
was worthwhile to begin with the Solow–Swan model as a tractable approximation to the
optimizing framework. We also note, however, that the empirical evidence suggests that
saving rates typically rise with per capita income during the transition to the steady state.
The Ramsey model is consistent with this pattern, and the model allows us to assess the
implications of this saving behavior for the transitional dynamics. Moreover, the optimizing
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framework will be essential in later chapters when we extend the Ramsey model in various
respects and consider the possible roles for government policies. Such policies will, in
general, affect the incentives to save.

2.1 Households

2.1.1 Setup of the Model

The households provide labor services in exchange for wages, receive interest income on
assets, purchase goods for consumption, and save by accumulating assets. The basic model
assumes identical households—each has the same preference parameters, faces the same
wage rate (because all workers are equally productive), begins with the same assets per
person, and has the same rate of population growth. Given these assumptions, the analysis
can use the usual representative-agent framework, in which the equilibrium derives from
the choices of a single household. We discuss later how the results generalize when various
dimensions of household heterogeneity are introduced.

Each household contains one or more adult, working members of the current generation.
In making plans, these adults take account of the welfare and resources of their prospective
descendants. We model this intergenerational interaction by imagining that the current
generation maximizes utility and incorporates a budget constraint over an infinite horizon.
That is, although individuals have finite lives, we consider an immortal extended family. This
setting is appropriate if altruistic parents provide transfers to their children, who give in turn
to their children, and so on. The immortal family corresponds to finite-lived individuals who
are connected through a pattern of operative intergenerational transfers based on altruism.1

The current adults expect the size of their extended family to grow at the rate n because of
the net influences of fertility and mortality. In chapter 9 we study how rational agents choose
their fertility by weighing the costs and benefits of rearing children. But, at this point, we
continue to simplify by treating n as exogenous and constant. We also neglect migration of
persons, another topic explored in chapter 9. If we normalize the number of adults at time
0 to unity, the family size at time t—which corresponds to the adult population—is

L(t) = ent

If C(t) is total consumption at time t , then c(t) ≡ C(t)/L(t) is consumption per adult
person.

1. See Barro (1974). We abstract from marriage, which generates interactions across family lines. See Bernheim
and Bagwell (1988) for a discussion.



Growth Models with Consumer Optimization 87

Each household wishes to maximize overall utility, U , as given by

U =
∫ ∞

0
u[c(t)] · ent · e−ρt dt (2.1)

This formulation assumes that the household’s utility at time 0 is a weighted sum of all
future flows of utility, u(c). The function u(c)—often called the felicity function—relates
the flow of utility per person to the quantity of consumption per person, c. We assume
that u(c) is increasing in c and concave—u′(c) > 0, u′′(c) < 0.2 The concavity assumption
generates a desire to smooth consumption over time: households prefer a relatively uni-
form pattern to one in which c is very low in some periods and very high in others. This
desire to smooth consumption drives the household’s saving behavior because they will
tend to borrow when income is relatively low and save when income is relatively high.
We also assume that u(c) satisfies Inada conditions: u′(c) → ∞ as c → 0, and u′(c) → 0
as c → ∞.

The multiplication of u(c) in equation (2.1) by family size, L = ent , represents the adding
up of utils for all family members alive at time t . The other multiplier, e−ρt , involves the
rate of time preference, ρ > 0. A positive value of ρ means that utils are valued less the later
they are received.3 We assume ρ > n, which implies that U in equation (2.1) is bounded if
c is constant over time.

One reason for ρ to be positive is that utils far in the future correspond to consumption of
later generations. Suppose that, starting from a point at which the levels of consumption per
person in each generation are the same, parents prefer a unit of their own consumption
to a unit of their children’s consumption. This parental “selfishness” corresponds to ρ > 0
in equation (2.1). In a fuller specification, we would also distinguish the rate at which
individuals discount their own flow of utility at different points in time (for which ρ = 0
might apply) from the rate that applies across generations. Equation (2.1) assumes, only for
reasons of tractability, that the discount rate within a person’s lifetime is the same as that
across generations.

It is also plausible that parents would have diminishing marginal utility with respect to
the number of children. We could model this effect by allowing the rate of time preference,

2. The results will be invariant with positive linear transformations of the utility function but not with arbitrary
positive, monotonic transformations. Thus, the analysis depends on a limited form of cardinal utility. See Koopmans
(1965) for a discussion.

3. Ramsey (1928) preferred to assume ρ = 0. He then interpreted the optimizing agent as a social planner, rather than
a competitive household, who chose consumption and saving for today’s generation as well as for future generations.
The discounting of utility for future generations (ρ > 0) was, according to Ramsey, “ethically indefensible.” We
work out an example with ρ = 0 in the mathematics chapter.
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ρ, to increase with the population growth rate, n.4 Because we treat n as exogenous, this
dependence of ρ on n would not materially change the analysis in this chapter. We shall,
however, consider this effect in chapter 9, which allows for an endogenous determination
of population growth.

Households hold assets in the form of ownership claims on capital (to be introduced
later) or as loans. Negative loans represent debts. We continue to assume a closed economy,
so that no assets can be traded internationally. Households can lend to and borrow from
other households, but the representative household will end up holding zero net loans in
equilibrium. Because the two forms of assets, capital and loans, are assumed to be perfect
substitutes as stores of value, they must pay the same real rate of return, r(t). We denote
the household’s net assets per person by a(t), where a(t) is measured in real terms, that is,
in units of consumables.

Households are competitive in that each takes as given the interest rate, r(t), and the wage
rate, w(t), paid per unit of labor services. We assume that each adult supplies inelastically
one unit of labor services per unit of time. (Chapter 9 considers a labor/leisure choice.)
In equilibrium, the labor market clears, and the household obtains the desired quantity of
employment. That is, the model abstracts from “involuntary unemployment.”

Since each person works one unit of labor services per unit of time, the wage income
per adult person equals w(t). The total income received by the aggregate of households is,
therefore, the sum of labor income, w(t)·L(t), and asset income, r(t)·(Assets). Households
use the income that they do not consume to accumulate more assets:

d(Assets)

dt
= r · (Assets) + wL − C (2.2)

where we omit time subscripts whenever no ambiguity results. Since a is per capita assets,
we have

ȧ =
(

1

L

)
·
[

d(Assets)

dt

]
− na

Therefore, if we divide equation (2.2) by L , we get the budget constraint in per capita terms:

ȧ = w + ra − c − na (2.3)

4. One case common in the growth literature assumes that ρ rises one to one with n; that is, ρ = ρ∗ + n, where
ρ∗ is the positive rate of time preference that applies under zero population growth. In this case, utility at time t
enters into equation (2.1) as u(c)e−ρ∗t , which depends on per capita utility, but not on the size of the family at
time t . This specification is used, for example, by Sidrauski (1967) and Blanchard and Fischer (1989, chapter 2).
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If each household can borrow an unlimited amount at the going interest rate, r(t), it has
an incentive to pursue a form of chain letter or Ponzi game. The household can borrow to
finance current consumption and then use future borrowings to roll over the principal and
pay all the interest. In this case, the household’s debt grows forever at the rate of interest,
r(t). Since no principal ever gets repaid, today’s added consumption is effectively free.
Thus a household that can borrow in this manner would be able to finance an arbitrarily
high level of consumption in perpetuity.

To rule out chain-letter possibilities, we assume that the credit market imposes a constraint
on the amount of borrowing. The appropriate restriction turns out to be that the present value
of assets must be asymptotically nonnegative, that is,

lim
t→∞

{
a(t) · exp

[
−

∫ t

0
[r(v) − n] dv

]}
≥ 0 (2.4)

This constraint means that, in the long run, a household’s debt per person (negative values
of a[t]) cannot grow as fast as r(t) − n, so that the level of debt cannot grow as fast as r(t).
This restriction rules out the type of chain-letter finance that we have described. We show
later how the credit-market constraint expressed in equation (2.4) emerges naturally from
the market equilibrium.

The household’s optimization problem is to maximize U in equation (2.1), subject to the
budget constraint in equation (2.3), the stock of initial assets, a(0), and the limitation on bor-
rowing in equation (2.3). The inequality restrictions, c(t) ≥ 0, also apply. However, as c(t)
approaches 0, the Inada condition implies that the marginal utility of consumption becomes
infinite. The inequality restrictions will therefore never bind, and we can safely ignore them.

2.1.2 First-Order Conditions

The mathematical methods for this type of dynamic optimization problem are discussed
in the appendix on mathematics at the end of the book. We use these results here without
further derivation. Begin with the present-value Hamiltonian,

J = u[c(t)] · e−(ρ−n)t + ν(t) · {w(t) + [r(t) − n] · a(t) − c(t)} (2.5)

where the expression in braces equals ȧ from equation (2.3). The variable ν(t) is the present-
value shadow price of income. It represents the value of an increment of income received at
time t in units of utils at time 0.5 Notice that this shadow price depends on time because there

5. We could deal alternatively with the shadow price νe(ρ−n)t . This shadow price measures the value of an increment
of income at time t in units of utils at time t . (See the discussion in the appendix on mathematics at the end of the
book.)
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is one of them for each “constraint,” and the household faces a continuum of constraints,
one for each instant. The first-order conditions for a maximum of U are

∂ J

∂c
= 0 �⇒ ν = u′(c)e−(ρ−n)t (2.6)

ν̇ = −∂ J/∂a �⇒ ν̇ = −(r − n) · ν (2.7)

The transversality condition is

lim
t→∞[ν(t) · a(t)] = 0 (2.8)

The Euler Equation If we differentiate equation (2.6) with respect to time and substitute
for ν from this equation and for ν̇ from equation (2.7), we get the basic condition for
choosing consumption over time:

r = ρ −
(

du′/dt

u′

)
= ρ −

[
u′′(c) · c

u′(c)

]
· (ċ/c) (2.9)

This equation says that households choose consumption so as to equate the rate of return,
r , to the rate of time preference, ρ, plus the rate of decrease of the marginal utility of
consumption, u′, due to growing per capita consumption, c.

The interest rate, r , on the left-hand side of equation (2.9) is the rate of return to saving.
The far right-hand side of the equation can be viewed as the rate of return to consump-
tion. Agents prefer to consume today rather than tomorrow for two reasons. First, because
households discount future utility at rate ρ, this rate is part of the rate of return to con-
sumption today. Second, if ċ/c > 0, c is low today relative to tomorrow. Since agents like to
smooth consumption over time—because u′′(c) < 0—they would like to even out the flow
by bringing some future consumption forward to the present. The second term on the far
right picks up this effect. If agents are optimizing, equation (2.9) says that they have equated
the two rates of return and are therefore indifferent at the margin between consuming and
saving.

Another way to view equation (2.9) is that households would select a flat consumption
profile, with ċ/c = 0, if r = ρ. Households would be willing to depart from this flat pattern
and sacrifice some consumption today for more consumption tomorrow—that is, tolerate
ċ/c > 0—only if they are compensated by an interest rate, r , that is sufficiently above ρ.
The term [−u′′(c)·c

u′(c) ] · (ċ/c) on the right-hand side of equation (2.9) gives the required amount
of compensation. Note that the term in brackets is the magnitude of the elasticity of u′(c)
with respect to c. This elasticity, a measure of the concavity of u(c), determines the amount
by which r must exceed ρ. If the elasticity is larger in magnitude, the required premium of
r over ρ is greater for a given value of ċ/c.
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The magnitude of the elasticity of marginal utility, {[−u′′(c) · c]/[u′(c)]}, is sometimes
called the reciprocal of the elasticity of intertemporal substitution.6 Equation (2.9) shows
that to find a steady state in which r and ċ/c are constant, this elasticity must be constant
asymptotically. We therefore follow the common practice of assuming the functional form

u(c) = c(1−θ) − 1

(1 − θ)
(2.10)

where θ > 0, so that the elasticity of marginal utility equals the constant −θ .7 The elasticity
of substitution for this utility function is the constant σ = 1/θ . Hence, this form is called
the constant intertemporal elasticity of substitution (CIES) utility function. The higher is θ ,
the more rapid is the proportionate decline in u′(c) in response to increases in c and,
hence, the less willing households are to accept deviations from a uniform pattern of c over
time. As θ approaches 0, the utility function approaches a linear form in c; the linearity
means that households are indifferent to the timing of consumption if r = ρ applies.

The form of u(c) in equation (2.10) implies that the optimality condition from equa-
tion (2.9) simplifies to

ċ/c = (1/θ) · (r − ρ) (2.11)

Therefore, the relation between r and ρ determines whether households choose a pattern of
per capita consumption that rises over time, stays constant, or falls over time. A lower will-
ingness to substitute intertemporally (a higher value of θ ) implies a smaller responsiveness
of ċ/c to the gap between r and ρ.

The Transversality Condition The transversality condition in equation (2.8) says that
the value of the household’s per capita assets—the quantity a(t) times the shadow price

6. The elasticity of intertemporal substitution between consumption at times t1 and t2 is given by the reciprocal
of the proportionate change in the magnitude of the slope of an indifference curve in response to a proportionate
change in the ratio c(t1)/c(t2). If we denote this elasticity by σ , we get

σ =
[

c(t1)/c(t2)

−u′[c(t1)]/u′[c(t2)]
· d{u′[c(t1)]/u′[c(t2)]}

d[c(t1)/c(t2)]

]−1

where −u′[c(t1)]/u′[c(t2)] is the magnitude of the slope of the indifference curve. If we let t2 approach t1, we get
the instantaneous elasticity,

σ = −u′(c)/[c · u′′(c)]

which is the inverse of the magnitude of the elasticity of marginal utility.

7. The inclusion of the −1 in the formula is convenient because it implies that u(c) approaches log(c) as θ → 1.
(This result can be proven using l’Hôpital’s rule.) The term −1/(1−θ) can, however, be omitted without affecting
the subsequent results, because the household’s choices are invariant with respect to linear transformations of the
utility function (see footnote 2).
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ν(t)—must approach 0 as time approaches infinity. If we think of infinity loosely as the end of
the planning horizon, the intuition is that optimizing agents do not want to have any valuable
assets left over at the end.8 Utility would increase if the assets, which are effectively being
wasted, were used instead to raise consumption at some dates in finite time.

The shadow price ν evolves over time in accordance with equation (2.7). Integration of
this equation with respect to time yields

ν(t) = ν(0) · exp

{
−

∫ t

0
[r(v) − n] dv

}

The term ν(0) equals u′[c(0)], which is positive because c(0) is finite (if U is finite), and
u′(c) is assumed to be positive as long as c is finite.

If we substitute the result for ν(t) into equation (2.8), the transversality condition becomes

lim
t→∞

{
a(t) · exp

[
−

∫ t

0
[r(v) − n] dv

]}
= 0 (2.12)

This equation implies that the quantity of assets per person, a, does not grow asymptotically
at a rate as high as r − n or, equivalently, that the level of assets does not grow at a rate as
high as r . It would be suboptimal for households to accumulate positive assets forever at
the rate r or higher, because utility would increase if these assets were instead consumed
in finite time.

In the case of borrowing, where a(t) is negative, infinite-lived households would like to
violate equation (2.12) by borrowing and never making payments for principal or interest.
However, equation (2.4) rules out this chain-letter finance, that is, schemes in which a
household’s debt grows forever at the rate r or higher. In order to borrow on this perpetual
basis, households would have to find willing lenders; that is, other households that were
willing to hold positive assets that grew at the rate r or higher. But we already know from
the transversality condition that these other households will be unwilling to absorb assets
asymptotically at such a high rate. Therefore, in equilibrium, each household will be unable
to borrow in a chain-letter fashion. In other words, the inequality restriction shown in
equation (2.4) is not arbitrary and would, in fact, be imposed in equilibrium by the credit
market. Faced by this constraint, the best thing that optimizing households can do is to
satisfy the condition shown in equation (2.12). That is, this equality holds whether a(t) is
positive or negative.

