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Introduction 

 

In academic science, an empirical regularity has been evidenced by numerous studies : the 

strong inequality among researchers in terms of productivity and the persistence of the productivity 

hierarchies over the life cycle for a given cohort of scientists. Since Lotka’s seminal article (Lotka, 

1926) it is observed that in every scientific fields studied, a prolific minority of scientists contribute to 

the majority of the publications of their field, so that the distribution of publication counts is very left-

skewed. In the data collected on French physicists and presented bellow, 10% of the of  the scientists 

contributes to 30% of the total number of publications whatever the period - 1980-1985, 1986-1991, 

and 1992-1997 (figure 1). Moreover, 66% of the most productive researchers  as well as 67% of the 

less productive researchers remain such over 1986-1997, which underlies a stability of the relative 

positions of the researchers in the distribution of publication counts over time (figure 2). 

 

Inequality in outcomes in science is an issue for science policy and for the allocation of public  

resources into research. The fact that up to 50% of the contributions to a research field is made by a 

minority of scientists has served to question the efficiency of knowledge production in the public 

sector. For this matter, understanding the processes underlying the productivity distribution in science 

is of primary interest. Does the distribution of productivities mimic an unequal distribution of talents 

among researchers? Are there some cumulative phenomena at play, such that initial successes (failure) 

translate into permanent high (low) productivity? Is it to do with research incentives or to the scientists 

unobservable and unmonitorable ability for creative work?  

 

In this paper, we explore the issue of the determinants of individual productivity differences in 

science, by looking at the relative role of three series of factors – individual characteristics, 

environment and incentives- in explaining individual productivity inequalities. We have built a 

longitudinal database for this study that concern French physicists and covers the recent period of 

1980-1997.  

 

We are interested in the hypothesis made in the economics of science literature of a link 

between incentives in research and individual scientific productivity. Incentives in research are 

specific in that they are to a large extent non monetary and reputation based. The researchers are 

rewarded for their productivity by the reputation gained among their peers, by prizes, nominations in 

prestigious institutions, the possibility to work in stimulating environments with greater resources, and 

so on. Zuckerman (1992) noticed the existence of about 3000 scientific prizes in North America in the 

beginning of the 1990s. The underlying attribution mechanism is the “priority rule”, which selects the 

researchers who are first to discover and to publish (Merton 1957). Moreover, a process of 
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“cumulative advantage” could be at work amplifying the impact of the non-monetary incentives on 

publication. In this process, an initial success in publication entails increasing productivity and 

reputation. The interpretation is that successful researchers have access to grants, time, stimulating 

laboratories and teams and so on, which help them to increase or at least maintain their publishing 

activity and their reputation. On the contrary, a scientist who has experimented a bad start in his 

research activity might be obliged at one point to quit research because of the accumulated obstacles 

(David 1994). In this first approach, the distribution of scientific outcomes stems from those two 

selective and cumulative mechanisms associated with the incentives in research. Empirically assessing 

the presence of cumulative advantages in research is beyond the scope of this study. Rather we look at 

promotions and laboratory affiliations as sorts of “rewards” of past productivity likely to have a lasting 

impact on future publication. Promotion and membership of a dynamic laboratory that is central in 

research collaboration are expected to be part of the process of cumulative advantage and at least, 

within the scope of our study, to stimulate researchers' individual productivity. 

 

Laboratory variables are also used to capture environment effects on individual productivity. 

Long (1978) and Allison and Long (1990) underline the role of prestigious academic affiliation in 

encouraging individual scientific productivity. Carayol and Matt (2004) find a correlation between 

individual productivity and the labor force organization of the labs (shares of permanent, teaching and 

doc post-doc researchers) using data on about 80 laboratories belonging to a large French University. 

Mairesse and Turner (2002) show that the geographic proximity, size and productivity of the 

laboratories positively impact co-publications in networks at a laboratory scale. In this paper we look 

at the effect of the productivity of the colleagues on individual performance, as well as the effect of 

the size and of the share international collaborations of the labs.  

 

We should also find a strong influence of individual observable variables on research 

productivity. The relation between age and publication has been often analysed. In the framework of 

the life cycle models, Diamond (1984) and Levin and Stephan (1991) modelled the quadratic relation 

between age and productivity assessed by publication counts according to which productivity was 

decreasing with age toward the end of the career. One issue at stake at the time was to assess whether 

the aging of the scientific community, as it was occurring in the United States, was going to impact 

negatively on national scientific output. Many other studies have also focused on gender 

discrimination in science, which has always been an important topic to the scientific community 

(Stephan, 1998). It appears also that education in a prestigious university or through a selective 

doctoral program has proved to have a positive impact on productivity (Crane, 1965, Long, Alison and 

McGinnis, 1979). Finally, we must take into account unobservable individual specific effects, 

interpretable as the « sacred spark » (Cole et Cole, 1973), the intrinsic motivation for research that 

determines scientists productivity independently of any incentives. Levin and Stephan (1991) speak of 
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a taste for “puzzle -solving”. It could also be seen as personal motivation for research or ability for 

creative work.  

 

Our approach is ambitious in the sense that it aims at comparing simultaneously the relative 

impact of all those series of factors. It should therefore be considered as a first analysis that we need to 

develop further by focusing on several points. In particular, the way publication influences promotion 

and access to “good” laboratories should be taken into account, which is another work on its own. In 

the framework of this paper we have estimated an extended version of our model considering 

promotion and laboratory variables as endogenous, but our results were dissatisfactory and are not 

reproduced here. This limit will be discussed in section I. 

 

Nevertheless our work sheds light on some interesting aspects of scientific productivity. We 

find a quadratic relation between age and individual productivity according to which productivity in 

terms of articles per researcher per year diminishes with age after 52 years old. Tenure significantly 

contributes to explain the productivity decline with age after this threshold, which is related to an 

important negative effect of long tenure in the “director of research” status and to a possible 

discouragement effect of non promoted researchers. Gender is also a major individual determinant of 

productivity as well as, to a lesser extent, high standard pre-doc formation (“Grande Ecole”) which 

effect also seems to rely on the personal networks it provides. Among the laboratory characteristics, 

the international openness of the laboratory through collaboration and the laboratory’s productivity 

influence individual performance with the same order of magnitude than the previous variables. 

