Wealth Distribution in Finite Life with Investment Risk

Shenghao Zhu

April 14, 2009

Shenghao Zhu ()

Wealth Distribution in Finite Life with Investr

April 14, 2009 1 / 2

- Why does the wealth distribution in U.S. displays the following characteristics?
 - A Gini coefficient as high as 0.78
 - Skewness to the right
 - Pareto tail
- I propose a parsimonious model including bequest motives and investment risk to match these three features in the data.

• Gini and Quintiles (Castaneda, Diaz-Gimenez and Rios-Rull (2003))

Economy	Gini	First	Second	Third	Fourth	Fifth
United States	0.78	-0.39	1.74	5.72	13.43	79.49

Top tail

Economy	90 <i>th</i> — 95 <i>th</i>	95 <i>th</i> — 99 <i>th</i>	99 <i>th</i> - 100 <i>th</i>
United States	12.62	23.95	29.55

• Pareto tail. Using the richest sample of the U.S., the Forbes 400, during 1988-2003 Klass et al. (2006) find that the top end of the wealth distribution obeys a Pareto law with an average exponent of 1.49.

- There is a continuum of agents in the economy.
- Finite life. Each agent gives birth to one child when he dies.
 - Scenario (i) No uncertainty of life span. Thus the age cohort has equal size.
 - Scenario (ii) Age-dependent death rate. Thus the economy has realistic age cohort distribution.
- Agents may have bequest motives.
- Investment risk within lifetime. This work is different from Behabib and Bisin (2008).

۲

$$\max_{c(t),\phi(t)} \{ E_t \int_t^T \frac{c(s)^{1-\gamma}}{1-\gamma} e^{-\theta(s-t)} ds + \chi \frac{[(1-\zeta)w(T)]^{1-\gamma}}{1-\gamma} e^{-\theta(T-t)} \}$$

s.t.
$$dw(t) = [(1-\tau)rw(t) + ((1-\tau)\rho - (1-\tau)r)\phi(t)w(t)$$
$$-c(t) + \omega + \Gamma]dt$$
$$+ (1-\tau)\sigma\phi(t)w(t)dz(t)$$

where ω is the wage rate, Γ is the government lump-sum transfer. τ is capital income tax rate. ζ is estate tax rate.

• The agent's human wealth

$$h(t) = \int_t^T (\omega + \Gamma) e^{-(1-\tau)r(s-t)} ds$$

Policy functions

• The agent's policy functions are

$$\begin{aligned} c(t) &= \mathsf{a}(t)^{-\frac{1}{\gamma}}[w(t) + \mathsf{h}(t)]\\ \phi(t)w(t) &= \frac{(1-\tau)\rho - (1-\tau)r}{\gamma\sigma^2(1-\tau)^2}(w(t) + \mathsf{h}(t)) \end{aligned}$$

where

$$\mathbf{a}(t) = \begin{pmatrix} (\chi(1-\zeta)^{1-\gamma})^{\frac{1}{\gamma}} \\ + \left((\chi(1-\zeta)^{1-\gamma})^{\frac{1}{\gamma}} + \frac{1}{\frac{1-\gamma}{\gamma}[(1-\tau)r + \frac{1}{2}\frac{(\rho-r)^2}{\gamma\sigma^2}] - \frac{\theta}{\gamma}} \right) \\ \left(\exp\left(\{ \frac{1-\gamma}{\gamma}[(1-\tau)r + \frac{1}{2}\frac{(\rho-r)^2}{\gamma\sigma^2}] - \frac{\theta}{\gamma} \} (T-t) \right) - 1 \right) \end{pmatrix}^{\gamma}$$

And

$$d(w(t) + h(t)) = \left((1 - \tau)r + \frac{(\rho - r)^2}{\gamma \sigma^2} - a(t)^{-\frac{1}{\gamma}} \right) (w(t) + h(t))dt + \frac{\rho - r}{\gamma \sigma} (w(t) + h(t))dt = 0$$

Wealth Distribution in Finite Life with Investr

Wealth accumulation within lifetime

• Let x(t) be the total wealth, i.e. the sum of physical wealth and human wealth.

$$x(t) = w(t) + h(t)$$

From proposition 1, we know

$$d\mathsf{x}(t) = \left((1-\tau)\mathsf{r} + \frac{(\rho-\mathsf{r})^2}{\gamma\sigma^2} - \mathsf{a}(t)^{-\frac{1}{\gamma}} \right) \mathsf{x}(t)dt + \frac{\rho-\mathsf{r}}{\gamma\sigma} \mathsf{x}(t)d\mathsf{z}(t)$$