8. The interpretation of the transversality condition in the infinite-horizon problem as the limit of the corresponding
condition for a finite-horizon problem is not always correct. See the appendix on mathematics at the end of the
book.
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The Consumption Function The term exp[− ∫ t
0 r(v) dv], which appears in equa-

tion (2.12), is a present-value factor that converts a unit of income at time t to an equivalent
unit of income at time 0. If r(v) equaled the constant r , the present-value factor would
simplify to e−r t . More generally we can think of an average interest rate between times 0
and t , defined by

r̄(t) = (1/t) ·
∫ t

0
r(v) dv (2.13)

The present-value factor equals e−r̄(t)·t .
Equation (2.11) determines the growth rate of c. To determine the level of c—that is, the

consumption function—we have to use the flow budget constraint, equation (2.3), to derive
the household’s intertemporal budget constraint. We can solve equation (2.3) as a first-order
linear differential equation in a to get an intertemporal budget constraint that holds for any
time T ≥ 0:9

a(T ) · e−[r̄(T )−n]T +
∫ T

0
c(t)e−[r̄(t)−n]t dt = a(0) +

∫ T

0
w(t)e−[r̄(t)−n]t dt

where we used the definition of r̄(t) from equation (2.13). This intertemporal budget con-
straint says that the present discounted value of all income between 0 and T plus the initial
available wealth have to equal the present discounted value of all future consumption plus
the present value of the assets left at T . If we take the limit as T → ∞, the term on the far
left vanishes (from the transversality condition in equation [2.12]), and the intertemporal
budget constraint becomes

∫ ∞

0
c(t)e−[r̄(t)−n]t dt = a(0) +

∫ ∞

0
w(t)e−[r̄(t)−n]t dt = a(0) + w̃(0) (2.14)

Hence, the present value of consumption equals lifetime wealth, defined as the sum of initial
assets, a(0), and the present value of wage income, denoted by w̃(0).

If we integrate equation (2.11) between times 0 and t and use the definition of r̄(t) from
equation (2.13), we find that consumption is given by

c(t) = c(0) · e(1/θ)·[r̄(t)−ρ]t

9. The methods for solving first-order linear differential equations with variable coefficients are discussed in the
appendix on mathematics at the end of the book.
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Substitution of this result for c(t) into the intertemporal budget constraint in equation (2.14)
leads to the consumption function at time 0:

c(0) = µ(0) · [a(0) + w̃(0)] (2.15)

where µ(0), the propensity to consume out of wealth, is determined from

[1/µ(0)] =
∫ ∞

0
e[r̄(t)·(1−θ)/θ−ρ/θ+n]t dt (2.16)

An increase in average interest rates, r̄(t), for given wealth, has two effects on the marginal
propensity to consume in equation (2.16). First, higher interest rates increase the cost of
current consumption relative to future consumption, an intertemporal-substitution effect
that motivates households to shift consumption from the present to the future. Second,
higher interest rates have an income effect that tends to raise consumption at all dates. The
net effect of an increase in r̄(t) on µ(0) depends on which of the two forces dominates.

If θ < 1, µ(0) declines with r̄(t) because the substitution effect dominates. The intuition
is that, when θ is low, households care relatively little about consumption smoothing, and the
intertemporal-substitution effect is large. Conversely, if θ > 1, µ(0) rises with r̄(t) because
the substitution effect is relatively weak. Finally, if θ = 1 (log utility), the two effects exactly
cancel, and µ(0) simplifies to ρ − n, which is independent of r̄(t). Recall that we assumed
ρ − n > 0.

The effects of r̄(t) on µ(0) carry over to effects on c(0) if we hold constant the wealth
term, a(0)+ w̃(0). In fact, however, w̃(0) falls with r̄(t) for a given path of w(t). This third
effect reinforces the substitution effect that we mentioned before.

2.2 Firms

Firms produce goods, pay wages for labor input, and make rental payments for capital input.
Each firm has access to the production technology,

Y (t) = F[K (t), L(t), T (t)]

where Y is the flow of output, K is capital input (in units of commodities), L is labor input
(in person-hours per year), and T (t) is the level of the technology, which is assumed to
grow at the constant rate x ≥ 0. Hence, T (t) = ext , where we normalize the initial level
of technology, T (0), to 1. The function F(·) satisfies the neoclassical properties discussed
in chapter 1. In particular, Y exhibits constant returns to scale in K and L , and each input
exhibits positive and diminishing marginal product.
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We showed in chapter 1 that a steady state coexists with technological progress at a
constant rate only if this progress takes the labor-augmenting form

Y (t) = F[K (t), L(t) · T (t)]

If we again define “effective labor” as the product of raw labor and the level of technology,
L̂ ≡ L · T (t), the production function can be written as

Y = F(K , L̂) (2.17)

We shall find it convenient to work with variables that are constant in the steady state. In
chapter 1, we showed that the steady state of the model with exogenous technical progress
was such that the per capita variables grew at the rate of technological progress, x . This
property will still hold in the present model. Hence, we will deal again with quantities per
unit of effective labor:

ŷ ≡ Y/L̂ and k̂ ≡ K/L̂

The production function can then be rewritten in intensive form, as in equation (1.38),

ŷ = f (k̂) (2.18)

where f (0) = 0. It can be readily verified that the marginal products of the factors are given
by10

∂Y/∂K = f ′(k̂)

∂Y/∂L = [ f (k̂) − k̂ · f ′(k̂)] · ext (2.19)

The Inada conditions, discussed in chapter 1, imply f ′(k̂) → ∞ as k̂ → 0 and f ′(k̂) → 0
as k̂ → ∞.

We think of firms as renting the services of capital from the households that own the
capital. (None of the results would change if the firms owned the capital, and the households
owned shares of stock in the firms.) If we let R(t) be the rental rate of a unit of capital, a
firm’s total cost for capital is RK , which is proportional to K . We assume that capital services
can be increased or decreased without incurring any additional expenses, such as costs for
installing machines or making other changes. We consider these kinds of adjustment costs
in chapter 3.

We assume, as in chapter 1, a one-sector production model in which one unit of output
can be used to generate one unit of household consumption, C , or one unit of additional

10. We can write Y = L̂ · f (k̂). Differentiation of Y with respect to K , holding fixed L and t , leads to ∂Y/∂K =
f ′(k̂). Differentiation of Y with respect to L , holding fixed K and t , leads to ∂Y/∂L = [ f (k̂) − k̂ · f ′(k̂)]ext .
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capital, K . Therefore, as long as the economy is not at a corner solution in which all current
output goes into consumption or new capital, the price of K in terms of C will be fixed
at unity. Because C will be nonzero in equilibrium, we have to be concerned only with
the possibility that none of the output goes into new capital; in other words, that gross
investment is 0. Even in this situation, the price of K in terms of C would remain at unity
if capital were reversible in the sense that the existing stocks could be consumed on a
one-for-one basis. With reversible capital, the economy’s gross investment can be negative,
and the price of K in units of C stays at unity. Although this situation may apply to farm
animals, economists usually assume that investment is irreversible. In this case, the price
of K in units of C is one only if the constraint of nonnegative aggregate gross investment
is nonbinding in equilibrium. We maintain this assumption in the following analysis, and
we deal with irreversible investment in appendix 2B (section 2.9).

Since capital stocks depreciate at the constant rate δ ≥ 0, the net rate of return to a
household that owns a unit of capital is R − δ.11 Recall that households can also receive
the interest rate r on funds lent to other households. Since capital and loans are perfect
substitutes as stores of value, we must have r = R − δ or, equivalently, R = r + δ.

The representative firm’s flow of net receipts or profit at any point in time is given by

π = F(K , L̂) − (r + δ) · K − wL (2.20)

As in chapter 1, the problem of maximizing the present value of profit reduces here to
a problem of maximizing profit in each period without regard to the outcomes in other
periods. Profit can be written as

π = L̂ · [ f (k̂) − (r + δ) · k̂ − we−xt ] (2.21)

A competitive firm, which takes r and w as given, maximizes profit for given L̂ by setting

f ′(k̂) = r + δ (2.22)

Also as before, in a full-market equilibrium, w equals the marginal product of labor corre-
sponding to the value of k̂ that satisfies equation (2.22):

[ f (k̂) − k̂ · f ′(k̂)]ext = w (2.23)

This condition ensures that profit equals zero for any value of L̂ .

11. More generally, if the price of capital can change over time, the real rate of return for owners of capital equals
R/φ − δ + φ̇/φ, where φ is the price of capital in units of consumables. In the present case, where φ = 1, the
capital-gain term, φ̇/φ, vanishes, and the rate of return simplifies to R − δ.
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2.3 Equilibrium

We began with the behavior of competitive households that faced a given interest rate, r ,
and wage rate, w. We then introduced competitive firms that also faced given values of r
and w. We can now combine the behavior of households and firms to analyze the structure
of a competitive market equilibrium.

Since the economy is closed, all debts within the economy must cancel. Hence, the assets
per adult person, a, equal the capital per worker, k. The equality between k and a follows
because all of the capital stock must be owned by someone in the economy; in particular, in
this closed-economy model, all of the domestic capital stock must be owned by the domestic
residents. If the economy were open to international capital markets, the gap between k and
a would correspond to the home country’s net debt to foreigners. Chapter 3 considers an
open economy, in which the net foreign debt can be nonzero.

The household’s flow budget constraint in equation (2.3) determines ȧ. Use a = k, k̂ =
ke−xt , and the conditions for r and w in equations (2.22) and (2.23) to get

˙̂k = f (k̂) − ĉ − (x + n + δ) · k̂ (2.24)

where ĉ ≡ C/L̂ = ce−xt , and k̂(0) is given. Equation (2.24) is the resource constraint for
the overall economy: the change in the capital stock equals output less consumption and
depreciation, and the change in k̂ ≡ K/L̂ also takes account of the growth in L̂ at the rate
x + n.

The differential equation (2.24) is the key relation that determines the evolution of k̂ and,
hence, ŷ = f (k̂) over time. The missing element, however, is the determination of ĉ. If we
knew the relation of ĉ to k̂ (or ŷ), or if we had another differential equation that determined
the evolution of ĉ, we could study the full dynamics of the economy.

In the Solow–Swan model of chapter 1, the missing relation was provided by the assump-
tion of a constant saving rate. This assumption implied the linear consumption function,
ĉ = (1− s) · f (k̂). In the present setting, the behavior of the saving rate is not so simple, but
we do know from household optimization that c grows in accordance with equation (2.11).
If we use the conditions r = f ′(k̂) − δ and ĉ = ce−xt , we get

˙̂c/ĉ = ċ

c
− x = 1

θ
· [ f ′(k̂) − δ − ρ − θx] (2.25)

This equation, together with equation (2.24), forms a system of two differential equations
in ĉ and k̂. This system, together with the initial condition, k̂(0), and the transversality
condition, determines the time paths of ĉ and k̂.
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We can write the transversality condition in terms of k̂ by substituting a = k and k̂ = ke−xt

into equation (2.12) to get

lim
t→∞

{
k̂ · exp

(
−

∫ t

0
[ f ′(k̂) − δ − x − n] dv

)}
= 0 (2.26)

We can interpret this result if we jump ahead to use the result that k̂ tends asymptotically
to a constant steady-state value, k̂∗, just as in the Solow–Swan model. The transversality
condition in equation (2.26) therefore requires f ′(k̂∗)− δ, the steady-state rate of return, to
exceed x + n, the steady-state growth rate of K .

2.4 Alternative Environments

The analysis applies thus far to a decentralized economy with competitive households and
firms. We can see from the setup of the model, however, that the same equations—and, hence,
the same results—would emerge under some alternative environments. First, households
could perform the functions of firms by employing adult family members as workers in
accordance with the production process, f (k̂).12 The resource constraint in equation (2.24)
follows directly (total output must be allocated to consumption or gross investment, which
equals net investment plus depreciation). If the households maximize the utility function in
equations (2.1) and (2.10), subject to equation (2.24), then equations (2.25) and (2.26) still
represent the first-order conditions. Thus, the separation of functions between households
and firms is not central to the analysis.

We could also pretend that the economy was run by a benevolent social planner, who
dictates the choices of consumption over time and who seeks to maximize the utility of
the representative family. The device of the benevolent social planner will be useful in
many circumstances for finding the economy’s first-best outcomes. The planner is assumed
to have the same form of preferences as those assumed before—in particular, the same
rate of time preference, ρ, and the same utility function, u(c). The planner is also con-
strained by the aggregate resource constraint in equation (2.24). The solution for the plan-
ner will therefore be the same as that for the decentralized economy.13 Since a benevolent

12. This setup was considered in chapter 1.

13. The planner’s problem is to choose the path of c to maximize U in equation (2.1), subject to the economy’s
budget constraint in equation (2.24), the initial value k̂(0), and the inequalities c ≥ 0 and k̂ ≥ 0. The Hamiltonian
for this problem is

J = u(c)e−ρt + ν · [ f (k̂) − ce−xt − (x + n + δ) · k̂]

The usual first-order conditions lead to equation (2.25), and the transversality condition leads to equation (2.26).
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social planner with dictatorial powers will attain a Pareto optimum, the results for the
decentralized economy—which coincide with those of the planner—must also be Pareto
optimal.

2.5 The Steady State

We now consider whether the equilibrium conditions, equations (2.24), (2.25), and (2.26),
are consistent with a steady state, that is, a situation in which the various quantities grow
at constant (possibly zero) rates. We show first that the steady-state growth rates of k̂ and ĉ
must be zero, just as in the Solow–Swan model of chapter 1.

Let (γk̂)
∗ be the steady-state growth rate of k̂ and (γĉ)

∗ the steady-state growth rate of ĉ.
In the steady state, equation (2.25) implies

ĉ = f (k̂) − (x + n + δ) · k̂ − k̂ · (γk̂)
∗ (2.27)

If we differentiate this condition with respect to time, we find that

˙̂c = ˙̂k · { f ′(k̂) − [x + n + δ + (γk̂)
∗]} (2.28)

must hold in the steady state. The expression in the large braces is positive from the transver-
sality condition shown in equation (2.26). Therefore, (γk̂)

∗ and (γĉ)
∗ must have the same

sign.
If (γk̂)

∗ > 0, k̂ → ∞ and f ′(k̂) → 0. Equation (2.25) then implies (γĉ) < 0, an outcome
that contradicts the result that (γk̂)

∗ and (γĉ)
∗ are of the same sign. If (γk̂)

∗ < 0, k̂ → 0 and
f ′(k̂) → ∞. Equation (2.25) then implies (γĉ)

∗ > 0, an outcome that again contradicts the
result that (γk̂)

∗ and (γĉ)
∗ are of the same sign. Therefore, the only remaining possibility

is (γk̂)
∗ = (γĉ)

∗ = 0. The result (γk̂)
∗ = 0 implies (γŷ)

∗ = 0. Thus the variables per unit of
effective labor, k̂, ĉ, and ŷ, are constant in the steady state. This behavior implies that the per
capita variables, k, c, and y, grow in the steady state at the rate x , and the level variables, K ,
C , and Y , grow in the steady state at the rate x + n. These results on steady-state growth rates
are the same as those in the Solow–Swan model, in which the saving rate was exogenous
and constant.

The steady-state values for ĉ and k̂ are determined by setting the expressions in equa-
tions (2.24) and (2.25) to zero. The solid curve in figure 2.1, which corresponds to ĉ =
f (k̂) − (x + n + δ) · k̂, shows pairs of (k̂, ĉ) that satisfy ˙̂k = 0 in equation (2.24). Note that
the peak in the curve occurs when f ′(k̂) = δ + x + n, so that the interest rate, f ′(k̂) − δ,
equals the steady-state growth rate of output, x + n. This equality between the interest rate
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Figure 2.1
The phase diagram of the Ramsey model. The figure shows the transitional dynamics of the Ramsey model. The
˙̂c/ĉ = 0 and ˙̂k = 0 loci divide the space into four regions, and the arrows show the directions of motion in each
region. The model exhibits saddle-path stability. The stable arm is an upward-sloping curve that goes through the
origin and the steady state. Starting from a low level of k̂, the optimal initial ĉ is low. Along the transition, ĉ and
k̂ increase toward their steady-state values.

and the growth rate corresponds to the golden-rule level of k̂ (as described in chapter 1),14

because it leads to a maximum of ĉ in the steady state. We denote by k̂gold the value of k̂
that corresponds to the golden rule.