Moreover, three elements are noticeable: 1) there is evidence of a positive peer effect on productivity; 

2) the size of the laboratory has a small effect on individual productivity even though “talented” 

researchers seem more likely to be affiliated to larger labs; and 3) the accessibility of the technologies 

for experiments - captured by the Grenoble region dummy -  has a positive impact on productivity. 

 

The paper is organised as follow. The next section describes the data, the model specification 

and the estimation methodology (I). Section II describes the results when the productivity is assessed 

by three measures: the mean number of articles par researcher and per year, the average impact factor 

and the mean number of citations to the articles. Section III concludes. 
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I. Specification and Estimation Methodology 

 

 We have build a panel data base to study scientific productivity that document almost 20 years 

of publication for approximately 500 scientists. Productivity is measured both by publication counts 

and by two measures aimed at assessing the quality of the publications: citation counts and the impact 

factors of the journals. Another originality of our data set is that it includes information on the 

characteristics of the scientists (age, gender, pre-doc formation) as well as information on the timing 

of their promotions. We also know their laboratory affiliations over the period, which allows to study 

laboratory effects. These combined features makes the data set relatively rich and original for the 

study scientific productivity. To our knowledge, few sets of this kind exist. A data base built by C. 

Gonzalez-Brambila concerns Mexican researchers who have been selected to be part of the Mexican 

National System of Researchers (SNI) from 1991 to 2002, with information about the age, gender, 

year of PhD and field of the scientists. Levin and Stephan (1991) use a panel data base on publication 

and citation counts for American scientists over 1973-1979 to revisit some results on the 

age/productivity relation obtained on cross-sectional data. The next paragraph describes our data, and 

paragraph B presents the different variables that are used in the productivity model. Finally paragraph 

C develops our estimation methodology. 

 

 

 

A. The data 

 

The source of our publications and citations data is the Science Citation Index (SCI) which is 

produced by the Institute for Scientific Information (ISI). The SCI covers all the scientific domains and 

the articles of approximately 3200 most cited journals. The quality of the data is excellent, which 

make the SCI the international reference for bibliometric work.  

 

We drew from the SCI the publications of 497 French physicists over the period 1986-1997. 

For 352 of them we have been able to collect as well all the citations received by their articles1. We 

considered the citations received within two years, in order to keep the maximum number of years of 

data in the citations set2. The period covered in the citation set is therefore 1986-1994. Citations are 

traditionally used in bibliometric studies to weight articles in order to account for their impact. In this 

                                                 
1 For the citations only, the sample is not made of 497 scientists but is a sub-sample of 352 researchers who were 
born between 1936 and 1955  instead of 1936 and 1960. This is due to the timing of the data collection.  
2 On average, an article receives approximately 40% of its citations within two years according to our data. 
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paper, the average number of citations (received within two years) per article per scientist and per year 

is taken as a qualitative measure of productivity. The second qualitative measure of productivity 

considered in our study is the average impact factor per article published, per year and per researcher. 

The impact factor of a journal gives information on the journal's reputation and visibility. This 

measure has been calculated by ISI for the CNRS as the mean number of citations obtained by the 

articles of the journal within two years after publication3. An impact factor calculated over five years 

is sometimes used as well, but the productivity measure based on a two years impact factor has the 

advantage of being comparable to our productivity measure in terms of citations. Interestingly, the 

correlation between those two qualitative productivity measures is 0.37, which is less important that 

what could have been expected considering that they are often viewed as substitutes when assessing 

the quality of scientific publications. The correlation of the annual number of publications per scientist 

with the average impact factor of the journals of publication per scientist and per year is 0.36, and it is 

0.26 with the average number of citations per scientist and per year. 

 

The sample consists of the scientists working at the CNRS4, the French public institution for 

research, in the field of condensed matter5. The field of condensed matter was chosen for two reasons. 

First, its characteristics are suited to our study: its research is classified as pure basic science; journals 

with a sound reputation are clearly identifiable; the size of the field covered is clearly defined; and 

there is very little mobility among researchers from public research to teaching or to private research. 

Second, condensed matter is a fast-growing field, honoured by the Nobel Prize for Physics awarded to 

Pierre-Gilles de Gennes in 1991, and which currently accounts for close to half of all French academic 

physics6.   

  

Since it is desirable to have a stable number of scientists over the period under study for the 

econometric estimations, we considered only the researchers whose first publication or entry at the 

                                                 
3 More precisely, for a given journal, the impact factor is the ratio of the number of citations received during 
years T and T-1 by the articles published during years T-1 and T-2 over the number of considered articles. An 
article is qualified by the impact factor of the journal into which it was published. 
4 The Centre National de la Recherche Scientifique (CNRS) is a public organization for research, affiliated to the 
Ministry responsible for Research. With 25,000 employees (11,000 researchers and 14,000 engineers, 
technicians and administrative staff), a budget of 2.5 billion euros in 2001, and laboratories throughout the 
country, the CNRS covers all fields of knowledge. University researchers are often affiliated to CNRS labs 
therefore called “mixed units”. 
5 The group of 497 physicists studied here represents almost all CNRS researchers in this field (654 in 1996). 
They were selected according to their year of birth: 1936-1960. 
6 Condensed matter includes all states of matter, on various scales (atom, molecules, colloids, particles or cells), 
between liquids and solids, in which molecules are relatively close. Its study is based on a heritage of traditions, 
both experimental (crystallography, diffusion of neutrons and electrons, magnetic resonance imagery, 
microscopy, etc.) and theoretical (static physics). It is also prompted to develop more and more relations with 
industry around materials used in electronics, granulars, plastics, food or cosmetic gels, etc. 
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CNRS dates back before 19867. Our final sample is balanced and concerns 465 scientists over 1986-

19978. The next section describes our explanatory variables. 

 

B. Explaining Scientific Productivity 

 

 We study the determinants of researchers’ productivity measured along three dimensions - in 

terms of the annual number of publications per scientist, in terms of the average impact factor of the 

journals of publication per scientist and per year, and in terms of the average number of citations per 

article per scientist and per year -  which correspond to three sets of regressions.  

 

 Table I.1 indicates the main statistics for these variables as well as for the explanatory 

variables used in the models. The 465 physicists in our sample published approximately 8000 articles 

over the period 1986-1997, which corresponds to a mean number of 2.7 papers per researcher and per 

year, with a standard error of 3. The annual number of articles publication varies greatly among the 

scientists, between 0 and 62, the maximum over the period. The mean proportion of researchers with 

no publication in a year is 27%. The mean number of authors per article is 3.2, and the mean number 

of pages is 5.5. The scientists get published in journals whose articles receive 2.7 citations on average 

over two years. The quality of the journals of publications are different across the researchers, ranging 

between almost 0 and 21.5 citations in two years. Approximately 32 000 citations (within two years) 

were received by the publications of the scientists studied, which amounts to 3.5 citations per 

researcher and per year on average over the period, with a standard error of 6. 