The end-of-life wealth is

$$w(T) = x(T)$$

= $(\chi(1-\zeta)^{1-\gamma})^{\frac{1}{\gamma}}a(0)^{-\frac{1}{\gamma}}\exp[(\frac{(1-\tau)r-\theta}{\gamma}+\frac{(\rho-r)^2}{2\gamma\sigma^2})T$
 $+\frac{\rho-r}{\gamma\sigma}z(T)]x(0)$

Intergenerational wealth connection

• Let T, 2T, 3T, \cdots , nT, \cdots be the born time of generation 1, 2, $3, \cdots, n, \cdots$. Let

$$x_1 = x(T), x_2 = x(2T), x_3 = x(3T), \cdots, x_n = x(nT), \cdots$$

Bequest Movement

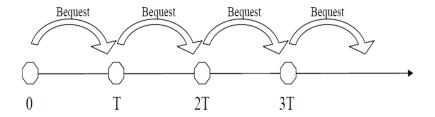


Illustration of Bequest Movement in a Linage

Equation discribing wealth connection

• Agent's starting wealth includes received bequest and human wealth

$$= \frac{x_{n+1}}{(1-\zeta)w((n+1)T) + h(0)}$$

= $\left(\frac{\chi(1-\zeta)}{a(0)}\right)^{\frac{1}{\gamma}} \exp\left[\left(\frac{(1-\tau)r - \theta}{\gamma} + \frac{(\rho-r)^2}{2\gamma\sigma^2}\right)T + \frac{\rho-r}{\gamma\sigma}z(T)\right]x_n$
+ $h(0)$

$$\rho_{n+1} = \left(\frac{\chi(1-\zeta)}{\mathsf{a}(0)}\right)^{\frac{1}{\gamma}} \exp[\left(\frac{(1-\tau)r-\theta}{\gamma} + \frac{(\rho-r)^2}{2\gamma\sigma^2}\right)T + \frac{\rho-r}{\gamma\sigma}z(T)]$$

Note that ρ_{n+1} is lognormally disributed.

Thus

$$x_{n+1} = \rho_{n+1} x_n + h(0)$$

• By Sornette (2006) and Goldie (1991), the starting wealth displays an asymptotic Pareto upper tail, i.e.

$$P(x(0) > x) \sim x^{-\mu}$$

where

$$\mu = \gamma \left(\frac{\frac{1}{T} \log \left(\frac{\mathbf{a}(0)}{\chi(1-\zeta)} \right) + \theta - (1-\tau)r}{\frac{(\rho-r)^2}{2\sigma^2}} - 1 \right)$$

- The Pareto tail of the starting wealth distribution implies that wealth distribution conditional on any age also displays Pareto tail with the same exponent.
- Hump shape of wealth accumulation.
 If

$$0 < \frac{\gamma - 1}{\gamma} \left((1 - \tau)r + \frac{(\rho - r)^2}{2\gamma\sigma^2} \right) + \frac{\theta}{\gamma} < \frac{1}{(\chi(1 - \zeta)^{1 - \gamma})^{\frac{1}{\gamma}}}$$

then the mean wealth of the age cohort has a hump shape.

• The wealth distribution of the whole economy displays a Pareto tail of the same exponent as that of the starting wealth distribution.

Age-dependent death rate

• Let $\pi(t), t \in [0, T]$ be the death rate of agent. Define $G(t) = \int_t^T \pi(s) ds$

and

$$\pi(\mathbf{v},t)=\frac{\pi(\mathbf{v})}{\mathsf{G}(t)}$$

Agent's problem

$$\max_{c,P,\phi} \{E_t \int_t^T \pi(v,t) [\int_t^v \frac{c(s)^{1-\gamma}}{1-\gamma} e^{-\theta(s-t)} ds + \chi \frac{[(1-\zeta)Z(v)]^{1-\gamma}}{1-\gamma} e^{-\theta(v-t)}] dv \}$$

s.t.
$$dw(t) = [(1-\tau)rw(t) + ((1-\tau)\alpha - (1-\tau)r)\phi(t)w(t)$$
$$-c(t) - P(t) + \omega + \Gamma]dt$$
$$+ (1-\tau)\sigma\phi(t)w(t)dz(t)$$