Equation (2.25) and the condition ˙̂c = 0 imply

f ′(k̂∗) = δ + ρ + θx (2.29)

This equation says that the steady-state interest rate, f ′(k̂)−δ, equals the effective discount
rate, ρ + θx .15 The vertical line at k̂∗ in figure 2.1 corresponds to this condition; note that
˙̂c/ĉ = 0 holds at this value of k̂ independently of the value of ĉ.16 The key to the determi-
nation of k̂∗ in equation (2.29) is the diminishing returns to capital, which make f ′(k̂∗) a

14. In chapter 1 we defined the golden-rule level of k as the capital stock per person that maximizes steady-state
consumption per capita. It was shown that this level of capital was such that f ′(kgold) = δ+n; see equation (1.22).
When exogenous technological progress exists, the golden-rule level of k̂ is defined as the level that maximizes
steady-state consumption per effective unit of labor, ĉ = f (k̂) − (x + n + δ) · k̂. Notice that the maximum is
achieved when f ′(k̂gold) = (x + n + δ).

15. The θx part of the effective discount rate picks up the effect from diminishing marginal utility of consumption
due to growth of c at the rate x . See equation (2.9).

16. Equation (2.25) indicates that ˙̂c/ĉ = 0 is also satisfied if ĉ = 0, that is, along the horizontal axis in figure 2.1.
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monotonically decreasing function of k̂∗. Moreover, the Inada conditions— f ′(0) = ∞ and
f ′(∞) = 0—ensure that equation (2.29) holds at a unique positive value of k̂∗.

Figure 2.1 shows the determination of the steady-state values, (k̂∗, ĉ∗), at the intersection
of the vertical line with the solid curve. In particular, with k̂∗ determined from equation
(2.29), the value for ĉ∗ follows from setting the expression in equation (2.24) to 0 as

ĉ∗ = f (k̂∗) − (x + n + δ) · k̂∗ (2.30)

Note that ŷ∗ = f (k̂∗) is the steady-state value of ŷ.
Consider the transversality condition in equation (2.26). Since k̂ is constant in the steady

state, this condition holds if the steady-state rate of return, r∗ = f ′(k̂∗) − δ, exceeds the
steady-state growth rate, x +n. Equation (2.29) implies that this condition can be written as

ρ > n + (1 − θ)x (2.31)

If ρ is not high enough to satisfy equation (2.31), the household’s optimization problem is
not well posed because infinite utility would be attained if c grew at the rate x .17 We assume
henceforth that the parameters satisfy equation (2.31).

In figure 2.1, the steady-state value, k̂∗, was drawn to the left of k̂gold. This relation
always holds if the transversality condition, equation (2.31), is satisfied. The steady-state
value is determined from f ′(k̂∗) = δ +ρ +θx ,18 whereas the golden-rule value comes from
f ′(k̂gold) = δ + x + n. The inequality in equation (2.31) implies ρ + θx > x + n and, hence,
f ′(k̂∗) > f ′(k̂gold). The result k̂∗ < k̂gold follows from f ′′(k̂) < 0.

The implication is that inefficient oversaving cannot occur in the optimizing framework,
although it could arise in the Solow–Swan model with an arbitrary, constant saving rate. If
the infinitely lived household were oversaving, it would realize that it was not optimizing—
because it was not satisfying the transversality condition—and would therefore shift to a
path that entailed less saving. Note that the optimizing household does not save enough to
attain the golden-rule value, k̂gold. The reason is that the impatience reflected in the effective
discount rate, ρ + θx , makes it not worthwhile to sacrifice more of current consumption to
reach the maximum of ĉ (the golden-rule value, ĉgold) in the steady state.

The steady-state growth rates do not depend on parameters that describe the production
function, f (·), or on the preference parameters, ρ and θ , that characterize households’
attitudes about consumption and saving. These parameters do have long-run effects on
levels of variables.

17. The appendix on mathematics at the end of the book considers some cases in which infinite utility can be
handled.

18. This condition is sometimes called the modified golden rule.
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In figure 2.1, an increased willingness to save—represented by a reduction in ρ or θ—
shifts the ˙̂c/ĉ = 0 schedule to the right and leaves the ˙̂k = 0 schedule unchanged. These
shifts lead accordingly to higher values of ĉ∗ and k̂∗ and, hence, to a higher value of
ŷ∗. Similarly, a proportional upward shift of the production function or a reduction of the
depreciation rate, δ, moves the ˙̂k = 0 curve up and the ˙̂c/ĉ = 0 curve to the right. These shifts
generate increases in ĉ∗, k̂∗, and ŷ∗. An increase in x raises the effective time-preference
term, ρ + θx , in equation (2.29) and also lowers the value of ĉ∗ that corresponds to a given
k̂∗ in equation (2.30). In figure 2.1, these changes shift the ˙̂k = 0 schedule downward and
the ˙̂c/ĉ = 0 schedule leftward and thereby reduce ĉ∗, k̂∗, and ŷ∗. (Although ĉ falls, utility
rises because the increase in x raises the growth rate of c relative to that of ĉ.) Finally, the
effect of n on k̂∗ and ŷ∗ is nil if we hold fixed ρ. Equation (2.30) implies that ĉ∗ declines.
If a higher n leads to a higher rate of time preference (for reasons discussed before), then
an increase in n would reduce k̂∗ and ŷ∗.

2.6 Transitional Dynamics

2.6.1 The Phase Diagram

The Ramsey model, like the Solow–Swan model, is most interesting for its predictions
about the behavior of growth rates and other variables along the transition path from an
initial factor ratio, k̂(0), to the steady-state ratio, k̂∗. Equations (2.24), (2.25), and (2.26)
determine the path of k̂ and ĉ for a given value of k̂(0). The phase diagram in figure 2.1
shows the nature of the dynamics.19

We first display the ˙̂c = 0 locus. Since ˙̂c = ĉ · (1/θ) · [ f ′(k̂)− δ −ρ − θx], there are two
ways for ˙̂c to be zero: ĉ = 0, which corresponds to the horizontal axis in figure 2.1, and
f ′(k̂) = δ +ρ + θx , which is a vertical line at k̂∗, the capital-labor ratio defined in equation
(2.29). We note that ĉ is rising for k̂ < k̂∗ (so the arrows point upward in this region) and
falling for k̂ > k̂∗ (where the arrows point downward).

Recall that the solid curve in figure 2.1 shows combinations of k̂ and ĉ that satisfy ˙̂k = 0
in equation (2.24). This equation also implies that k̂ is falling for values of ĉ above the solid
curve (so the arrows point leftward in this region) and rising for values of ĉ below the curve
(where the arrows point rightward).

Since the ˙̂c = 0 and the ˙̂k = 0 loci cross three times, there are three steady states: the
first one is the origin (ĉ = k̂ = 0), the second steady state corresponds to k̂∗ and ĉ∗, and

19. See the appendix on mathematics for a discussion of phase diagrams.
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the third one involves a positive capital stock, k̂∗∗ > 0, but zero consumption. We neglect
the solution at the origin because it is uninteresting.

The second steady state is saddle-path stable. Note, in particular, that the pattern of arrows
in figure 2.1 is such that the economy can converge to this steady state if it starts in two of
the four quadrants in which the two schedules divide the space. The saddle-path property
can also be verified by linearizing the system of dynamic equations around the steady state
and noting that the determinant of the characteristic matrix is negative (see appendix 2A,
section 2.8, for details). This sign for the determinant implies that the two eigenvalues have
opposite signs, an indication that the system is locally saddle-path stable.

The dynamic equilibrium follows the stable saddle path shown by the solid locus with
arrows. Suppose, for example, that the initial factor ratio satisfies k̂(0) < k̂∗, as shown in
figure 2.1. If the initial consumption ratio is ĉ(0), as shown, the economy follows the stable
path toward the steady-state pair, (k̂∗, ĉ∗). This path satisfies all the first-order conditions,
including the transversality condition, as shown in the previous section.

The two other possibilities are that the initial consumption ratio exceeds or falls short of
ĉ(0). If the ratio exceeds ĉ(0), the initial saving rate is too low for the economy to remain
on the stable path. The trajectory eventually crosses the ˙̂k = 0 locus. After that crossing,
ĉ continues to rise, k̂ starts to decline, and the path hits the vertical axis in finite time, at
which point k̂ = 0.20 The condition f (0) = 0 implies ŷ = 0; therefore, ĉ must jump down-
ward to 0 at this point. Because this jump violates the first-order condition that underlies
equation (2.25), these paths—in which the initial consumption ratio exceeds ĉ(0)—are not
equilibria.21

The final possibility is that the initial consumption ratio is below ĉ(0). In this case, the
initial saving rate is too high to remain on the saddle path, and the economy eventually
crosses the ˙̂c = 0 locus. After that crossing, ĉ declines and k̂ continues to rise. The economy
converges to the point at which the ˙̂k = 0 schedule intersects the horizontal axis, a point
which we labeled k̂∗∗. Note, in particular, that k̂ rises above the golden-rule value, k̂gold,
and asymptotically approaches a higher value of k̂. Therefore, f ′(k̂) − δ falls below x + n
asymptotically, and the path violates the transversality condition given in equation (2.26).
This violation of the transversality condition means that households are oversaving: utility

20. We can verify from equation (2.24) that ˙̂k becomes more and more negative in this region. Therefore, k̂ must
reach 0 in finite time.

21. This analysis applies if investment is reversible. If investment is irreversible, the constraint ĉ ≤ f (k̂) becomes
binding before the trajectory hits the vertical axis. That is, the paths that start from points such as ĉ′

0 in figure 2.1
would eventually hit the production function, ĉ = f (k̂), which lies above the locus for ˙̂k = 0. Thereafter, the path
would follow the production function downward toward the origin. Appendix 2B (section 2.9) shows that such
paths are not equilibria.
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would increase if consumption were raised at earlier dates. Accordingly, paths in which
the initial consumption ratio is below ĉ(0) are not equilibria. This result leaves the stable
saddle path leading to the positive steady state, k̂∗, as the only possibility.22

2.6.2 The Importance of the Transversality Condition

It is important to emphasize the role of the transversality condition in the determination of
the unique equilibrium. To make this point, we consider an unrealistic variant of the Ramsey
model in which everyone knows that the world will end at some known date T > 0. The
utility function in equation (2.1) then becomes

U =
∫ T

0
u[c(t)] · ent · e−ρt dt

and the non-Ponzi condition is

a(T ) · exp

[
−

∫ T

0
[r(v) − n] dv

]
≥ 0

The budget constraint is still given by equation (2.3). Since the only difference between
this problem and that of the previous sections is the terminal date, the only optimization
condition that changes is the transversality condition, which is now

a(T ) · exp

[
−

∫ T

0
[r(v) − n] dv

]
= 0

Since the exponential term cannot be zero in finite time, this condition implies that the
assets left at the end of the planning horizon equal zero:

a(T ) = 0 (2.32)

In other words, since the shadow value of assets at time T is positive, households will
optimally choose to leave no assets when they “die.”

The behavior of firms is the same as before, and equilibrium in the asset markets again
requires a(t) = k(t). Therefore, the general-equilibrium conditions are still given by equa-
tions (2.24) and (2.25), and the loci for ˙̂k = 0 and ˙̂c = 0 are the same as those shown

22. Similar results apply if the economy begins with k̂(0) > k̂∗ in figure 2.1. The only complication here is that, if
investment is irreversible, the constraint ĉ ≤ f (k̂) may be binding in this region. See the discussion in appendix 2B
(section 2.9).
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in figure 2.1. The arrows representing the dynamics of the system are also the same as
before.

Since a(t) = k(t), the transversality condition from equation (2.32) can be written as

k̂(T ) = 0 (2.33)

From the perspective of figure 2.1, this new transversality condition requires the initial
choice of ĉ(0) to be such that the capital stock equals zero at time T . In other words,
optimality now requires the economy to land on the vertical axis at exactly time T . The
implication is that the stable arm is no longer the equilibrium, because it is does not lead
the economy toward zero capital at time T . The same is true for any initial choice of
consumption below the stable arm. The new equilibrium, therefore, features an initial value
ĉ(0) that lies above the stable arm.

It is possible that ĉ and k̂ would both rise for awhile. In fact, if T is large, the transition
path would initially be close to, but slightly above, the stable arm shown in figure 2.1.
However, the economy eventually crosses the ˙̂k = 0 schedule. Thereafter, ĉ and k̂ fall, and
the economy ends up with zero capital at time T . We see, therefore, that the same system
of differential equations involves one equilibrium (the stable arm) or another (the path that
ends up on the vertical axis at T ) depending solely on the transversality condition.

2.6.3 The Shape of the Stable Arm

The stable arm shown in figure 2.1 expresses the equilibrium ĉ as a function of k̂.23 This
relation is known in dynamic programming as a policy function: it relates the optimal value
of a control variable, ĉ, to the state variable, k̂. This policy function is an upward-sloping
curve that goes through the origin and the steady-state position. Its exact shape depends on
the parameters of the model.

Consider, as an example, the effect of the parameter θ on the shape of the stable arm.
Suppose that the economy begins with k̂(0) < k̂∗, so that future values of ĉ will exceed
ĉ(0). High values of θ imply that households have a strong preference for smoothing
consumption over time; hence, they will try hard to shift consumption from the future to
the present. Therefore, when θ is high, the stable arm will lie close to the ˙̂k = 0 schedule, as
shown in figure 2.2. The correspondingly low rate of investment implies that the transition
would take a long time.

Conversely, if θ is low, households are more willing to postpone consumption in response
to high rates of return. The stable arm in this case is flat and close to the horizontal axis for

23. The corresponding relation in the Solow–Swan model, ĉ = (1 − s) · f (k̂), was provided by the assumption of
a constant saving rate.
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Figure 2.2
The slope of the saddle path. When θ is low, consumers do not mind large swings in consumption over time.
Hence, they choose to consume relatively little when the capital stock is low (and the interest rate is high). The
investment rate is high initially in this situation, and the economy approaches its steady state rapidly. In contrast,
when θ is high, consumers are strongly motivated to smooth consumption over time. Hence, they initially devote
most of their resources to consumption (the stable arm is close to the ˙̂k = 0 schedule) and little to investment. In
this case, the economy approaches its steady state slowly.

low values of k̂ (see figure 2.2). The high levels of investment imply that the transition is
relatively quick, and as k̂ approaches k̂∗, households increase ĉ sharply. It is clear from the
diagram that linear approximations around the steady state will not capture these dynamics
accurately.

We show in appendix 2C (section 2.10) for the case of a Cobb–Douglas technology,
ŷ = Ak̂α , that ĉ/k̂ is rising, constant, or falling in the transition from k̂(0) < k̂∗ depending
on whether the parameter θ is smaller than, equal to, or larger than the capital share, α. It
follows that the stable arm is convex, linear, or concave depending on whether θ is smaller
than, equal to, or larger than α. (We argue later that θ > α is the plausible case.) If θ = α,
so that ĉ/k̂ is constant during the transition, the policy function has the closed-form solution
ĉ = (constant) · k̂, where the constant turns out to be (δ + ρ)/θ − (δ + n).

2.6.4 Behavior of the Saving Rate

The gross saving rate, s, equals 1 − ĉ/ f (k̂). The Solow–Swan model, discussed in chapter 1,
assumed that s was constant at an arbitrary level. In the Ramsey model with optimizing
consumers, s can follow a complicated path that includes rising and falling segments as the
economy develops and approaches the steady state.
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Heuristically, the behavior of the saving rate is ambiguous because it involves the offset-
ting impacts from a substitution effect and an income effect. As k̂ rises, the decline in f ′(k̂)

lowers the rate of return, r , on saving. The reduced incentive to save—an intertemporal-
substitution effect—tends to lower the saving rate as the economy develops. Second, the
income per effective worker in a poor economy, f (k̂), is far below the long-run or permanent
income of this economy. Since households desire to smooth consumption, they would like
to consume a lot in relation to income when they are poor; that is, the saving rate would be
low when k̂ is low. As k̂ rises, the gap between current and permanent income diminishes;
hence, consumption tends to fall in relation to current income, and the saving rate tends to
rise. This force—an income effect—tends to raise the saving rate as the economy develops.