 

 We study the relative impact of three series of determinants on scientific productivity that are 

presented in paragraphs 1, 2 and 3 below: individual factors - age, gender, education -, factors related 

to the incentive scheme of academic research - the career trajectory or experience, and environment 

factors - the size and activity of the laboratories in which the scientists work and a mobility indicator. 

We also take into account the unobserved individual specific effects. A major problem arise when the 

aim is to measure the relative impact of variables such as age and experience, because those variables 

are strongly correlated. Moreover, in our specification, we need to take into account an observed fact, 

                                                 
7 The researchers entered the CNRS at different dates, between 1960 and 1997. Few researchers enter after 1990 
(17), so they have been eliminated from the data. Among the remaining 480 scientists, 433 entered the CNRS 
before 1986, so we expected them to publish during the whole period of observation 1986-1997. 47 scientists 
entered between 1986-1990. Either they started to publish after their entry, in which case they are not considered 
as being in position to publish during the whole period of 1986-1997. Or  they have started to publish before 
1986, so we kept them in the sample. Between the year of their first article and their entry at the CNRS, they 
were assigned the status that they reached at their entry.  
8 As mentioned, for the citations only, the sample is reduced to 352 researchers over 1986-1994. 
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that is the exogenous increase of publication with time, and add time dummies in our model. This 

identification issue is considered in paragraph 4. 

 

1. Individual variables 

 

Age 

The age dispersion among the scientists under study is important. On average, they are 44.6 

years old but the standard error amounts to 8.0. Economic studies of the age/publication relation use 

the framework of life cycle models (Diamond, 1984, Levin and Stephan, 1991). These models 

enlighten the consequences of the end of the career on individual productivity and on the allocation of 

research efforts over time. In Levin and Stephan (1991), the scientists allocate time in order to 

maximize the ir utility function over their career. At each date, the utility depends on the future 

financial rewards associated with teaching and consulting activities and on the current research output 

seen as a proxy for the “puzzle -solving reward”. One implication of the model is that research activity 

declines over the life cycle. Interestingly for our study, this proposition was verified on publication 

panel data drawn from the SCI and the Survey of Doctorate Recipients  that concern six sub-fields of 

physics and earth science including solid state and condensed matter physics over the period 1973-

19799. We are able to look at this effect as well and to compare our estimates with the ones of Levin 

and Stephan (1991). The age variable used in the model is described in paragraph 4. 

 

Gender 

Men represent 82% of our sample. A main concern in the issue of the gender influence on 

publication is whether the rewards in science are gender biased. Several studies have concluded that 

women scientists publish less than men and that they earn less as well (see Stephan 1998). Zuckerman, 

Cole and Bruer (1991) show that the process of cumulative advantages might be a reason of the 

persistent position of women in the “outer circle of science” because it amplifies an initial situation 

where women published less than men. But in the empirical studies, the relation between gender and 

outcome is often biased in the sense that the estimations rely on cross-sectional data that can not allow 

to account for unmeasurable individual effects reflecting personal motivation, talent or any omitted 

individual variable explaining productivity. Moreover, the samples used are non random but consists 

of the successful scientists, which introduce a selection bias in the results. Consequently, it is 

interesting to test the gender/publication relation on panel data, because we can control for the 

unobservable specific effects and take into account the evolution that led to the observed situation. In 

this framework, Stephan (1998) finds that gender is not a significant determinant of salary changes in 

                                                 
9 This effect was not properly identified on cross-sectional studies, since they did not control for cohort effects. 
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US academe during the 1970’s. In our model gender is introduced as a dummy variable that equals one 

if the scientist is a woman. 

 

“Grande Ecole” dummy 

We introduced as a dummy variable equal to one when the researchers studied in a “Grande 

Ecole” in addition to graduate from their PhD10. 16% of our sample did so. Among them, over 60% 

belonged to the Ecole Normale Supérieure, 6% to the Ecole Polytechnique, 10% to the Institut 

Supérieur d’Electronique du Nord, 6% to the Ecole Supérieure d’Electricité de Paris, etc. We expect 

this dummy variable to play a role on individual productivity since different studies have shown the 

importance of pre-doctoral formation in explaining productivity differences in research (see for 

instance Long, Allison and McGinnis, 1979). The intuition is that the knowledge, values, and 

scientific performance criteria learned during this period have a lasting positive impact on their work. 

 

Individual specific effects  

Apart from the explanatory variables, we also introduce in the model random effects specific to 

the individuals, in order to take into account the unobserved individual heterogeneity. The choice of 

our estimation method is determined by the existence of a correlation between the individual effects 

and the explanatory variables.  

 

2. Incentives variables 

 

Career paths  

The researchers are distributed according to the evolution of their career, so that we can study 

the link between publication and promotion and more generally account for an incentive mechanism of 

the scientific institution. A researcher with a typical career profile enters the CNRS as “Chargé de 

Recherche” (CR), is then promoted research director of class 2, “Directeur de Recherche de 2ème  

classe” (DR2), and finally research director of class 1, “Directeur de Recherche de 1ère classe” (DR1). 

Yet, many researchers in our sample are never promoted and remain in the same status during the 

observed period (respectively for the status CR : 46.7% of the sample, DR2 : 10.4%, DR1 : 3%). 

Almost 30% of the sample get to be promoted DR2. The most difficult promotion to obtain is DR1: 

only 10% of the sample succeed to be promoted DR1. 

 

                                                 
10 In the French educational system, after they graduate from high school, the students can either go to the 
University, which does not require any level nor grade achievement in high school, or they can apply to a 
preparatory class where they will be taught during two years the knowledge required to compete for the hard 
admission into a “Grande Ecole”. Every student of the Grandes Ecoles therefore succeeded in two selection 
processes: selection on the basis of their grades in high school, and exams to enter the Ecoles. 
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The interactions between the career inside the scientific institution and publication behaviour 

are numerous. A descriptive study (Turner, 2003) on our sample established the existence of a positive 

link between status and publication at each date, whereas the relation between current position and 

past publication is more complex. We would expect it to be positive as well, since the CNRS incentive 

scheme is such that promotion rewards publication.  