Intergenerational connection

• Now let $t_1, t_2, t_3, \dots, t_n, \dots$ be the born time of generation 1, 2, $3, \dots, n, \dots$. Let

$$x_1 = x(t_1), x_2 = x(t_2), x_3 = x(t_3), \cdots, x_n = x(t_n), \cdots$$

We have

$$x_{n+1} = \rho_{n+1}x_n + h(0)$$

where

$$\rho_{n+1} = \frac{(\chi(1-\zeta))^{\frac{1}{\gamma}}}{a(0)^{\frac{1}{\gamma}}} \exp\{\left[\frac{(1-\tau)r-\theta}{\gamma} + \frac{(\alpha-r)^2}{2\gamma\sigma^2}\right](t_{n+1}-t_n) + \frac{\alpha-r}{\gamma\sigma}(z(t_{n+1})-z(t_n))\}$$

Pareto tail

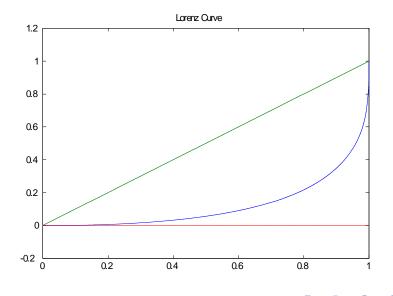
Calibrated Economy

- Parameters. $\theta = 0.04$, r = 0.01, $\gamma = 2.5$, $\alpha = 0.08$, $\sigma = 0.2$, $\chi = 15$, $\zeta = 0.19$, $\tau = 0.25$, $t \in [20, 91]$.
- Gini and Lorenz curve.
 - Gini and Quintiles

Economy	Gini	First	Second	Third	Fourth	Fifth
United States	0.78	-0.39	1.74	5.72	13.43	79.49
Model	0.76	0.6	2.6	5.81	12.67	78.32

Top tail

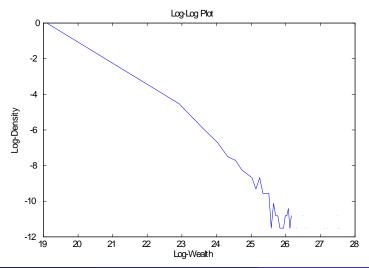
Economy	90 <i>th</i> – 95 <i>th</i>	95 <i>th</i> – 99 <i>th</i>	99 <i>th</i> - 100 <i>th</i>
United States	12.62	23.95	29.55
Model	11.9	21.34	31.91



April 14, 2009 16 /

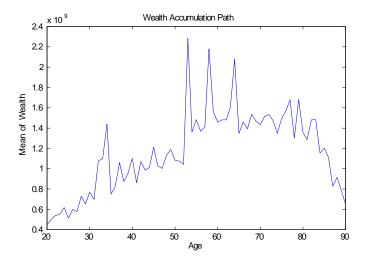
Pareto Tail

- Pareto exponent. $\mu = 1.6545$.
- Log-Log plot



Wealth Distribution in Finite Life with Investr

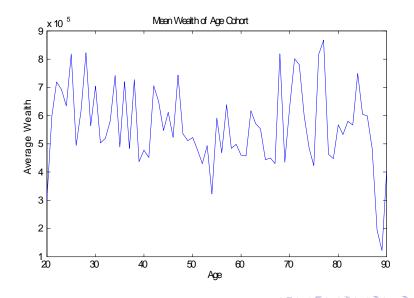
Wealth Accumulation Path



April 14, 2009 18

18 / 22

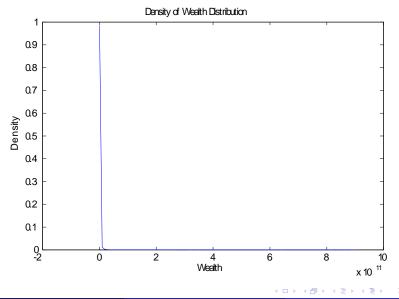
Average Wealth of Age Cohort



Shenghao Zhu ()

Wealth Distribution in Finite Life with Investr

Density of Wealth Distribution (model)



Density of Wealth Distribution (Data)



Shenghao Zhu ()

Wealth Distribution in Finite Life with Investr

April 14, 2009 21 / 22

- Tax effect
- Disentangle inequality
- Wealth dispersion and consumption dispersion with aging