The transitional behavior of the saving rate depends on whether the substitution or income
effect is more important. The net effect is ambiguous in general, and the path of the saving
rate during the transition can be complicated. The results simplify, however, for a Cobb–
Douglas production function. Appendix 2C shows for this case that, depending on parameter
values, the saving rate falls monotonically, stays constant, or rises monotonically as k̂ rises.

We show in Appendix 2C for the Cobb–Douglas case that the steady-state saving rate,
s∗, is given by

s∗ = α · (x + n + δ)/(δ + ρ + θx) (2.34)

Note that the transversality condition, which led to equation (2.31), implies s∗ < α in equa-
tion (2.34); that is, the steady-state gross saving rate is less than the gross capital share.

We can use a phase diagram to analyze the transitional behavior of the saving rate for
the case of a Cobb–Douglas production function. The methodology is interesting more
generally because it provides a way to study the behavior of variables of interest, such as
the saving rate, that do not enter directly into the first-order conditions of the model. The
method involves transformations of the variables that appear in the first-order conditions.
The dynamic relations that we used before were written in terms of the variables ĉ and k̂.
To study the transitional behavior of the saving rate, s = 1 − ĉ/ŷ, we want to rewrite these
relations in terms of the variables ĉ/ŷ and k̂. Then we will be able to construct a phase
diagram in terms of ĉ/ŷ and k̂. The stable arm of such a phase diagram will show how
ĉ/ŷ—and, hence, s = 1 − ĉ/ŷ—move as k̂ increases.

We start by noticing that the growth rate of ĉ/ŷ is given by the growth rate of ĉ minus
the growth rate of ŷ. If the production function is Cobb–Douglas, the growth rate of ŷ is
proportional to the growth rate of k̂, that is,

1

ĉ/ŷ
· d(ĉ/ŷ)

dt
= ( ˙̂c/ĉ) − ( ˙̂y/ŷ) = ( ˙̂c/ĉ) − α · ( ˙̂k/k̂)
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We can now use the equilibrium conditions shown in equations (2.24) and (2.25) to get

1

ĉ/ŷ
· d(ĉ/ŷ)

dt
= [(1/θ) · (αAk̂α−1 − δ − ρ − θx)]

− α · [Ak̂α−1 − (ĉ/ŷ) · Ak̂α−1 − (x + n + δ)] (2.35)

where we used the equality ĉ/k̂ = (ĉ/ŷ) · Ak̂α−1. The growth rate of k̂ is

˙̂k/k̂ = [Ak̂α−1 − (ĉ/ŷ) · Ak̂α−1 − (x + n + δ)] (2.36)

Notice that equations (2.35) and (2.36) represent a system of differential equations in
the variables ĉ/ŷ and k̂. Therefore, a conventional phase diagram can be drawn in terms of
these two variables.

We start by setting equation (2.35) to zero to get the d(ĉ/ŷ)

dt = 0 locus:

ĉ/ŷ =
(

1 − 1

θ

)
+ ψ · k̂1−α

αA
(2.37)

where ψ ≡ [(δ + ρ + θx)/θ − α · (x + n + δ)] is a constant. This locus is upward sloping,
downward sloping, or horizontal depending on whether ψ is positive, negative, or zero. The
three possibilities are depicted in figure 2.3.

Independently of the value of ψ , the arrows above the d(ĉ/ŷ)

dt = 0 locus point north, and
the arrows below the schedule point south.

We can find the ˙̂k = 0 locus by setting equation (2.35) to zero to get

ĉ/ŷ = 1 − (x + n + δ)

A
· k̂1−α (2.38)

which is unambiguously downward sloping.24 Arrows point west above the schedule and
east below the schedule.

The three panels of figure 2.3 show that the steady state is saddle-path stable regardless of
the value of ψ . The stable arm, however, is upward-sloping when ψ > 0, downward-sloping
when ψ < 0, and horizontal when ψ = 0. Following the reasoning of previous sections,
we know that an infinite-horizon economy always finds itself on the stable arm. Thus,
depending on parameter values, the consumption ratio falls monotonically, stays constant,
or rises monotonically as k̂ rises. The saving rate, therefore, behaves exactly the opposite.
A high value of θ—which corresponds to a low willingness to substitute consumption
intertemporally—makes it more likely that ψ < 0 will hold, in which case the saving rate

24. When ψ < 0, the dk̂
dt = 0 locus is also steeper than the d(ĉ/ŷ)

dt = 0 schedule.
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Figure 2.3
Phase diagram for the behavior of the saving rate (in the Cobb–Douglas case). In the Cobb–Douglas case, the
savings rate behaves monotonically. Panel a shows the phase diagram for ĉ/ŷ and k̂ when the parameters are such
that (δ + ρ + θx)/θ > α · (x + n + δ). Since the stable arm is upward sloping, the consumption ratio increases as
the economy grows toward the steady state. Hence, in this case, the saving rate (one minus the consumption rate)
declines monotonically during the transition. Panel b considers the case in which (δ + ρ + θx)/θ < α ·(x +n +δ).
The stable arm is now downward sloping and, therefore, the saving rate increases monotonically during the
transition. Panel c considers the case (δ + ρ + θx)/θ + α · (x + n + δ). The stable arm is now horizonal, which
means that the saving rate is constant during the transition.

is more likely to rise during the transition. This result follows because a higher θ weakens
the substitution effect from the interest rate.

In the particular case where ψ = 0, the saving rate is constant at its steady-state value,
s∗ = 1/θ , during the transition. For this combination of parameters, it turns out that the
wealth and substitution effects cancel out, so that the saving rate remains constant as the
capital stock grows toward its steady state. Thus, the constant saving rate in the Solow–
Swan model is a special case of the Ramsey model. However, even in this case, there is
an important difference from the Solow–Swan model. The level of s in the Ramsey model
is dictated by the underlying parameters and cannot be chosen arbitrarily. In particular, an
arbitrary choice of s in the Solow–Swan model may generate results that are dynamically
inefficient if s leads the economy to a steady-state capital stock that is larger than the golden
rule. This outcome is impossible in the Ramsey model.

In a later discussion, we use the baseline values ρ = 0.02 per year, δ = 0.05 per year,
n = 0.01 per year, and x = 0.02 per year. If we also assume a conventional capital share of
α = 0.3, the value of θ that generates a constant saving rate is 17; that is, s∗ < 1/θ applies
and the saving rate falls—counterfactually—as the economy develops unless θ exceeds this
high value.
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We noted for the Solow–Swan model that the theory cannot fit the evidence about speeds
of convergence unless the capital-share coefficient, α, is much larger than 0.3. Values in the
neighborhood of 0.75 accord better with the empirical evidence, and these high values of
α are reasonable if we take a broad view of capital to include the human components. We
show in the following section that the findings about α still apply in the Ramsey growth
model, which allows the saving rate to vary over time. If we assume α = 0.75, along with
the benchmark values of the other parameters, the value of θ that generates a constant saving
rate is 1.75. That is, the gross saving rate rises (or falls) as the economy develops if θ is
greater (or less) than 1.75. If θ = 1.75, the gross saving rate is constant at the value 0.57.
We have to interpret this high value for the gross saving rate by including in gross saving
the various expenditures that expand or maintain human capital; aside from expenses for
education and training, this gross saving would include portions of the outlays for food,
health, and so on.

Our reading of empirical evidence across countries is that the saving rate tends to rise to
a moderate extent with per capita income during the transition. The Ramsey model can fit
this pattern, as well as the observed speeds of convergence, if we combine the benchmark
parameters with a value of α of around 0.75 and a value of θ somewhat above 2. The
value of θ cannot be too much above 2 because then the steady-state saving rate, s∗, shown
in equation (2.34), becomes too low. For example, the value θ = 10 implies s∗ = 0.22,
which is too low for a broad concept that includes gross saving in the form of human
capital.

2.6.5 The Paths of the Capital Stock and Output

The stable arm shown in figure 2.1 shows that, if k̂(0) < k̂∗, k̂ and ĉ rise monotonically as
they approach their steady-state values. The rising path of k̂ implies that the rate of return,
r , declines monotonically from its initial position, f ′[k̂(0)] − δ, to its steady-state value,
ρ + θx . Equation (2.25) and the path of decreasing r imply that the growth rate of per capita
consumption, ċ/c, falls monotonically. That is, the lower k̂(0) and, hence, ŷ(0), the higher
the initial value of ċ/c.

We would also like to relate the initial per capita growth rates of capital and output, γk

and γy , to the starting ratio, k̂(0). In chapter 1 we referred to the negative relations between
k̇/k and k̂(0) and between ẏ/y and ŷ(0) as convergence effects. We show in appendix 2D
(section 2.11), using the consumption function from equations (2.15) and (2.16), that k̇/k
declines monotonically as the economy develops and approaches the steady state. In other
words, although the saving rate may rise during the transition, it cannot rise enough to
eliminate the inverse relation between k̇/k and k̂. Thus, the endogenous determination of
the saving rate does not eliminate the convergence property for k̂.
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We can take logs and derivatives of the production function in equation (2.18) to derive
the growth rate of output per effective worker:

˙̂y/ŷ =
[

k̂ · f ′(k̂)

f (k̂)

]
· ( ˙̂k/k̂) (2.39)

that is, the growth rate of k̂ is multiplied by the share of gross capital income in gross
product. For a Cobb–Douglas production function, the share of capital income equals
the constant α. Therefore, the properties of k̇/k carry over immediately to those of ẏ/y.
This result applies more generally than in the Cobb–Douglas case unless the share of
capital income rises fast enough as an economy develops to more than offset the fall
in k̇/k.

2.6.6 Speeds of Convergence

Log-Linear Approximations Around the Steady State We want now to provide a quan-
titative assessment of the speed of convergence in the Ramsey model. We begin with a
log-linearized version of the dynamic system for k̂ and ĉ, equations (2.24) and (2.25). This
approach is an extension of the method that we used in chapter 1 for the Solow–Swan
model; the only difference here is that we have to deal with a two-variable system instead
of a one-variable system. The advantage of the log-linearization method is that it provides
a closed-form solution for the convergence coefficient. The disadvantage is that it applies
only as an approximation in the neighborhood of the steady state.

Appendix 2A examines a log-linearized version of equations (2.24) and (2.25) when
expanded around the steady-state position. The results can be written as

log[ŷ(t)] = e−βt · log[ŷ(0)] + (1 − e−βt ) · log(ŷ∗) (2.40)

where β > 0. Thus, for any t ≥ 0, log[ŷ(t)] is a weighted average of the initial and steady-
state values, log[ŷ(0)] and log(ŷ∗), with the weight on the initial value declining ex-
ponentially at the rate β. The speed of convergence, β, depends on the parameters of
technology and preferences. For the case of a Cobb–Douglas technology, the formula for
the convergence coefficient (which comes from the log-linearization around the steady-state
position) is

2β =
{
ζ 2 + 4 ·

(
1 − α

θ

)
· (ρ + δ + θx) ·

[
ρ + δ + θx

α
− (n + x + δ)

]}1/2

− ζ (2.41)

where ζ = ρ − n − (1 − θ) · x > 0. We discuss below the way that the various parameters
enter into this formula.
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Equation (2.40) implies that the average growth rate of per capita output, y, over an
interval from an initial time 0 to any future time T ≥ 0 is given by

(1/T ) · log[y(T )/y(0)] = x + (1 − e−βT )

T
· log[ŷ∗/ŷ(0)] (2.42)

Hold fixed, for the moment, the steady-state growth rate x , the convergence speed β, and
the averaging interval T . Then equation (2.42) says that the average per capita growth rate
of output depends negatively on the ratio of ŷ(0) to ŷ∗. Thus, as in the Solow–Swan model,
the effect of the initial position, ŷ(0), is conditioned on the steady-state position, ŷ∗. In other
words, the Ramsey model also predicts conditional, rather than absolute, convergence.

The coefficient that relates the growth rate of y to log[ŷ∗/ŷ(0)] in equation (2.42),
(1 − e−βT )/T , declines with T for given β. If ŷ(0) < ŷ∗, so that growth rates decline over
time, an increase in T means that more of the lower future growth rates are averaged with
the higher near-term growth rates. Therefore, the average growth rate, which enters into
equation (2.42), falls as T rises. As T → ∞, the steady-state growth rate, x , dominates the
average; hence, the coefficient (1 − e−βT )/T approaches 0, and the average growth rate of
y in equation (2.42) tends to x .

For a given T , a higher β implies a higher coefficient (1 − e−βT )/T . (As T → 0, the
coefficient approaches β.) Equation (2.41) expresses the dependence of β on the underlying
parameters. Consider first the case of the Solow–Swan model in which the saving rate is
constant. As noted before, this situation applies if the steady-state saving rate, s∗, shown in
equation (2.34) equals 1/θ or, equivalently, if the combination of parameters α · (δ + n) −
(δ + ρ)/θ − x · (1 − α) equals 0.

Suppose that the parameters take on the baseline values that we used in chapter 1:
δ = 0.05 per year, n = 0.01 per year, and x = 0.02 per year. We also assume ρ = 0.02
per year to get a reasonable value for the steady-state interest rate, ρ + θx . As mentioned
in a previous section, for these benchmark parameter values, the saving rate is constant if
α = 0.3 when θ = 17 and if α = 0.75 when θ = 1.75.

With a constant saving rate, the formula for the convergence speed, β, simplifies from
equation (2.41) to the result that applied in equation (1.45) for the Solow–Swan model:

β∗ = (1 − α) · (x + n + δ)

We noted in chapter 1 that a match with the empirical estimate for β of roughly 0.02 per
year requires a value for α around 0.75, that is, in the range in which the broad nature of
capital implies that diminishing returns to capital set in slowly. Lower values of x + n + δ

reduce the required value of α, but plausible values leave α well above the value of around
0.3, which would apply to a narrow concept of physical capital.
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In the case of a variable saving rate, equation (2.41) determines the full effects of the
various parameters on the convergence speed. The new element concerns the tilt of the
time path of the saving rate during the transition. If the saving rate falls with k̂, the conver-
gence speed would be higher than otherwise, and vice versa. For example, we found before
that a higher value of the intertemporal-substitution parameter, θ , makes it more likely that
the saving rate would rise with k̂. Through this mechanism, a higher θ reduces the speed of
convergence, β, in equation (2.41).

If the rate of time preference, ρ, increases, the level of the saving rate tends to fall (see
equation [2.34]). The effect on the convergence speed depends, however, not on the level of
the saving rate but on the tendency for the saving rate to rise or fall as the economy develops.
A higher ρ tends to tilt downward the path of the saving rate. The effective time-preference
rate is ρ + θ · ċ/c. Because ċ/c is inversely related to k̂, the impact of ρ on the effective
time-preference rate is proportionately less the lower is k̂. Therefore, the saving rate tends
to decrease less the lower k̂, and, hence, the time path of the saving rate tilts downward. A
higher ρ tends accordingly to raise the magnitude of β in equation (2.41).

It turns out with a variable saving rate that the parameters δ and x tend to raise β, just
as they did in the Solow–Swan model. The overall effect from the parameter n becomes
ambiguous but tends to be small in the relevant range.25

The basic result, which holds with a variable or constant saving rate, is that, for plausible
values of the other parameters, the model requires a high value of α—in the neighborhood
of 0.75—to match empirical estimates of the speed of convergence, β. We can reduce the
required value of α to 0.5–0.6 if we assume very high values of θ (in excess of 10) along
with a value of δ close to 0. We argued before, however, that very high values of θ make
the steady-state saving rate too low, and values of δ near 0 are unrealistic. In addition,
as we show later, values of α that are much below 0.75 generate counterfactual predictions
about the transitional behavior of the interest rate and the capital-output ratio. We discuss
in chapter 3 how adjustment costs for investment can slow down the rate of convergence,
but this extension does not change the main conclusions.