 

Conversely, does promotion give incentives to publish more, for instance by offering a better 

access to the resources needed for research? The descriptive study mentioned shows that on average 

the promoted researchers remain as productive as before their promotion. But the mean number of 

publications differs before and after the promotion according to the status reached, the age, and the 

period. For instance, the oldest scientists publish less after any promotion, especially after a DR1 

promotion obtained during the last sub-period whereas younger researchers publish more after a DR2 

promotion. 

 

In our econometric model, we introduce a certain number of variables related to the career 

trajectory or promotion profile as explanatory variables. The variables are chosen to capture observed 

changes in the publication behaviour as the number of years since promotion increases. We observe 

that the productivity of the scientists who are never promoted and who remain CR first increases with 

time and then decreases after a certain number of years spent in the status, as a sign of 

discouragement. We also observe that the DR2 productivity seems to remain on a constant trend, 

whatever the promotion perspectives or the total experience at the CNRS. Finally, it appears that the 

DR1 productivity is decreasing with tenure in the status. Consequently, we retain as career variables 

the tenure in each status and dummies for the status DR2 and DR111. The tenure variables are 

described more precisely in paragraph 3. 

 

3. Environmental variables 

A study of the collaboration among the scientists presented in Mairesse and Turner (2002) has 

underlined the impact of some laboratory characteristics – the size, the productivity of its members, 

the quality of its publications, its international collaborations, its thematic specialisation – on the 

intensity of co-publication at the laboratory level. We want to assess the impact of the same laboratory 

variables on the individuals productivity. This “laboratory effect” is an issue when evaluating the 

recent policies that stimulate the creation of large research structures like technopoles. We have in 

mind that the membership of a dynamic laboratory stimulates researchers' individual productivity and 

                                                 
11 Several trials have later confirmed that any variable controlling for the total number of years the scientist has 

been working at the CNRS or the perspective of the career ending had less significant effect on productivity. The 

major effects are the effects of tenure per status. 
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may be part of a process of cumulative advantages in which well-known scientists enhance their 

productivity and recognition by working in this type of laboratory.  

 

The variables are calculated for the laboratorie s where the researchers were working in 1997. They 

are therefore time invariant and some are aggregates over the whole period of 12 years. More 

precisely, the laboratory variables are the following: 

§ Size: the size of the laboratory is the total number of researchers in the laboratory in 1997 

including University scientists affiliated to the lab. The size variable is also centred and squared in 

order to measure quadratic effects. 

§ Productivity of the laboratory : it is calculated for every researcher individually over the whole 

period 1986-1997, by subtracting its personal contribution to the production of  his colleagues who 

we have in our database and who are working in the same laboratory in 1997. Subsequently, it 

proxies the productivity of the researcher’s colleagues or environment. We take the logarithm of 

this variable. 

§ Quality at the laboratory level: it is also calculated for every researcher individually over 1986-

1997 by subtracting its personal contribution to the average impact factor of his colleagues who 

we have in our database and who are working in the same laboratory in 1997. It reflects the quality 

of the researcher’s environment. Again we take the logarithm of this variable. 

§ International openness of the laboratory: it is the proportion of articles at the laboratory level and 

over the whole period co-published with at least one foreign co-author (see Mairesse and Turner, 

2002).  

§ Region dummies: a dummy for the Grenoble region and the Paris region are introduced to qualify 

the laboratories in 1997 because those two regions account for a major part of the total number of 

physicists and publications over the period. The regions are defined as Grenoble (resp. Paris) plus 

the set of towns geographically close to Grenoble (resp. Paris) - less than 100 km - in which 

CNRS laboratories are located in 1997. 

 

Of course, the mobility of the researchers is of central interest for the evaluation of a 

“laboratory effect”, and taking the 1997 laboratory of the researcher seems to give an incomplete 

information. This is not so because of two main reasons. First, the actual mobility is very low: over the 

period of 18 years between 1980 and 1997, 55% of the researchers never changed laboratories, 33% 

changed only once, 11% changed twice, and 2% changed three times. Secondly, the results remain 

when we consider the sub-sample of the 55% of scientists who do not change lab. We add a dummy 

when the number of changes equals more than one. It is to capture an anticipated effect of mobility 

according to which the researchers who moved more than once are affiliated to more productive 

laboratories on average.  
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The fact that the productivity, quality and international openness of the laboratory are 

calculated over 12 years instead of being time-variant is also not a main issue because it is conceivable 

that a long period is needed to assess the genuine or “steady-state” productivity and quality of the 

researchers who contributed during a certain period to the reputation of the laboratory. We have done 

the same calculations over a six years period but it did not change the results. 

 

 

4 Time, Age and Tenure effects: the well-known identification problem 

  
First statistics on our data suggest that publication increases toward the end of the period 

independently of the age of the researchers. We introduce years dummies in the regressions in order to 

capture this effect and account for any changes in the work environment or in the state of the art in 

condensed matter physics. But the estimation method that we use (section C) require to write the 

variables in deviation from their mean, which rise a major identification problem since the 

transformed age and time variables are collinear. Therefore, we decided to assess the age effect by 

four age groups instead of continuous age and age squared variables (see table I.1). It breaks the link 

between age and time so that it is possible to estimate both effects simultaneously.  

This issue relates to the well-known identification problem when simultaneously estimating 

period-age and cohorts effects. Hall, Mairesse and Turner (2005) specifically concentrate on this issue 

with similar data in order to explore a satisfying solution. 

 
A last question remains. Including both the tenure variables and the time periods in the model 

rises another identification problem. Because a significant number of researchers are never promoted, 

time and tenure in status also show some collinearity, especially when considering the variables in 

deviation from the means. The solution proposed is to form three groups of tenures for each status. 

Again, it has the advantage to break the link between tenure and time and to allow the estimation of  

time-varying tenure effects. For instance for the DR1 status, we look at the following three groups of 

tenure: 0-1 years as DR1, 2-5 years as DR1 and more than 5 years as DR1 (see table I.1). 

 

 

The next section presents the methodology used to estimate the model. 
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C. Methodology  

  

To estimate the first equation in which the dependant variable is the number of articles, a 

count variable, we need to estimate a Poisson model of productivity. We run the estimations under the 

main hypothesis that the explanatory variables are strictly exogenous as respect to the errors.  

 

The model is the following, with i={1,…, N}, N=465, and t={1,…,T}, T=12: 

 

       
Poissonwith

)XZexp()Z,Xy(E iitiiitit

→

+++=

ity   

αβγµ
   (1) 

 

 The variables in Z are stable across time but not across individuals and the variables in X vary 

in both dimensions. The random individual effects are αi. We assume that the errors are not serially 

correlated. But according to the Hausman tests, we assume that the individual effects are correlated 

with the explanatory variables. In order to be able to estimate the coefficients of the time-invariant 

variables of the model, we assume that all the correlation with the individual effects is due to the time-

varying variables in X, and that the time-invariant variables in Z are not correlated with the individual 

effects12. Naming uit the error term, we have: 

EXit’αi ≠ 0, EZi’αi = 0, 

EXit’uit = EZi’uit =0, 

Eαi = Euit = 0, 

Eαi uit = 0,         (H1) 

Eαi αj = σα if i = j, and Eαi αj = 0 otherwise, 

Euituis =σu if i = j and t=s, and Euituis = 0 otherwise. 

 

 To solve the problem of the correlated unobserved individual effects to the explanatory 

variables, we treat them as fixed effects in our estimation . 

 

 A two step estimation is used (TS in what follows). We estimate β in (1) by the Conditional 

Maximum Likelihood Estimation (CMLE) used by Hausman, Hall and Griliches (1984). In a second 

step, to estimate the coefficients of Z, we replace β by its CMLE estimate and estimate equation (2) 

using the non linear least squares method : 

                                                 
12 By doing so, we do not estimate the raw effect of the time invariant variables. For instance, the estimation 
does not separate the effect of gender from some unmeasured effects that might exist and be correlated to 
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 ) exp()ˆexp(/ ititiit ZXy εγµβ ++=     (2) 

 

We obtain consistent estimates of γ and µ. We run the Two Step estimation (TS) as well as the 

level estimation - the basic Poisson model (named TOTAL in what follows) – in order to assess the 

size of the unobservables effect. Only the TS regressions take the individual effects into account. The 

results are in table II.1.  

 

When the dependent variable is the average quality of the papers per researchers and per year –

measured by the impact factor or by the number of citations, the Poisson model is replaced by the log 

linear model, since the dependant variables are continuous:  

 

ituiitXiZitydum +++++== αβγµ  )0(  )it(y   log     (3) 

 

The same Two Step method is used to estimate the time-invariant variables. We estimate β by the 

WITHIN estimator. In a second step, to estimate the coefficients of Z, we estimate equation (4) using 

the linear least squares method : 

ituiiZitydumitX ++++== αγµβ   )0(  ˆ-)it(y   log     (3) 

The results are in table II.2 for the impact factor and in table II.3 for the citations.  

 

The next section presents the results of the three estimations successively, isolating the 

determinants of publication, impact factor and citation respectively. 

 

 

II. Results 

 

A. The determinants of publication 

 

This section describes successively the impact of individual, promotion and laboratory 

variables on individual productivity assessed by the mean number of articles per year and per 

researcher. 

                                                                                                                                                        
gender: the number of children or maternity leaves, marital status,  etc. The wo man variable embodies the fact of 
being a woman plus all the unmeasured correlated facts absent in the regression.   
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When looking at the age  groups, the estimation suggests a quadratic relation between the age 

of the scientists and the average number of their publications per year. According to the estimation, the 

researchers productivity increases between the first and the third age group, that is before 50, and then 

declines after 51 years. More precisely, the researchers aged 39 to 45 years publish on average 0.26 

paper more per year than the youngest researchers aged 26 to 38, and the scientists aged 46 to 50 

publish 0.36 paper more than the youngest group. The oldest researchers, aged 51 to 61, publish only 

0.13 paper more than the youngest researchers.  

 

To refine our idea on the effect of age on productivity, we run an annex regression in which 

the continuous variables age and age squared replace the age cohorts. As explained previously, the 

time dummies can no more be correctly estimated, but we are simply interested in the age estimates. 

We check that the age estimates do not vary too much when we exclude the time dummies from the 

equation. The TS estimates of age and age squared are respectively 0.022 and –0.0016 when the time 

dummies are included in the regression, and 0.025 and –0.0014 when the time dummies are excluded. 

Consequently, the quadratic relation between age and productivity is confirmed. According to the 

annex TS regression in which time dummies are included, the conditional effect of age is such that the 

researchers are more productive every year until they turn 52 but at a diminishing rate: they publish 

0.9 paper per year on average at 30 years, 2.3 papers at 40, 2.9 papers at 52 and 2.5 papers at 60. The 

curves illustrating the age/publication relation according to the TS estimation and conditionally on the 

other variables is represented on graph II.1. It includes the mean point of 2.7 papers at 44.6 years old.  

 

We compare our TS results to the ones of Levin and Stephan (1991) obtained for 182 

scientists in solid state and condensed matter over 1973-1979 using a Tobit model with correlated 

fixed effects and time dummies (model B in the paper). The mean number of papers is 3.8 over two 

years, which is slightly smaller than the average productivity in our sample but is still comparable. The 

quadratic relation between age and publication is confirmed with a coefficient on age of 2.41 and on 

age² of -0.027 (publications are counted over two years). Yet, the life cycle effect is stronger in their 

model, in the sense that their results imply a relation more quadratic then ours. According to their 

model, the solid state and condensed matter physicists are productive between 33 and 57 years old, 

publishing 0.71 paper per year at 35 years old, a peak of 2 papers per year at 45, and 0.72 paper at 55. 

The differences in the findings could in part be explained by the fact that the specification of our 

model takes into account the count nature of the data, the great proportion of zeros and the career of 

the scientists.  

 

The age effect is complemented by a time effect according to which the productivity increases 

with time for all the researchers. The scientists publish 0.9 paper more on average in 1991 than in 
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1986, and 1.6 papers more in 1996 than in 1986. This tends to suggest that the scientists progressively 

experiment a wider and faster access to publication related to the increasing numbers of existing 

journals. 

 

We find a strong influence of the other individual variables on productivity.  

The gender effect is important. All other variables being equal, woman publishes almost 0.9 

paper less than a man on average per year according to our estimation. This results needs to be 

developed in a specific study on gender. If the estimates suggest that men are more productive than 

women, they do not tell neither about the reasons of this phenomena nor about the true abilities of 

women scientists. Several sociological reasons could explain this feature. And our estimation method 

does not allow us to distinguish the pure effect of being a women from all the related unmeasured 

“sociological” facts (number of children, marital status, etc.) which impact as well on the value of the 

estimated coefficient (see note 12).  