Numerical Solutions of the Nonlinear System We now assess the convergence properties
of the model with a second approach, which uses numerical methods to solve the nonlinear
system of differential equations. This approach avoids the approximation errors inherent
in linearization of the model and provides accurate results for a given specification of the
underlying parameters. The disadvantage is the absence of a closed-form solution. We have
to generate a new set of answers for each specification of parameter values.

25. Equation (2.41) implies that the effects on β are unambiguously negative for α and positive for δ. Our numerical
computations indicate that the effects of the other parameters are in the directions that we mentioned as long as
the other parameters are restricted to a reasonable range.
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We can use numerical methods to obtain a global solution for the nonlinear system of
differential equations. In the case of a Cobb–Douglas production function, the growth rates
of k̂ and ĉ are given from equations (2.24) and (2.25) as

γk̂ ≡ ˙̂k/k̂ = A · (k̂)α−1 − (ĉ/k̂) − (x + n + δ) (2.43)

γĉ ≡ ˙̂c/ĉ = (1/θ) · [αA · (k̂)α−1 − (δ + ρ + θx)] (2.44)

If we specified the values of the parameters (A, α, x , n, δ, ρ, θ ) and knew the relation between
ĉ and k̂ along the path—that is, if we knew the policy function ĉ(k̂)—then standard numerical
methods for solving differential equations would allow us to solve out for the entire time
paths of k̂ and ĉ. The appendix on mathematics shows how to use a procedure called the
time-elimination method to derive the policy function numerically. (See also Mulligan and
Sala-i-Martin, 1991). We assume now that we have already solved this part of the problem.

Once we know the policy function, we can determine the paths of all the variables that
we care about, including the convergence coefficient, defined by β = − d(γk̂)/d[log(k̂)].
(In the Cobb–Douglas case, the convergence coefficient for ŷ is still the same as that for k̂.)
Figure 2.4 shows the relation between β and k̂/k̂∗ when we use our benchmark parameter
values (δ = 0.05, x = 0.02, n = 0.01, ρ = 0.02), θ = 3, and α = 0.3 or 0.75.26 For either
setting of α, β is a decreasing function of k̂/k̂∗; that is, the speed of convergence slows
down as the economy approaches the steady state.27 At the steady state, where k̂/k̂∗ = 1, the
values of β—0.082 if α = 0.3 and 0.015 if α = 0.75—are those implied by equation (2.41)
for the log-linearization around the steady state.

If k̂/k̂∗ < 1, figure 2.4 indicates that β exceeds the values implied by equation (2.41).
For example, if k̂/k̂∗ = 0.5, β = 0.141 if α = 0.3 and 0.018 if α = 0.75. If k̂/k̂∗ = 0.1,
β = 0.474 if α = 0.3 and 0.026 if α = 0.75. Thus, if we use our preferred high value for
the capital-share coefficient, α = 0.75, the convergence coefficient, β, remains between
1.5 percent and 3 percent for a broad range of k̂/k̂∗. This behavior accords with the empirical
evidence discussed in chapters 11 and 12; we find there that convergence coefficients do
not seem to exceed this range even for economies that are very far from their steady states.
In contrast, if we assume α = 0.3, the model incorrectly predicts extremely high rates of
convergence when k̂ is far below k̂∗.

Since the convergence speeds rise with the distance from the steady state, the durations of
the transition are shorter than those implied by the linearized model. We can use the results
on the time path of k̂ to compute the exact time that it takes to close a specified percentage

26. For a given value of k̂/k̂∗, the parameter A does not affect β in the Cobb–Douglas case.

27. This relation does not hold in general. In particular, β can rise with k̂/k̂∗ if θ is very small and α is very large,
for example, if θ = 0.5 and α = 0.95.
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Figure 2.4
Numerical estimates of the speed of convergence in the Ramsey model. The exact speed of convergence
(displayed on the vertical axis) is a decreasing function of the distance from the steady state, k̂/k̂∗ (shown on the
horizontal axis). The analysis assumes a Cobb–Douglas production function, with results reported for two values
of the capital share, α = 0.30 and α = 0.75. The change in the convergence speed during the transition is more
pronounced for the smaller capital share. The value of the convergence speed, β, at the steady state (k̂/k̂∗ = 1) is
the value that we found analytically with a log-linear approximation around the steady state (equation [2.41]).
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of the initial gap from k̂∗. Panel a of figure 2.5 shows how the gap between k̂ and k̂∗ is
eliminated over time if the economy begins with k̂/k̂∗ = 0.1 and if α = 0.3 or 0.75. As
an example, if α = 0.75, it takes 38 years to close 50 percent of the gap, compared with
45 years from the linear approximation.

Panel b in figure 2.5 displays the level of consumption, expressed as ĉ/ĉ∗; panel c the
level of output, ŷ/ŷ∗; and panel d the level of gross investment, ı̂/ı̂∗. Note that for α = 0.75,
the paths of ĉ/ĉ∗ and ŷ/ŷ∗ are similar, because the gross saving rate and, hence, ĉ/ŷ change
only by small amounts in this case (discussed later).

Panel e shows γŷ , the growth rate of ŷ. For α = 0.3, the model has the counterfactual
implication that the initial value of γŷ (corresponding to k̂/k̂∗ = 0.1) is implausibly large,
about 15 percent per year, which means that γy is about 17 percent per year. This kind
of result led King and Rebelo (1993) to dismiss the transitional behavior of the Ramsey
model as a reasonable approximation to actual growth experiences. We see, however, that
for α = 0.75, the model predicts more reasonably that γŷ would begin at about 3.5 percent
per year, so that γy would be about 5.5 percent per year.

Panel f shows the gross saving rate, s(t). We know from our previous analytical results
for the Cobb–Douglas case, given the assumed values of the other parameters, that s(t)
falls monotonically when α = 0.3 and rises monotonically when α = 0.75. For α = 0.3, the
results are counterfactual in that the model predicts a fall in s(t) from 0.28 at k̂/k̂∗ = 0.1 to
0.22 at k̂/k̂∗ = 0.5 and 0.18 at k̂/k̂∗ = 1. The predicted levels of the saving rate are also
unrealistically low for a broad concept of capital. In contrast, for α = 0.75, the moderate
rise in the saving rate as the economy develops fits well with the data. The saving rate rises
in this case from 0.41 at k̂/k̂∗ = 0.1 to 0.44 at k̂/k̂∗ = 0.5 and 0.46 at k̂/k̂∗ = 1. The predicted
level of the saving rate is also reasonable if we take a broad view of capital.

Panel g displays the behavior of the interest rate, r . Note that the steady-state interest rate is
r∗ = ρ + θx = 0.08, and the corresponding marginal product is f ′(k̂∗) = r∗ + δ = 0.13. If
we consider the initial position k̂(0)/k̂∗ = 0.1, as in figure 2.5, the Cobb–Douglas production
function implies

f ′[k̂(0)]/ f ′(k̂∗) = [k̂(0)/k̂∗]α−1 = (10)1−α

Hence, for α = 0.3, we get f ′[k̂(0)] = 5 · f ′(k̂∗) = 0.55. In other words, with a capital-
share coefficient of around 0.3, the initial interest rate (at k̂[0]/k̂∗ = 0.1) would take on the
unrealistically high value of 60 percent. This counterfactual prediction about interest rates
was another consideration that led King and Rebelo (1993) to reject the transitional dynamics
of the Ramsey model. However, if we assume our preferred capital-share coefficient, α =
0.75, we get f ′[k̂(0)] = 1.8 · f ′(k̂∗) = 0.23, so that r(0) takes on the more reasonable
value of 18 percent.
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ĉ 

*

1

0.5

0

Years

(c)  ŷ
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Figure 2.5
Numerical estimates of the dynamic paths in the Ramsey model. The eight panels display the exact dynamic
paths of eight key variables: the values per unit of effective labor of the capital stock, consumption, output, and
investment, the growth rate of output per effective worker, the saving rate, the interest rate, and the capital-output
ratio. The first four variables and the last one are expressed as ratios to their steady-state values; hence, each
variable approaches 1 asymptotically. The analysis assumes a Cobb–Douglas production technology, where the
dotted line in each panel corresponds to α = 0.30 and the solid line to α = 0.75. The other parameters are reported
in the text. The initial capital per effective worker is assumed in each case to be one-tenth of its steady-state value.
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The final panel in figure 2.5 shows the behavior of the capital-output ratio, (k̂/ŷ),
expressed in relation to (k̂∗/ŷ∗). Kaldor (1963) argued that this ratio changed relatively
little during the course of economic development, and Maddison (1982, chapter 3) sup-
ported this view. These observations pertain, however, to a narrow concept of physical
capital, whereas our model takes a broad perspective to include human capital. The cross-
country data show that places with higher real per capita GDP tend to have higher ratios of
human capital in the form of educational attainment to physical capital (see Judson, 1998).
This observation suggests that the ratio of human to physical capital would tend to rise
during the transition to higher levels of real per capita GDP (see chapter 5 for a theoretical
discussion of this behavior). If the ratio of physical capital to output remains relatively
stable, the capital-output ratio for a broad measure of capital would increase during the
transition.

With a Cobb–Douglas production function, the capital-output ratio is k̂/ŷ = (1/A) ·
(k̂)(1−α). If α = 0.3, an increase in k̂ by a factor of 10 would raise k̂/ŷ by a factor of 5,
a shift that departs significantly from the observed variations in k̂/ŷ over long periods of
economic development. In contrast, if α = 0.75, an increase in k̂ by a factor of 10 would
raise k̂/ŷ by a factor of only 1.8. For a broad concept of capital, this behavior appears
reasonable.

The main lesson from the study of the time paths in figure 2.5 is that the transitional
dynamics of the Ramsey model with a conventional capital-share coefficient, α, of around
0.3 does not provide a good description of various aspects of economic development. For
an economy that starts far below its steady-state position, the inaccurate predictions include
an excessive speed of convergence, unrealistically high growth and interest rates, a rapidly
declining gross saving rate, and large increases over time in the capital-output ratio. All
of these shortcomings are eliminated if we take a broad view of capital and assume a
correspondingly high capital-share coefficient, α, of around 0.75. This value of α, together
with plausible values of the model’s other parameters, generate predictions that accord well
with the growth experiences that we study in chapters 11 and 12.

2.6.7 Household Heterogeneity

Our analysis thus far has considered a single household as representing the entire economy.
The consumption and saving decisions of the representative agent are supposed to capture
the behavior of the average agent in a complex economy with many families. The important
question is whether the behavior of this “representative” or “average” household is really
equivalent to what we would get if we averaged the behavior of many heterogeneous
families.
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Caselli and Ventura (2000) have extended the Ramsey model to allow for various forms of
household heterogeneity.28 Following their analysis, we assume that the economy contains
J equal-sized households, each of which is an infinitely lived dynasty. The population of
each household—and, therefore, the overall population—grow at the constant rate n. Pref-
erences of each household are still given by equations (2.1) and (2.10), with the preference
parameters ρ and θ the same for each household. In this case, it is straightforward to allow
for differences across households in initial assets and labor productivity.

Let a j (t) and π j represent, respectively, the per capita assets and productivity level of the
j th household. The wage rate paid to the j th household is π jw, where w is the economy-
wide average wage, π j is constant over time, and we have normalized so that the mean
value of π j equals 1.

The flow budget constraint for each household takes the same form as equation (2.3):

ȧ j = π j · w + ra j − c j − na j (2.45)

In this representation, each household could have a different value of initial assets, a j (0).
The optimal growth rate of each household’s per capita consumption satisfies the usual
first-order condition from equation (2.9):

ċ j/c j = (1/θ) · (r − ρ) (2.46)

The household’s level of per capita consumption can be found, as in the analysis of the first
section of this chapter, by solving out the differential equation for c j and using the transver-
sality condition (of the form of equation [2.12]). The result, analogous to equation (2.15), is

c j = µ · (a j + π j w̃) (2.47)

where µ is the propensity to consume out of assets (given by equation [2.16]) and w̃ is the
present value of the economy-wide average wage.

The economy-wide value of per capita assets is a = ( 1
J ) ·∑J

1 a j , and the economy-wide
value of per capita consumption is c = ( 1

J ) ·∑J
1 c j . Since the population growth rate is the

same for all households, aggregation is straightforward: sum equation (2.45) over the J
households and divide by J to compute the economy-wide budget constraint:

ȧ = w + ra − c − na (2.48)

This budget constraint is the same as equation (2.3).

28. Stiglitz (1969) worked out a model with household heterogeneity under a variety of nonoptimizing saving
functions.
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We can also aggregate the consumption function, equation (2.47), across households to
get the economy-wide value of consumption per person:

c = µ · (a + w̃) (2.49)

This relation is the same as equation (2.15).
Finally, we can use equations (2.48) and (2.49) to get

ċ/c = (1/θ) · (r − ρ) (2.50)

which is the standard economy-wide condition for consumption growth. When combined
with the usual analysis of competitive firms, this description of aggregate household
behavior—equations (2.48) and (2.50)—delivers the standard Ramsey model. Hence, the
model with the assumed forms of heterogeneity in initial assets and worker productivity has
the same macroeconomic implications as the usual, representative-agent model. In other
words, if the households in the economy differ in their level of wealth or productivity,
and if their preferences are CIES with identical parameters and discount rates, the average
consumption, assets, income, and capital for these families behave exactly as the ones of a
single representative household. Hence, the representative-agent model provides the correct
description of the average variables of an economy populated with the assumed forms of
heterogenous agents.

Aside from supporting the use of the representative-agent framework, the extension to
include heterogeneity also allows for a study of the dynamics of inequality. Equation (2.46)
implies that each household chooses the same growth rate for consumption. Therefore,
relative consumption, c j/c, does not vary over time.

The model does imply a dynamics for relative assets, a j/a. Equations (2.45), (2.47),
(2.48), and (2.49) imply that relative assets change in accordance with

d

dt

(
a j

a

)
= (w − µw̃)

a
·
(

π j − a j

a

)
(2.51)

We can show that, in the steady state (where w grows at the rate x and r = ρ + θx), the
relation w = µw̃ holds. Therefore, relative asset positions stay constant in the steady state.
Outside of the steady state, equation (2.51) implies that the relative asset position does not
change over time for a household whose relative labor productivity, π j , is as high as its
relative asset position, a j/a. For other households, the behavior depends on the sign of
w − µw̃. Imagine that w > µw̃. Roughly speaking, this condition says that the propensity
to save out of (permanent) wage income is positive. In this case, equation (2.51) implies
that a j/a would rise or fall over time depending on whether relative labor productivity
exceeded or fell short of the relative asset position—π j >(or <) a j/a. Thus a convergence
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pattern would hold, whereby relative assets moved toward relative productivity. However,
the opposite pattern applies if w < µw̃. Outside of the steady state, the sign of w −µw̃

depends on the relation of interest rates to growth rates of wages and is ambiguous. Hence,
the model does not have clear predictions about the way in which a j/a will move along the
transition.

Caselli and Ventura (2000) also allowed for a form of heterogeneity in household pref-
erences. They assumed that preferences involved the felicity function u(c + β j g), where
they interpret g as a publicly provided service. The parameter β j > 0 indicates the value
that household j attaches to the public service. The variable g could also represent the ser-
vices that households get freely from the environment, for example, from staring at the
sky. The main result from this extension is that the aggregation of individual behavior still
corresponds to a representative-agent model, in the sense that the economy-wide average
variables, a and c, evolve as they would with a single agent who had average values of
initial assets, labor productivity, and preferences. In this sense, the results from the Ramsey
model are robust to this extension to admit heterogeneous preferences.

2.7 Nonconstant Time-Preference Rates

Many of the basic frameworks in macroeconomics, including the neoclassical growth model
that we have been analyzing, rely on the assumption that households have a constant rate
of time preference, ρ. However, the rationale for this assumption is unclear.29 Perhaps
it is unclear because the reason for individuals to have positive time preference is itself
unclear.