 

The result on pre-doc formation is puzzling. The scientists who have been educated in a 

Grande Ecole publish 0.7 paper more than the others per year on average, according to the TS 

regression. But this figure amounts to 0.3 in the TOTAL estimation. The gap between 0.7 and 0.3 

means the following: all other observable effects being equal, and all unmeasured effects being equal 

as well, the scientists who have been to a “Grande Ecole” publish 0.7 articles more each year than the 

other scientists; but when we take into account the fact that unmeasured effects are different for the 

scientists who have been to a “Grande Ecole” and the others, the gap is reduced to 0.3 papers. The 

correlation between unmeasured effects and “Grande Ecole” is negative: taking into account this 

correlation implies that the scientists who have been to a “Grande Ecole” publish only 0.3 articles 

more each year than the other scientists. To interpret this result we need to interpret what the 

unmeasured effects could be: it could well be a “prestige” or a personal network effect. As a matter of 

fact, alumni’s networks are very developed and active in France and they play a role in collaboration, 

promotion and mobility. The hypothesis could then be that relying on an active personal network or on 

“prestige” induce lesser “effort” to publish than without those supports. Of course, this hypothesis 

needs further investigation.  

 

The TOTAL and TS estimations give a different picture of the career influence  on 

productivity. In the TOTAL estimation, DR1 publish 1.5 papers more on average per year than CR 

researchers and a DR2 scientist 0.5 paper more. Whereas in the TS estimation, the DR2 coefficient is 

not statistically significant (-0.1), and the DR1 coefficient is negative, the DR1 publishing on average 

0.8 paper less than a CR. Reaching the status DR1 has an negative impact on productivity according to 

the TS regression. If we believe in our model,  this result suggests that all other effects being equal, if 

“talent” was equally distributed a DR would be less likely to publish than a CR (TS estimates); but if 
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we take into account the positive correlation of “talent” with the status variable, a DR publishes more 

on average per year than a CR scientist (TOTAL estimates).  

 

The tenure  estimates give more details on career influence on productivity. According to the 

TS regression, a scientist who has been DR1 for more than 5 years publishes 1.3 papers less on 

average than a newly promoted DR1 researcher. It means that the impact on productivity of being 

DR1 diminishes as the number of years spent in the status increases. Consequently, the incentives to 

publish appears to be lower with time for those researchers who have reached the higher status. The 

increase in their amount of administrative tasks must here be mentioned. Again, this result holds all 

other variables being equal in particular talent among the DR1. The higher TOTAL estimates suggest 

that “talent” is positively correlated with tenure when looking at the DR1, which is intuitive because 

the ones who have been DR1 for a longer time, all else being equal, have been promoted sooner. 

Taking this correlation into account reduces the effect of tenure almost twice: according to the 

TOTAL estimates, a scientist who has been DR1 for more than 5 years publishes 0.8 papers less on 

average than a newly promoted DR1 researcher. 

 

Similar effects are noticed for the DR2. A scientist who has been in the status DR2 for 4 to 8 

years publishes 0.3 paper less on average than a newly promoted DR2, and a DR2 of the third tenure 

group (>8 years as DR2) publishes 0.5 paper less on average than a newly promoted DR2 (TS 

estimates). Again, it appears that the incentives to publish become lower as the time spent in the status 

increases. But if we take into account the positive correlation of “talent” with tenure within the DR2 

status, the effect of tenure as DR2 on productivity is greatly reduced and becomes statistically non 

significant. 

 

Finally, according to the TS estimation, tenure has no effect on the productivity of the CR 

researchers, but it has a negative impact according to the TOTAL estimation. This suggest that the 

unobserved individual effects are negatively correlated to the tenure in the CR status. A 

discouragement effect could be a play according to which the CR with very low remaining 

perspectives of promotion have a low productivity.  

 

Concerning the laboratory effects , the results are the following. There is a positive peer 

effect, that is an impact of the laboratory’s productivity (or colleagues’ productivity) on the number of 

articles published by the individuals. We find that, in the case of a 10% rise in the productivity at the 

laboratory level, a scientist would on average publish 0.27 paper more than the number he would 

publish otherwise (+10% on average). Interestingly, collaboration with foreign laboratories also has a 

strong positive impact on individual productivity. In the case of a 10% increase in the proportion of 

papers co-published with foreign scientists at the laboratory level, a member scientist of the lab would 
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on average publish 0.8 articles more on average par year (+30% on average). This result suggest that 

forming centers of excellence in public research induce a better productivity of the member scientists.  

 

The size  of the lab itself does not matter comparatively to this peer effect. In the case of a 10% 

rise in the size of the lab, a scientist would on average publish 0.09 paper less than the number he 

would publish otherwise (-3% approximately on average). Nevertheless, our estimates suggests that 

“talented” researchers are more likely affiliated to larger laboratories. When we look at the dummy for 

small labs (DUMEF13), the TOTAL and TS estimates show a negative correlation between 

unobserved individual effects and this variable. 

 

The result on influence of the quality of the laboratory (or colleague’s productivity in terms 

of quality) is questioning. The peer effect in terms of quality is almost inexistent and not statistically 

significant in the TS regression. But the TOTAL estimate is strong, negative and significant (-0.254), 

that is in the case of a 10% rise in the quality at the laboratory level, a scientist would on average 

publish 0.25 paper less than the number he would publish otherwise (-10% approximately on average). 

One can wonder if there is a sort of substitution effect between quantity and quality, in the specific 

sense that if the lab stresses the importance of quality, a member of the lab is more likely to publish 

less but papers of greater impact. As we will see in the two next sections, individual productivity in 

terms of quality is positively influenced by quality at the laboratory level.  

 

B. The determinants of the average quality of the journals of 

publication 

 
 

The results are presented in table II.2. The most significant impact here is the one of the 

quality of the laboratory. In particular, the impact of individual characteristics and promotion variables 

is much less important then previously when the dependant variable was the mean number of articles. 

 

The average quality of the journals of publication is negatively influenced by age and no 

obvious quadratic relation emerges from the estimates of the age groups. The oldest researchers aged 

51 to 61 publish in journals that receive on average 0.3 citation less than journals of the youngest 

researchers.  As previously, to refine our idea on the effect of age on impact factor, we did an annex 

regression in which the continuous variables age and age squared replaced the age groups. According 

to the annex TS regression in which time dummies are included, their is a negligible increase in the 

impact factor between 26 and 41, from 2.50 to 2.67. After 41, the average impact factor declines 
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slightly and is equal to 2.35 at 61. The curves illustrating the age/publication relation according to the 

TS estimation and conditionally on the other variables is represented on graph II.4.  

 

The gender and “Grande Ecole” variables are statistically significant and influence similarly 

the quality of the papers published, but with a much smaller order of magnitude than the one found in 

the previous regression on the number of articles. The women publish in journals that receive on 

average 0.10 citations less over two years than the journals into which men publish. Interestingly, the 

unmeasured individual effects and possibly what could be interpreted as “personal motivation for 

accessing recognized journals” are positively correlated to the gender variable “woman”. 

 

The status and tenure  variables have no statistically significant impact on the average impact 

factor of the journals. Nevertheless, the TOTAL estimation shows as previously that “talent” is 

positively related both to status (whereby DR1 publishes 0.36 papers more on average than CR and 

DR2 0.15 on average) and to tenure among DR2.   

 

The dominant effect here is the one of the quality of the laboratory. A 10% increase in the 

quality of the laboratory increases of 0.58 the impact factor within two years. The other laboratory 

effects are comparatively weak. A 10% increase in the productivity of the laboratory would 

decrease the impact factor of 0.05, so that a substitution effect reciprocal of the one identified in the 

previous paragraph is suggested. A productive environment may stimulate individual productivity to 

the detriment of individual quality.  

 

Finally, the size of the laboratory has a small negative impact on the quality of the 

publications of its members, but at a decreasing rate, as shown by the positive size squared estimate. 

Interestingly, the dummy for small labs has an important positive coefficient, which suggests that 

small labs favours higher impacts of individuals publications. This could be related to the fact that 

small labs are often non experimental labs but it is not obvious in what sense since the dummy for the 

Grenoble region where large experimental tools are is positive. 

 

The effect of time is not linear as previously. The estimates of the time dummies are negative 

but shows that the impact factor decreased until 1988, then increased afterwards until 1997 where it 

approaches the level of 1986, except for 1991 and 1994. 
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C. The determinants of  the average number of citations per two  years  

 

The results of the estimation are shown in table II.3. The results and the effects at play are 

more similar to the ones identified for the productivity measure in terms of publications than in terms 

of impact factors.  

 

It appears that age have a negative impact on the average number of citations per two years, 

but this effect is not statistically significant, according to the within estimates. The life cycle effect is 

therefore not robust in a model where productivity is defined in terms of the annual number citations 

received. 

 

Being a woman has a negative effect on citations, almost four times higher than on the impact 

factor measure but almost twice smaller than the effect on publications. A woman get 0.4 citations per 

article less than a man on average, all else being equal, according to the TS estimates. Again, we find a 

positive correlation between the unobservable effects and the dummy “woman”, suggesting that 

something like “personal motivation for quality” is related to gender (or to its correlated unmeasured 

“sociological” variables). 

 

The “Grande Ecole” effect is almost five times higher than in the impact factor model and 

similar to the effect on publications (0.536). We also find again the effects that we previously 

interpreted as “personal network” or “prestige” positive effects on productivity. 

 

The effect of status  is the same as in the model estimated on the number of articles. All other 

effects being equal, if “talent” was equally distributed a DR would be less likely to be cited than a CR 

(TS estimates – note that they are not statistically significant); but if we take into account the positive 

correlation of “talent” with the status variable, a DR1 receives 1.0 citation more on average per year 

than a CR scientist and a DR2 0.35 citation more (TOTAL estimates). 

 

Concerning the tenure  variables, the number of citations is negatively influenced by the time 

spent in the status DR1. On average, a DR1 in group 2 of experience in the grade receives on average 

0.6 citations less in two years per paper than a newly promoted DR1, and the figure amounts to 1.2 for 

a DR1 in group 3 of tenure in the grade. Yet “talent” is positively correlated to longer tenure in DR 

status. 

 

Among the laboratory variables, we find a positive effect of the quality of the lab’s 

publications on individual productivity. If the quality of the laboratory’s publications increased by 
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10%, the members would receive 0.3 citations more per article. The peer effect in terms of  

quantitative productivity has no statistically significant effect on the annual number citations received 

in the TS regression and a negative effect in the TOTAL regression. As for the measure in terms of 

impact factors, a sort of substitution effect might be at play such that the labs that publish the most are 

not the ones that obtain the more citations for their articles. We find a strong impact of the 

international openness of the lab: if the proportion of co-published work with foreign countries 

increased by 10%, the members would receive 0.8 citations more per article. Finally, the size effect is 

slightly positive and at an increasing rate (resp. marginal impacts: 0.053 and 0.018). 

 

 

III. Conclusion 

 

 This work explores the differences in productivity among scientists in public research, both in 

terms of the number of articles and of the quality of the publications. We use a unique longitudinal 

data base, concerning French condensed-matter physicists between 1986 and 1997. Three sets of 

factors have been considered as determinants of the researchers’ productivity. First, individual 

variables – age, cohort, gender, education. And second, variables that may be related to the incentive 

devices at work in the scientific institution – the status and tenure variables, and the laboratory 

variables to assess environmental effects.  

 

We find a strong impact of the individual variables. In particular, we find a “life cycle effect” 

such that the mean number of publications decreases with age at the end of the career. But, using the 

citations as a measure of productivity, we have been able to see that age does not have a negative 

impact on the average number of citations received by the articles per researcher and per year. We also 

find a gender effect according to which women publish less than men and get less cited, and that a 

selective pre-doc education of the researchers is determinant to foster productivity. Some institutional 

factors seems to play a role as important. Individual productivity is stimulated in productive 

laboratories that are participating in international networks of co-publication. Finally, our results 

suggest that promotion plays as a research incentive. A long tenure in a status, and especially in the 

higher status, has a negative impact on productivity.  