Ramsey (1928, p. 543) preferred to use a zero rate of time preference. He justified
this approach in a normative context by saying “we do not discount later enjoyments
in comparison with earlier ones, a practice which is ethically indefensible.” Similarly,
Fisher (1930, chapter 4) argued that time preference—or impatience, as he preferred
to call it—reflects mainly a person’s lack of foresight and self-control. One reason that
economists have not embraced a zero rate of time preference is that it causes difficulties
for the long-run equilibrium—in particular, the transversality condition in the model that
we have analyzed requires the inequality ρ > x · (1 − θ) + n, which is positive if θ < 1 +
(n/x). Thus most analyses have assumed that the rate of time preference is positive but
constant.

29. See Koopmans (1960) and Fishburn and Rubinstein (1982) for axiomatic derivations of a constant rate of time
preference.
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As has been known since Strotz (1956) and the elaborations of Pollak (1968) and
Goldman (1980)—and understood much earlier by Ramsey (1928)30—nonconstancy of
the rate of time preference can create a time-consistency problem. This problem arises
because the relative valuation of utility flows at different dates changes as the planning
date evolves. In this context, committed choices of consumption typically differ from those
chosen sequentially, taking account of the way that future consumption will be determined.
Therefore, the commitment technology matters for the outcomes.

Laibson (1997a, 1997b), motivated partly by introspection and partly by experimental
findings, has made compelling observations about ways in which rates of time preference
vary.31 He argues that individuals are highly impatient about consuming between today
and tomorrow but are much more patient about choices advanced further in the future, for
example, between 365 and 366 days from now. Hence, rates of time preference would be
very high in the short run but much lower in the long run, as viewed from today’s perspective.
Given these insights and evidence, it is important to know whether economists can continue
to rely on the standard version of the neoclassical growth model—the model analyzed in
this chapter—as their workhorse framework for dynamic macroeconomics.

To assess this issue, we follow the treatment in Barro (1999) and modify the utility
function from equation (2.1) to

U (τ ) =
∫ ∞

τ

u[c(t)] · e−[ρ·(t−τ)+φ(t−τ)] dt (2.52)

where τ now represents the current date and φ(t − τ) is a function that brings in the aspects
of time preference that cannot be described by the standard exponential factor, e−ρ·(t−τ).
For convenience, we begin with a case of zero population growth, n = 0, so that the term
en·(t−τ) does not appear in equation (2.52). We assume that the felicity function takes the
usual form given in equation (2.10):

u(c) = c(1−θ) − 1

(1 − θ)

30. In the part of his analysis that allows for time preference, Ramsey (1928, p. 439) says, “In assuming the
rate of discount constant, I [mean that] the present value of an enjoyment at any future date is to be obtained by
discounting it at the rate ρ. . . . This is the only assumption we can make, without contradicting our fundamental
hypothesis that successive generations are activated by the same system of preferences. For, if we had a varying
rate of discount—say a higher one for the first fifty years—our preference for enjoyments in 2000 A.D. over those
in 2050 A.D. would be calculated at the lower rate, but that of the people alive in 2000 A.D. would be at the higher.”

31. For discussions of the experimental evidence, see Thaler (1981), Ainslie (1992), and Loewenstein and Prelec
(1992).
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The new time-preference term, φ(t − τ), is assumed, as in the case of the conventional
time-preference factor, to depend only on the distance in time, t − τ .32 We can normalize
to have φ(0) = 0. We also assume that the function φ(·) is continuous and twice differ-
entiable. The expression ρ + φ

′
(v) gives the instantaneous rate of time preference at the

time distance v = t − τ ≥ 0. The assumed properties, which follow Laibson (1997a), are
φ

′
(v) ≥ 0, φ′′(v) ≤ 0, and φ

′
(v) approaches zero as v tends to infinity. These properties

imply that the rate of time preference, given by ρ + φ′(t − τ), is high in the near term
but roughly constant at the lower value ρ in the distant future. Consumers with these pref-
erences are impatient about consuming right now, but they need not be shortsighted in
the sense of failing to take account of long-term consequences. The analysis assumes no
decision-making failures of this sort.

Except for the modification of the time-preference rate, the model is the same as be-
fore, including the specification of the production function and the behavior of firms. For
convenience, we begin with the case of zero technological change, x = 0.

2.7.1 Results under Commitment

The first-order optimization conditions for the household’s path of consumption, c(t), would
be straightforward if the full path of current and future consumption could be chosen in a
committed manner at the present time, τ . In particular, the formula for the growth rate of
consumption would be modified from equation (2.11) to

ċ/c = (1/θ) · [r(t) − ρ − φ′(t − τ)] (2.53)

for t > τ . The new element is the addition of the term φ′(t − τ) to ρ. Equation (2.53) can
be viewed as coming from usual perturbation arguments, whereby consumption is lowered
at some point in time and raised at another point in time—perhaps the next instant in
time—with all other values of consumption held constant.

Given the assumed properties for φ(·), ρ + φ′(t − τ) would start at a high value and
then decline toward ρ as t − τ tended toward infinity. Thus the steady-state rate of time
preference would be ρ, and the steady state of the model would coincide with the analysis
from before. The new results would involve the transition, during which time-preference
rates were greater than ρ but falling over time.

One problem with this solution is that the current time, τ , is arbitrary, and, in the typical
situation, the potential to commit did not suddenly arise at this time. Rather, if perpetual
commitments on consumption were feasible, these commitments would likely have existed

32. The utility expression can be extended without affecting the basic results to include the chronological date, t ,
and a household’s age and other life-cycle characteristics.
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in the past, perhaps in the infinite past. In this last situation, current and all future values of
consumption would have been determined earlier, and τ would be effectively minus infinity,
so that φ′(t − τ) would be zero for all t ≥ 0. Hence, the rate of time preference would equal
ρ for all t ≥ 0, and the standard Ramsey results would apply throughout, not just in the
steady state.

The more basic problem is that commitment on future choices of c(t) is problematic. The
next section therefore works out the solution in the absence of any commitment technology
for future consumption. In this setting, the household can determine at time τ only the
instantaneous flow of consumption, c(τ ).

2.7.2 Results without Commitment under Log Utility

The first-order condition in equation (2.53) will not generally hold without commitment,
because it is infeasible for the household to carry out the perturbations that underlie the con-
dition. Specifically, the household cannot commit to lowering c(τ ) at time τ and increasing
c(t) at some future date, while holding fixed consumption at all other dates. Instead, the
household has to figure out how its setting of c(τ ) at time τ will alter its stock of assets and
how this change in assets will influence the choices of consumption at later dates.

The full solution without commitment is worked out first for log utility, where θ = 1.
The steady-state results for general θ are discussed in a later section. Transitional results
for general θ are more complicated, but some results are sketched later.

Think of choosing c(t) at time τ as the constant flow c(τ ) over the short discrete interval
[τ, τ + ε]. The length of the interval, ε, will eventually approach zero and thereby generate
results for continuous time. The full integral of utility flows from equation (2.52) can be
broken up into two pieces:

U (τ ) =
∫ τ+ε

τ

log[c(t)] · e−[ρ·(t−τ)+φ(t−τ)] dt +
∫ ∞

τ+ε

log[c(t)] · e−[ρ·(t−τ)+φ(t−τ)] dt

≈ ε · log[c(τ )] +
∫ ∞

τ+ε

log[c(t)] · e−[ρ·(t−τ)+φ(t−τ)] dt (2.54)

where the approximation comes from taking e−[ρ·(t−τ)+φ(t−τ)] as equal to unity over the
interval [τ, τ + ε]. This approximation will become exact in the equilibrium as ε tends to
zero. Note that log utility has been assumed.33

The consumer can pick c(τ ) and thereby the choice of saving at time τ . This selection
influences c(t) for t ≥ τ + ε by affecting the stock of assets, k(τ + ε), available at time

33. Pollak (1968, section 2) works out results under log utility with a finite horizon and a zero interest rate.
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τ + ε. (Solely for convenience, we already assume the equality between per capita assets,
a[t], and the per capita capital stock, k[t].) To determine the optimal c(τ ), the household
has to know, first, the relation between c(τ ) and k(τ + ε) and, second, the relation between
k(τ + ε) and the choices of c(t) for t ≥ τ + ε.

The first part of the problem is straightforward. The household’s budget constraint is

k̇(t) = r(t) · k(t) + w(t) − c(t) (2.55)

For a given starting stock of assets, k(τ ), the stock at time τ + ε is determined by

k(τ + ε) ≈ k(τ ) · [1 + ε · r(τ )] + ε · w(τ) − ε · c(τ ) (2.56)

The approximation comes from neglecting compounding over the interval (τ, τ + ε)—that
is, from ignoring terms of the order of ε2—and from treating the variables r(t) and w(t) as
constants over this interval. These assumptions will be satisfactory in the equilibrium when
ε approaches zero. The important result from equation (2.56) is that

d[k(τ + ε)]/d[c(τ )] ≈ −ε (2.57)

Hence, more consumption today means less assets at the next moment in time.
The difficult calculation involves the link between k(τ + ε) and c(t) for t ≥ τ + ε, that

is, the propensities to consume out of assets. In the standard model with log utility, we
know from equations (2.15) and (2.16) that—because of the cancellation of income and
substitution effects related to the path of interest rates—consumption is a constant fraction
of wealth:

c(t) = ρ · [k(t) + w̃(t)]

where w̃(t) is the present value of wages. Given this background, it is reasonable to conjec-
ture that the income and substitution effects associated with interest rates would still cancel
under log utility, even though the rate of time preference is variable and commitment is
absent. However, the constant of proportionality, denoted by λ, need not equal ρ. Thus, the
conjecture—which turns out to be correct—is that consumption is given by

c(t) = λ · [k(t) + w̃(t)] (2.58)

for t ≥ τ + ε for some constant λ > 0.34

34. Phelps and Pollak (1968, section 4) use an analogous conjecture to work out a Cournot–Nash equilibrium for
their problem. They assume isoelastic utility and a linear technology, so that the rate of return is constant. The last
property is critical, because consumption is not a constant fraction of wealth (except when θ = 1) if the rate of
return varies over time. The linear technology also eliminates any transitional dynamics, so that the economy is
always in a position of steady-state growth.
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Under the assumed conjecture, it can be verified that c(t) grows at the rate r(t) − λ for
t ≥ τ + ε. Hence, for any t ≥ τ + ε, consumption is determined from

log[c(t)] = log[c(τ + ε)] +
∫ t

τ+ε

r(v) dv − λ · (t − τ − ε)

The expression for utility from equation (2.54) can therefore be written as

U (τ ) ≈ ε · log[c(τ )] + log[c(τ + ε)] ·
∫ ∞

τ+ε

e−[ρ·(t−τ)+φ(t−τ)] dt

+ terms that are independent of c(t) path (2.59)

Define the integral

�(ε) ≡
∫ ∞

ε

e−[ρv+φ(v)] dv (2.60)

The marginal effect of c(τ ) on U (τ ) can then be calculated as

d[U (τ )]

d[c(τ )]
≈ ε

c(τ )
+ �(ε)

c(τ + ε)
· d[c(τ + ε)]

d[k(τ + ε)]
· d[k(τ + ε)]

dc(τ )

The final derivative equals −ε, from equation (2.57), and the next-to-last derivative equals λ,
according to the conjectured solution in equation (2.58). Therefore, setting d[U (τ )]/d[c(τ )]
to zero implies

c(τ ) = c(τ + ε)

λ · �(ε)

If the conjectured solution is correct, c(τ + ε) must approach c(τ ) as ε tends to zero.
Otherwise, c(t) would exhibit jumps at all points in time, and the conjectured answer would
be wrong. The unique value of λ that delivers this correspondence follows immediately as

λ = 1/� = 1∫ ∞
0 e−[ρv+φ(v)] dv

(2.61)

where we use the notation � ≡ �(0).
To summarize, the solution for the household’s consumption problem under log util-

ity is that c(t) be set as the fraction λ of wealth at each date, where λ is the constant
shown in equation (2.61). The solution is time consistent because, if c(t) is chosen in this
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manner at all future dates, it will be optimal for consumption to be set this way at the
current date.35

Inspection of equation (2.61) reveals that λ = ρ in the standard Ramsey case in which
φ(v) = 0 for all v. To assess the general implications of φ(v) for λ, it is convenient to rewrite
equation (2.62) as

λ =
∫ ∞

0 e−[ρv+φ(v)] · [ρ + φ′(v)] dv∫ ∞
0 e−[ρv+φ(v)] dv

(2.62)

Since the numerator of equation (2.62) equals unity,36 this result corresponds to equa-
tion (2.61).

The form of equation (2.62) is useful because it shows that λ is a time-invariant weighted
average of the instantaneous rates of time preference,ρ + φ′(v). Sinceφ′(v) ≥ 0,φ′′(v) ≤ 0,
and φ′(v) → 0 as v → ∞, it follows that

ρ ≤ λ ≤ ρ + φ′(0) (2.63)

That is, λ is intermediate between the long-run rate of time preference, ρ, and the short-run,
instantaneous rate, ρ + φ′(0).

The determination of the effective rate of time preference can be quantified by specifying
the form of φ(v). Laibson (1997a) proposes a “quasi-hyperbola” in discrete time, whereby
φ(v) = 0 in the current period and e−φ(v) = β in each subsequent period, where 0 < β ≤ 1.
(Phelps and Pollak, 1968, also use this form.) In this specification, the discount factor
between today and tomorrow includes the factor β ≤ 1. This factor does not enter between
any two adjacent future periods. Laibson argues that β would be substantially less than one
on an annual basis, perhaps between one-half and two-thirds.

This quasi-hyperbolic case can be applied to a continuous-time setting by specifying

φ(v) = 0 for 0 ≤ v ≤ V , e−φ(v) = β for v > V (2.64)

35. This approach derives equation (2.61) as a Cournot–Nash equilibrium but does not show that the equilibrium is
unique. Uniqueness is easy to demonstrate in the associated discrete-time model with a finite horizon, as considered
by Laibson (1996). In the final period, the household consumes all of its assets, and the unique solution for each
earlier period can be found by working backward sequentially from the end point. This result holds as long as
u(c) is concave, not just for isoelastic utility. The uniqueness result also holds if the length of a period approaches
zero (to get continuous time) and if the length of the horizon becomes arbitrarily large. However, Laibson (1994)
uses an explicitly game-theoretic approach to demonstrate the possibility of nonuniqueness of equilibrium in the
infinite-horizon case. The existence of multiple equilibria depends on punishments that sanction past departures
of consumption choices from designated values, and these kinds of equilibria unravel if the horizon is finite. Our
analysis of the infinite-horizon case does not consider these kinds of equilibria.

36. Use the change of variable z = e−[ρv+φ(v)].
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for some V > 0, where 0 < β ≤ 1. [In this specification, φ′(v) is infinite at v = V and equals
zero otherwise.] Laibson’s suggestion is that V is small, so that the condition ρV � 1 would
hold.

Substitution from equation (2.64) into the definition of � in equation (2.60) leads (when
ε = 0) to

� = (1/ρ) · [1 − (1 − β) · e−ρV ]

As V approaches infinity, � goes to 1/ρ, which corresponds to the Ramsey case. The
condition ρV � 1 implies that the expression for � simplifies, as an approximation, to
β/ρ, so that

λ ≈ ρ/β (2.65)

If β is between one-half and two-thirds, λ is between 1.5ρ and 2ρ. Hence, if ρ is 0.02 per
year, the heavy near-term discounting of future utility converts the Ramsey model into one
in which the effective rate of time preference, λ, is 0.03–0.04 per year.

The specification in equation (2.64) yields simple closed-form results, but the functional
form implies an odd discrete jump in e−φ(v) at the time V in the future. More generally, the
notion from the literature on short-term impatience is that ρ +φ′(v) is high when v is small
and declines, say toward ρ, as v becomes large. A simple functional form that captures this
property in a smooth fashion is

φ′(v) = be−γ v (2.66)

where b = φ′(0) ≥ 0 and γ > 0. The parameter γ determines the constant rate at which
φ′(v) declines from φ′(0) to zero.

Integration of the expression in equation (2.66), together with the boundary condition
φ(0) = 0, leads to an expression for φ(v):37

φ(v) = (b/γ ) · (1 − e−γ v) (2.67)

This result can be substituted into the formula in equation (2.60) to get an expression for �:

� = e−(b/γ ) ·
∫ ∞

0
e[−ρv+(b/γ )·e−γ v ] dv

The integral cannot be solved in closed form but can be evaluated numerically if values are
specified for the parameters ρ, b, and γ .

37. The expression in equation (2.67) is similar to the “generalized hyperbola” proposed by Loewenstein and
Prelec (1992, p. 580). Their expression can be written as φ(v) = (b/γ ) · log(1 + γ v).
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To accord with Laibson’s (1997a) observations, the parameter b = φ′(0) must be around
0.50 per year, and the parameter γ must be at least 0.50 per year, so that φ′(v) gets close to
zero a few years in the future. With ρ = 0.02, b = 0.50, and γ = 0.50, � turns out to be 19.3,
so that λ = 1/� = 0.052. If b = 0.25 and the other parameters are the same, � = 31.0 and
λ = 0.032. Thus, the more appealing functional form in equation (2.67) has implications
that are similar to those of equation (2.64).

The introduction of the φ(·) term in the utility function of equation (2.52) and the con-
sequent shift to a time-inconsistent setting amount, under log utility, to an increase in the
rate of time preference above ρ. Since the effective rate of time preference, λ, is constant,
the dynamics and steady state of the model take exactly the same form as in the standard
Ramsey framework that we analyzed before. The higher rate of time preference corresponds
to a higher steady-state interest rate,

r∗ = λ (2.68)

and, thereby, to a lower steady-state capital intensity, k∗, which is determined from the
condition

f
′
(k∗) = λ + δ

Since the effective rate of time preference, λ, is constant, the model with log utility and no
commitment is observationally equivalent to the conventional neoclassical growth model.
That is, the equilibrium coincides with that in the standard model for a suitable choice of ρ.
Since the parameter ρ cannot be observed directly, there is a problem in inferring from data
whether the instantaneous rate of time preference includes the nonconstant term, φ′(v).

2.7.3 Population Growth and Technological Progress

It is straightforward to incorporate population growth in the manner of equation (2.1). The
solution under log utility is similar to that from before, except that the integral � is now
defined by

� ≡
∫ ∞

0
e−[(ρ−n)·v+φ(v)] dv (2.69)

The relation between the propensity to consume out of wealth, λ, and the modified � term
is given by

λ = n + (1/�) (2.70)

and the steady-state interest rate is again r∗ = λ. We leave the derivations of these results
as exercises.
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In the Ramsey case, where φ(v) = 0 for all v, � = 1/(ρ − n) in equation (2.69) and
λ = ρ in equation (2.70). For Laibson’s quasi-hyperbolic preferences in equation (2.64), the
result is

� ≈ β/(ρ − n), λ ≈ (ρ/β) − n · (1 − β)/β (2.71)

If 0 < β < 1, an increase in n lowers λ and, therefore, reduces the steady-state interest rate,
r∗ = λ.

It is also straightforward to introduce exogenous, labor-augmenting technological
progress at the rate x ≥ 0. The solution for λ is still that shown in equations (2.69) and
(2.70). However, since consumption per person grows in the steady state at the rate x , the
condition for the steady-state interest rate is

r∗ = λ + x

Hence, as is usual with log utility, r∗ responds one-to-one to the rate of technological
progress, x .

2.7.4 Results under Isoelastic Utility

In the standard analysis, where φ(t −τ) = 0 for all t , consumption is not a constant fraction
of wealth unless θ = 1. However, we know, for any value of θ , that the first-order condition
for consumption growth at time τ is given from equation (2.11) by

ċ

c
(τ ) = (1/θ) · [r(τ ) − ρ] (2.72)

A reasonable conjecture is that the form of equation (2.72) would still hold when φ(t −τ) �=
0 but that the constant ρ would be replaced by some other constant that represented the
effective rate of time preference. This conjecture is incorrect. The reason is that the effective
rate of time preference at time τ involves an interaction of the path of the future values of
φ′(t − τ) with future interest rates and turns out not to be constant when interest rates are
changing except when θ = 1.

Although the transitional dynamics is complicated, it is straightforward to work out the
characteristics of the steady state. The key point is that, in a steady state, an increase in
household assets would be used to raise consumption uniformly in future periods. This
property makes it easy to compute propensities to consume for future periods with respect
to current assets and, therefore, makes it easy to find the first-order optimization condition
for current consumption. Only the results are presented here.

In the steady state, the interest rate is given by

r∗ = x + n + 1/� (2.73)
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where the integral � is now defined by

� ≡
∫ ∞

0
e−{[ρ−x ·(1−θ)−n]·v+φ(v)} dv (2.74)

Thus, if φ(v) = 0, we get the standard result

r∗ = ρ + θx

For the case of Laibson’s quasi-hyperbolic utility function in equation (2.64), the result
turns out to be

r∗ ≈ ρ

β
− n · (1 − β)

β
+ x · (β + θ − 1)

β
(2.75)

where recall that 0 < β < 1. Thus, for the case considered before of log utility (θ = 1), the
effect of x on r∗ is one-to-one. More generally, the effect of x on r∗ is more or less than
one-to-one depending on whether θ is greater or less than 1.

For the transitional dynamics, Barro (1999) shows that consumption growth at any date
τ satisfies the condition

ċ

c
(τ ) = (1/θ) · [r(τ ) − λ(τ)] (2.76)

The term λ(τ) is the effective rate of time preference and is given by

λ(τ) =
∫ ∞

τ
ω(t, τ ) · [ρ + φ′(t − τ)] dt∫ ∞

τ
ω(t, τ ) dt

(2.77)

where ω(t, τ ) > 0. Thus, λ(τ) is again a weighted average of future instantaneous rates of
time preference, ρ + φ′(t − τ). The difference from equation (2.62) is that the weighting
factor, ω(t, τ ), is time varying unless θ = 1.

Barro (1999) shows that, if θ > 1, ω(t, τ ) declines with the average of interest rates
between dates τ and t . If the economy begins with a capital intensity below its steady-state
value, r(τ ) starts high and then falls toward its steady-state value. The weights ω(t, τ ) are
then particularly low for dates t far in the future. Since these dates are also the ones with
relatively low values of ρ + φ′(t − τ), λ(τ) is high initially. However, as interest rates fall,
the weights, ω(t, τ ), become more even, and λ(τ) declines. This descending path of λ(τ)

means that households effectively become more patient over time. However, the effects
are all reversed if θ < 1. The case θ = 1, which we worked out before, is the intermediate
one in which the weights stay constant during the transition. Hence, in this case, the effective
rate of time preference does not change during the transition.
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2.7.5 The Degree of Commitment

The analysis thus far considered a case of full commitment, as in equation (2.53), and ones
of zero commitment, as in equation (2.76). Barro (1999) also considers intermediate cases in
which commitment is possible over an interval of length T , where 0 ≤ T ≤ ∞. Increases
in the extent of commitment—that is, higher T —lead in the long run to a lower effective
rate of time preference and, hence, to lower interest rates and higher capital intensity.
However, changes in T also imply transitional effects—initially an increase in T tends to
make households less patient because they suddenly get the ability to constrain their “future
selves” to save more. Thus the analysis implies that a rise in T initially lowers the saving
rate but tends, in the longer run, to raise the willingness to save.

If the parameter T can be identified with observable variables—such as the nature of legal
and financial institutions or cultural characteristics that influence the extent of individual
discipline—the new theoretical results might eventually have empirical application. In fact,
from an empirical standpoint, the main new insights from the extended model concern
the connection between the degree of commitment and variables such as interest rates and
saving rates. For a given degree of commitment, the main result is that a nonconstant rate
of time preference leaves intact the main implications of the neoclassical growth model.

2.8 Appendix 2A: Log-Linearization of the Ramsey Model

The system of differential equations that characterizes the Ramsey model is given from
equations (2.24) and (2.25) by

˙̂k = f (k̂) − ĉ − (x + n + δ) · k̂

˙̂c/ĉ = ċ/c − x = (1/θ) · [ f ′(k̂) − δ − ρ − θx] (2.78)

We now log-linearize this system for the case in which the production function is Cobb–
Douglas, f (k̂) = A · k̂α .

Start by rewriting the system from equation (2.78) in terms of the logs of ĉ and k̂:

d[log(k̂)]/dt = A · e−(1−α)·log(k̂) − elog(ĉ/k̂) − (x + n + δ)

d[log(ĉ)]/dt = (1/θ) · [αA · e−(1−α)·log(k̂) − (ρ + θx + δ)]
(2.79)

In the steady state, where d[log(k̂)]/dt = d[log(ĉ)]/dt = 0, we have

A · e−(1−α)·log(k̂∗) − elog(ĉ∗/k̂∗) = (x + n + δ)

αA · e−(1−α)·log(k̂∗) = (ρ + θx + δ) (2.80)
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We take a first-order Taylor expansion of equation (2.79) around the steady-state values
determined by equation (2.80):

[
d[log(k̂)]/dt
d[log(ĉ)]/dt

]
=


 ζ x + n + δ − (ρ + θx + δ)

α

−(1 − α) · (ρ + θx + δ)

θ
0




·
[

log(k̂/k̂∗)
log(ĉ/ĉ∗)

]
(2.81)

where ζ ≡ ρ − n − (1 − θ) · x . The determinant of the characteristic matrix equals

−[(ρ + θx + δ)/α − (x + n + δ)] · (ρ + θx + δ) · (1 − α)/θ

Since ρ + θx > x + n (from the transversality condition in equation [2.31]) and α < 1,
the determinant is negative. This condition implies that the two eigenvalues of the system
have opposite signs, a result that implies saddle-path stability. (See the discussion in the
mathematics appendix at the end of the book.)

To compute the eigenvalues, denoted by ε, we use the condition

det


 ζ − ε x + n + δ − (ρ + θx + δ)

α

−(1 − α) · (ρ + θx + δ)

θ
−ε


 = 0 (2.82)

This condition corresponds to a quadratic equation in ε :

ε2 − ζ · ε − [(ρ + θx + δ)/α − (x + n + δ)] · [(ρ + θx + δ) · (1 − α)/θ ] = 0 (2.83)

This equation has two solutions:

2ε = ζ ±
[
ζ 2 + 4 ·

(
1 − α

θ

)
· (ρ + θx + δ) · [(ρ + θx + δ)/α − (x + n + δ)]

]1/2

(2.84)

where ε1, the root with the positive sign, is positive, and ε2, the root with the negative sign,
is negative. Note that ε2 corresponds to −β in equation (2.41).

The log-linearized solution for log(k̂) takes the form

log[k̂(t)] = log(k̂∗) + ψ1 · eε1t + ψ2 · eε2t (2.85)

where ψ1 and ψ2 are arbitrary constants of integration. Since ε1 > 0, ψ1 = 0 must hold for
log[k̂(t)] to tend asymptotically to log(k̂∗). (ψ1 > 0 violates the transversality condition,
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and ψ1 < 0 leads to k̂ → 0, which corresponds to cases in which the system hits the vertical
axis in figure 2.1.) The other constant, ψ2, is determined from the initial condition:

ψ2 = log[k̂(0)] − log(k̂∗) (2.86)

If we substitute ψ1 = 0, the value of ψ2 from equation (2.86), and ε2 = −β into equation
(2.85), we get the time path for log[k̂(t)]:

log[k̂(t)] = (1 − e−βt ) · log(k̂∗) + e−βt · log[k̂(0)] (2.87)

Since log[ŷ(t)] = log(A) + α · log[k̂(t)], the time path for log[ŷ(t)] is given by

log[ŷ(t)] = (1 − e−βt ) · log(ŷ∗) + e−βt · log[ŷ(0)] (2.88)

which corresponds to equation (2.40).

2.9 Appendix 2B: Irreversible Investment

Suppose that investment is irreversible, so that ĉ ≤ f (k̂) applies. Reconsider in this case the
dynamic paths that start with k̂ < k̂∗ at a position such as ĉ

′
0 in figure 2.1. These paths would

eventually hit the production function, ĉ = f (k̂), after which the constraint from irreversible
investment would become binding. Thereafter, the paths would move downward along
the production function, so that ĉ = f (k̂) would apply. Hence, the capital intensity would
decline in accordance with ˙̂k = −(x +n + δ) · k̂. Therefore, k̂ (and ĉ) would asymptotically
approach zero but would not reach zero in finite time. We now argue that such paths cannot
be equilibria.

When the constraint ĉ ≤ f (k̂) is binding, so that all output goes to consumption and none
to gross investment, the price of capital, denoted by φ, can fall below 1. The rate of return
to holders of capital then satisfies (see note 11)

r = R/φ − δ + φ̇/φ (2.89)

Profit maximization for competitive firms still implies the condition R = f ′(k̂), which can
be substituted into the formula for r .

Consumer optimization entails, as usual,

ċ/c = (1/θ) · (r − ρ)

Therefore, substitution for r from equation (2.89) yields the formula for the growth rate
of ĉ:

˙̂c/ĉ =
(

1

θφ

)
· [ f ′(k̂) + φ̇ − φ · (δ + ρ + θx)] (2.90)
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The condition ĉ = f (k̂), together with ˙̂k = −(x + n + δ) · k̂, implies another condition
for the growth rate of ĉ:

˙̂c/ĉ = −α(k̂) · (x + n + δ) (2.91)

where α(k̂) ≡ k̂ · f ′(k̂)/ f (k̂) is the capital share of income (which is a constant in the case
of a Cobb–Douglas production function). Therefore, equations (2.90) and (2.91) imply a
condition for φ̇:

φ̇ = − f ′(k̂) + φ · [δ + ρ + θx − α(k̂) · θ · (x + n + δ)] (2.92)

Suppose that the constraint ĉ ≤ f (k̂) first becomes binding at some date T , where k̂(T ) <

k̂∗ applies. At this point, f ′(k̂) − δ > ρ + θx . Therefore, when φ = 1 (just at time T ),
equation (2.92) implies that φ̇ < 0. Over time, the rise in R and the fall in φ tend to raise r
in accordance with equation (2.81). Nevertheless, households are satisfied with a negative
growth rate of ĉ (equation [2.91]) because the rate of capital loss, φ̇/φ, rises sufficiently
in magnitude to maintain a low rate of return, r . However, equation (2.92) implies, as k̂
decreases and f ′(k̂) rises, that φ̇ eventually rises in magnitude toward infinity (regardless
of what happens to α[k̂] in the range between 0 and 1). Therefore, φ would reach zero in
finite time and then become negative. This condition violates free disposal with respect to
claims on capital. Hence, paths in which the irreversibility constraint, ĉ ≤ f (k̂), is binding
cannot exist in the region where k̂ < k̂∗.

The constraint ĉ ≤ f (k̂) can be binding in the region where k̂ > k̂∗. This possibility was
noted and discussed by Arrow and Kurz (1970).

2.10 Appendix 2C: Behavior of the Saving Rate

This section provides an algebraic treatment of the transitional behavior of the saving rate.
We deal here with the transition in which k̂ and ĉ are rising over time, and we assume a
Cobb–Douglas production function, so that f (k̂) = Ak̂α .

The gross saving rate, s, equals 1 − ĉ/ f (k̂). In the steady state, ˙̂k from equation (2.24)
and ˙̂c/ĉ from equation (2.25) are each equal to 0. If we use these conditions, together with
f (k̂)/k̂ = f ′(k̂)/α, which holds in the Cobb–Douglas case, we find that the steady-state
saving rate is

s∗ = α · (x + n + δ)/(ρ + θx + δ) (2.93)

The transversality condition in equation (2.31) implies ρ+θx > x+n and, therefore, s∗ < α.
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Since s = 1− ĉ/ f (k̂), s moves in the direction opposite to the consumption ratio, ĉ/ f (k̂).
Define z ≡ ĉ/ f (k̂) and differentiate the ratio to get

γz ≡ ż/z = ˙̂c/ĉ − f ′(k̂) · ˙̂k
f (k̂)

= ˙̂c/ĉ − α · ( ˙̂k/k̂) (2.94)

where the last term on the right follows in the Cobb–Douglas case. Substitution from
equations (2.24) and (2.25) into equation (2.94) leads to

γz = f ′(k̂) · [z(t) − (θ − 1)/θ ] + (δ + ρ + θx) · (s∗ − 1/θ) (2.95)

where we used the condition f (k̂)/k̂ = f ′(k̂)/α, which holds in the Cobb–Douglas case.
The behavior of z depends on whether s∗ is greater than, equal to, or less than 1/θ . Suppose

first that s∗ = 1/θ . Then z(t) = (θ − 1)/θ is consistent with γz = 0 in equation (2.95). In
contrast, z(t) > (θ −1)/θ for some t would imply γz > 0 for all t , a result that is inconsistent
with z approaching its steady-state value. Similarly, z(t) < (θ−1)/θ can be ruled out because
it implies γz < 0 for all t . Therefore, if s∗ = 1/θ , z is constant at the value (θ − 1)/θ , and,
hence, the saving rate, s, equals the constant 1/θ . By analogous reasoning, we find that
s∗ > 1/θ implies z(t) < (θ − 1)/θ for all t , whereas s∗ < 1/θ implies z(t) > (θ − 1)/θ for
all t.

Differentiation of equation (2.95) with respect to time implies

γ̇z = f ′′(k̂) · ( ˙̂k) · [z(t) − (θ − 1)/θ ] + f ′(k̂) · γz · z(t) (2.96)

Suppose now that s∗ > 1/θ , so that z(t) < (θ − 1)/θ holds for all t . Then γz > 0 for some t
would imply γ̇z > 0 in equation (2.96) (because f ′′(k̂) < 0, f ′(k̂) > 0, and ˙̂k > 0). Therefore,
γz > 0 would apply for all t , a result that is inconsistent with the economy’s approaching a
steady state. It follows if s∗ > 1/θ that γz < 0, and, hence, ṡ > 0. By an analogous argument,
γz > 0 and ṡ < 0 must hold if s∗ < 1/θ .

The results can be summarized as follows:

s∗ = 1/θ implies s(t) = 1/θ , a constant

s∗ > 1/θ implies s(t) > 1/θ and ṡ(t) > 0

s∗ < 1/θ implies s(t) < 1/θ and ṡ(t) < 0

These results are consistent with the graphical presentation in figure 2.3.
If we use the formula for s∗ from equation (2.93), we find that s∗ ≥ 1/θ requires θ ≥

(ρ + θx + δ)/[α · (x + n + δ)] > 1/α. Therefore, if θ ≤ 1/α, the parameters must be in
the range in which ṡ < 0 applies throughout. In other words, if θ ≤ 1/α, the intertemporal-
substitution effect is strong enough to ensure that the saving rate falls during the transition.
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However, for our preferred value of α in the neighborhood of 0.75, this inequality requires
θ ≤ 1.33 and is unlikely to hold.

We can analyze the behavior of the consumption/capital ratio, ĉ/k̂, in a similar way. The
results are as follows:

θ = α implies ĉ/k̂ = (δ + ρ)/θ − (δ + n), a constant

θ < α implies ĉ/k̂ < (δ + ρ)/θ − (δ + n) and ĉ/k̂ rising over time

θ > α implies ĉ/k̂ > (δ + ρ)/θ − (δ + n) and ĉ/k̂ falling over time

2.11 Appendix 2D: Proof That γk̂ Declines Monotonically
If the Economy Starts from k̂(0) < k̂∗

We need first to prove the following: ĉ(0) declines if r(v) increases over some interval for
any v ≥ 0.38 Equations (2.15) and (2.16) imply

ĉ(0) = k̂(0) + ∫ ∞
0 ŵ(t)e−[r̄(t)−n−x]t dt∫ ∞

0 e[r̄(t)·(1−θ)/θ−ρ/θ+n]t dt
(2.97)

where r̄(t) is the average interest rate between times 0 and t , as defined in equation (2.13).
Higher values of r(v) for any 0 ≤ v ≤ t raise r̄(t) and thereby reduce the numerator in
equation (2.97). Higher values of r(v) raise the denominator if θ ≤ 1; therefore, the result
follows at once if θ ≤ 1. Assume now that θ > 1, so that the denominator decreases with an
increase in r(v). We know that r(v) ·(1−θ)/θ −ρ/θ +n < 0 if θ > 1 because r(v) exceeds
ρ + θx , the steady-state interest rate, which exceeds x +n from the transversality condition.
Therefore, the denominator in equation (2.97) becomes proportionately more sensitive to
r(v) (in the negative direction) the larger the value of θ . Accordingly, if we prove the result
for θ → ∞, the result holds for all θ > 0. Using θ → ∞, equation (2.97) simplifies to

ĉ(0) = k̂(0) + ∫ ∞
0 ŵ(t)e−[r̄(t)−x−n]t dt∫ ∞
0 e−[r̄(t)−n]t dt

(2.98)

Equation (2.98) can be rewritten as

ĉ(0) =
∫ ∞

0 ψ(t)e−[r̄(t)−n−x]t dt∫ ∞
0 φ(t)e−[r̄(t)−n−x]t dt

(2.99)

38. We are grateful to Olivier Blanchard for his help with this part of the proof.



138 Chapter 2

where ψ(t) = k̂(0) · [r(t) − n − x] + ŵ(t) and φ(t) = e−xt . The result φ̇ < 0 follows
immediately, and ψ̇ > 0 can be shown using the conditions r(t) = f ′[k̂(t)] − δ, ŵ(t) =
f [k̂(t)]−k̂(t)· f ′[k̂(t)], k̂(t) > k̂(0), and ˙̂k > 0. Therefore, an increase in r(v) for 0 ≤ v ≤ t ,
which raises r̄(t), has a proportionately larger negative effect on the numerator of equation
(2.99) than on the denominator. It follows that the net effect of an increase in r(v) on ĉ(0)

is negative, the result that we need.
We can use this result to get a lower bound for ĉ(0). Since r(0) > r̄(t), if we substitute

r(0) for r̄(t) and ŵ(0) for ŵ(t) in equation (2.97), then ĉ(0) must go down. Therefore,39

ĉ(0)/k̂(0) > [r(0) · (1 − θ)/θ + ρ/θ − n] ·
[

1 + ŵ(0)

k̂ · [r(0) − n − x]

]
(2.100)

We shall use this inequality later.
The growth rate of k̂ is given from equation (2.24) as

γk̂ = f (k̂)/k̂ − ĉ/k̂ − (x + n + δ) (2.101)

where we now omit the time subscripts. Differentiation of equation (2.101) with respect to
time yields

γ̇k̂ = −(ŵ/k̂) · γk̂ − d(ĉ/k̂)/dt

where we used the condition ŵ = f (k̂) − k̂ · f ′(k̂). We want to show that γ̇k̂ < 0 holds in
the transition during which k̂ and ĉ are rising. The formulas for ˙̂c/ĉ in equation (2.25) and
˙̂k in equation (2.24) can be used to get

γ̇k̂ = −(ŵ/k̂) · γk̂ + (ĉ/k̂) · [ŵ/k̂ + [ f ′(k̂) − δ] · (θ − 1)/θ + ρ/θ − n − ĉ/k̂] (2.102)

Hence, if ĉ/k̂ ≥ ŵ/k̂ + [ f ′(k̂)− δ] · (θ − 1)/θ +ρ/θ − n, then γ̇k̂ < 0 follows from γk̂ > 0,
Q.E.D. Accordingly, we now assume

ĉ/k̂ < ŵ/k̂ + [ f ′(k̂) − δ] · (θ − 1)/θ + ρ/θ − n (2.103)

If we replace ĉ/k̂ to the left of the brackets in equation (2.102) by the right-hand side of
the inequality in equation (2.103), use the formula for γk̂ from equation (2.101), and replace
f (k̂)/k̂ by ŵ/k̂ + f ′(k̂), then we eventually get

γ̇k̂ < −(ŵ/k̂) · [ f ′(k̂) − δ − ρ − θx]/θ + [ρ/θ − n + [ f ′(k̂) − δ] · (θ − 1)/θ ]2

+ [ρ/θ − n + [ f ′(k̂) − δ] · (θ − 1)/θ ] · (ŵ − ĉ)/k̂ (2.104)

39. The result follows from integration of the right-hand side of equation (2.97) if [r(0) ·(1−θ)/θ +ρ/θ −n] > 0.
If this expression is nonpositive, the inequality in equation (2.100) holds trivially.
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If ρ/θ − n + [ f ′(k̂) − δ] · (θ − 1)/θ ≤ 0, we can use the inequality in equation (2.103) to
show γ̇k̂ < 0, Q.E.D. Therefore, we now assume

ρ/θ − n + [ f ′(k̂) − δ] · (θ − 1)/θ > 0 (2.105)

Given the inequality in equation (2.105), we can use the lower bound for ĉ/k̂ from
equation (2.100) in equation (2.104) to get, after some manipulation,

γ̇k̂ < − (ŵ/k̂) · [ f ′(k̂) − δ − ρ − θx]2

[ f ′(k̂) − δ − n − x] · θ2
< 0 (2.106)

where we used the condition r = f ′(k̂) − δ. The expressions in parentheses in equa-
tion (2.106) are each positive because f ′(k̂)−δ exceeds ρ + θx , the steady-state interest rate,
which exceeds n + x from the transversality condition. Therefore, γ̇k̂ < 0 follows, Q.E.D.

2.12 Problems

2.1 Preclusion of borrowing in the Ramsey model. Consider the household optimiza-
tion problem in the Ramsey model. How do the results change if consumers are not allowed
to borrow, only to save?

2.2 Irreversibility of investment in the Ramsey model. Suppose that the economy
begins with k̂(0) > k̂∗. How does the transition path differ depending on whether capital is
reversible (convertible back into consumables on a one-to-one basis) or irreversible?

2.3 Exponential utility. Assume that infinite-horizon households maximize a utility
function of the form of equation (2.1), where u(c) is now given by the exponential form,

u(c) = −(1/θ) · e−θc

where θ > 0. The behavior of firms is the same as in the Ramsey model, with zero techno-
logical progress.

a. Relate θ to the concavity of the utility function and to the desire to smooth consumption
over time. Compute the intertemporal elasticity of substitution. How does it relate to the
level of per capita consumption, c?

b. Find the first-order conditions for a representative household with preferences given by
this form of u(c).

c. Combine the first-order conditions for the representative household with those of firms
to describe the behavior of ĉ and k̂ over time. [Assume that k̂(0) is below its steady-state
value.]
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d. How does the transition depend on the parameter θ? Compare this result with the one in
the model discussed in the text.

2.4 Stone–Geary preferences. Assume that the usual conditions of the Ramsey model
hold, except that the representative household’s instantaneous utility function is modified
from equation (2.10) to the Stone–Geary form:

u(c) = (c − c̄)1−θ − 1

1 − θ

where c̄ ≥ 0 represents the subsistence level of per capita consumption.

a. What is the intertemporal elasticity of substitution for the new form of the utility function?
If c̄ > 0, how does the elasticity change as c rises?

b. How does the revised formulation for utility alter the expression for consumption growth
in equation (2.9)? Provide some intuition on the new result.

c. How does the modification of utility affect the steady-state values k̂∗ and ĉ∗?

d. What kinds of changes are likely to arise for the transitional dynamics of k̂ and ĉ and,
hence, for the rate of convergence? (This revised system requires numerical methods to
generate exact results.)

2.5 End-of-the-world model. Suppose that everyone knows that the world will end de-
terministically at time T > 0. We worked out this problem in the text when we discussed
the importance of the transversality condition. Go through the analysis here in the following
steps:

a. How does this modification affect the transition equations for k̂ and ĉ in equations (2.24)
and (2.25)?

b. How does the modification affect the transversality condition?

c. Use figure 2.1 to describe the new transition path for the economy.

d. As T gets larger, how does the new transition path relate to the one shown in figure 2.1?
What happens as T approaches infinity?

2.6 Land in the Ramsey model. Suppose that production involves labor, L , capital, K ,
and land, �, in the form of a constant-returns, CES function:

Y = A · [a · (K α L1−α)ψ + (1 − a) · �ψ ]1/ψ

where A > 0, a > 0, 0 < α < 1, and ψ < 1. Technological progress is absent, and L grows
at the constant rate n > 0. The quantity of land, �, is fixed. Depreciation is 0. Income now
includes rent on land, as well as the payments to capital and labor.
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a. Show that the competitive payments to factors again exhaust the total output.

b. Under what conditions on ψ is the level of per capita output, y, constant in the steady
state? Under what conditions does y decline steadily in the long run? What do the results
suggest about the role of a fixed factor like land in the growth process?

2.7 Alternative institutional environments. We worked out the Ramsey model in detail
for an environment of competitive households and firms.

a. Show that the results are the same if households carry out the production directly and
use family members as workers.

b. Assume that a social planner’s preferences are the same as those of the representative
household in the model that we worked out. Show that if the planner can dictate the choices
of consumption over time, the results are the same as those in the model with competi-
tive households and firms. What does this result imply about the Pareto optimality of the
decentralized outcomes?

2.8 Money and inflation in the Ramsey model (based on Sidrauski, 1967; Brock, 1975;
and Fischer, 1979). Assume that the government issues fiat money. The stock of money,
M , is denoted in dollars and grows at the rate µ, which may vary over time. New money
arrives as lump-sum transfers to households. Households may now hold assets in the form of
claims on capital, money, and internal loans. Household utility is still given by equation (2.1),
except that u(c) is replaced by u(c, m), where m ≡ M/P L is real cash balances per person
and P is the price level (dollars per unit of goods). The partial derivatives of the utility
function are uc > 0 and um > 0. The inflation rate is denoted by π ≡ Ṗ/P . Population
grows at the rate n. The production side of the economy is the same as in the standard
Ramsey model, with no technological progress.

a. What is the representative household’s budget constraint?

b. What are the first-order conditions associated with the choices of c and m?

c. Suppose that µ is constant in the long run and that m is constant in the steady state. How
does a change in the long-run value of µ affect the steady-state values of c, k, and y? How
does this change affect the steady-state values of π and m? How does it affect the attained
utility, u(c, m), in the steady state? What long-run value of µ would be optimally chosen
in this model?

d. Assume now that u(c, m) is a separable function of c and m. In this case, how does the
path of µ affect the transition path of c, k, and y?

2.9 Fiscal policy in the Ramsey model (based on Barro, 1974, and McCallum, 1984).
Consider the standard Ramsey model with infinite-horizon households, preferences given by
equations (2.1) and (2.10), population growth at rate n, a neoclassical production function,
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and technological progress at rate x . The government now purchases goods and services
in the quantity G, imposes lump-sum taxes in the amount T , and has outstanding the
quantity B of government bonds. The quantities G, T , and B—which can vary over time—
are all measured in units of goods, and B starts at a given value, B(0). Bonds are of
infinitesimal maturity, pay the interest rate r , and are viewed by individual households as
perfect substitutes for claims on capital or internal loans. (Assume that the government
never defaults on its debts.) The government may provide public services that relate to the
path of G, but the path of G is held fixed in this problem.

a. What is the government’s budget constraint?

b. What is the representative household’s budget constraint?

c. Does the household still adhere to the first-order optimization condition for the growth
rate of c, as described in equation (2.9)?

d. What is the transversality condition and how does it relate to the behavior of B in the
long run? What does this condition mean?

e. How do differences in B(0) or in the path of B and T affect the transitional dynamics
and steady-state values of the variables c, k, y, and r? (If there are no effects, the model
exhibits Ricardian equivalence.)