 

We must develop the work in several directions. One is to account for the fact that the 

promotion and laboratory variables may be endogenous. Another is to focus more precisely on certain 

variables. In Hall, Mairesse and Turner (2005) we concentrate on age, cohorts and period effects 

addressing the identification problem. The results about the gender effect need to be developed as 
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well. If the estimates suggest that men are more productive than women, they do not tell neither about 

the reasons of this phenomena nor about the true abilities of women scientists.  As we mentioned, 

several sociological reasons could explain this feature. It is intriguing that on average women access to 

the same journals in terms of quality than men do, whereas they get less citations on average by 

article. It could mean that it is less easy for them to build themselves a reputation or to be part of the 

citations networks. It could also mean that the hypothesis according to which past productivity impacts 

promotion and affiliation is gender biased. Finally, it would be of great interest to assess more deeply 

in an econometric model peer effects and environment effects in science. 
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Figure 1 

 

Concentration curb of the total counts of publications over three sub-periods
(for cohorte 1 ie scientists born between 1936-1940)
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• The graphs for the other cohorts are not reproduced since they show the same results.  

• Cohorts of scientists are in this study “age cohorts” and not “PhD cohorts” as in most studies. For 

more details see section I.A. 
 

 

 

Figure 2 

 

1992/1997 
 
 

1986/1991 

First quartile of 
researchers’ 

productivity : the 
most productive 

researchers 

Second quartile of 
researchers’ 
productivity 

Third quartile of 
researchers’ 
productivity 

Last quartile of 
researchers’ 

productivity : the 
less productive 

researchers 

Total 

Quartile 1 
 

65.5% 23.3% 8.6% 2.6% 100% 

Quartile 2  
 

22.3% 44.7% 22.3% 10.7% 100% 

Quartile 3 
 

8.2% 28.1% 40.5% 23.1% 100% 

Quartile 4 
 

2.6% 9.5% 21.6% 66.4% 100% 

Total 100% 100% 100% 100% 100% 
 

• Similarly persistence is found when we cross periods 1980/1985 and 1986/1992, and also periods 

1980/1985 and 1992/1997.



Table I.1 

 Mean Standard Error Median 1st Qrt 3rd Qrt 
 
Dependent variables 
Number of articles per year (ART) 2.69 3.21 2 0 4 
Average impact factor per researcher and per year (NOT_I) 2.66 2.30 2.54 0 3.8 
Average number of citations (within 2 years) per researcher 
and per year (MCIT) 3.50 6.10 2 0 4.8 

 
Extensions      

Average number of authors per article (harmonic) 
NOTA 

3.23 2.57 3.33 0 4.90 

Average number of pages per article 
NOT_P 5.48 4.68 5.4 0 7.83 

 
Individual variables + Time Dummies 
AGE 44.65 8.03 45 38 51 
Age cohort 1 (AGE1) 
26<=age<=38 0.25 0.44 0 0 1 

Age cohort 2 (AGE2) 
38<age<=45 

0.25 0.43 0 0 0 

Age cohort 3 (AGE3) 
45<age<51 0.23 0.42 0 0 0 

Age cohort 4 (AGE4) 
51<=age<=61 0.27 0.44 0 0 1 

 
Education in a “Grande Ecole” (ECOLE) 

0.17 0.38 0 0 0 

 
Gender (WOMAN) 0.18 0.39 0 0 0 

 
More than one mobility (DUMCH23) 0.13 0.34 0 0 0 

 
Promotion variables 
Status (DR2_0) 0.08 0.28 0 0 0 
Status (DR1_0) 0.33 0.47 0 0 1 
Tenure in status CR cohort 1 (C1ANCCR) 0.21 0.41 0 0 0 
Tenure in status CR cohort 2 (C2ANCCR) 0.19 0.39 0 0 0 
Tenure in status CR cohort 3 (C3ANCCR) 0.18 0.39 0 0 0 
Tenure in status DR2 cohort 1 (C1ANCDR2) 0.13 0.33 0 0 0 
Tenure in status DR2 cohort 2 (C2ANCDR2) 0.10 0.3 0 0 0 
Tenure in status DR2 cohort 3 (C3ANCDR2) 0.10 0.3 0 0 0 
Tenure in status DR1 cohort 1 (C1ANCDR1) 0.03 0.18 0 0 0 
Tenure in status DR1 cohort 2 (C2ANCDR1) 0.02 0.15 0 0 0 
Tenure in status DR1 cohort 3 (C3ANCDR1) 0.03 0.16 0 0 0 
 
Laboratory variables 
Size of the laboratory in logarithm 
LOGNBCH 

3.23 1.39 3.64 3 4.09 

Productivity of the laboratory in logarithm (LOGPROD) 0.72 0.42 0.79 0.44 0.99 
Quality of the laboratory publications in logarithm 
(LOGQUAL) 

1.09 0.45 1.27 1.09 1.33 

Proportion of the laboratory articles with foreign co-authors  
(MPETR) 0.04 0.03 0.04 0.02 0.06 

Dummy for the Grenoble region (ADUMGREN) 0.26 0.44 0 0 1 
Dummy for the Paris region (ADUMPAR) 0.36 0.48 0 0 1 
Dummy for laboratory with less than 3 researchers 
(DUMEF13) 

0.14 0.34 0 0 0 

 
§ Number of individuals = 465, Number of years = 12, Number of Observation = 5580 
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Table II.1 
 

 POISSON ON ART MARGINAL IMPACTS 
Variables TOTAL Two Step TOTAL Two Step 

AGE2 0.205*** 
(0.025) 

0.098*** 
(0.029) 0.553 0.263 

AGE3 0.233*** 
(0.025) 

0.137*** 
(0.032) 0.628 0.368 

AGE4 0.072*** 
(0.025) 

0.086*** 
(0.028) 0.193 0.233 

WOMAN -0.273*** 
(0.024) 

-0.33*** 
(0.046) -0.736 -0.89 

ECOLE 0.118*** 
(0.021) 

0.26*** 
(0.043) 0.317 0.701 

DUMCH23 0.041* 
(0.025) 

-0.024 
(0.051) 0.11 -0.064 

DR1 0.543*** 
(0.041) 

-0.287*** 
(0.096) 1.463 -0.772 

DR2 0.174*** 
(0.031) 

-0.045 
(0.06) 0.47 -0.121 

C2ANCCR -0.094*** 
(0.029) 

0.028 
(0.054) -0.252 0.077 

C3ANCCR -0.291*** 
(0.032) 

0.054 
(0.079) -0.786 0.145 

C2ANCD2 0.012 
(0.031) 

-0.129*** 
(0.042) 0.031 -0.347 

C3ANCD2 -0.029 
(0.034) 

-0.2*** 
(0.062) -0.078 -0.539 

C2ANCD1 -0.05 
(0.057) 

0.023 
(0.07) -0.134 0.063 

C3ANCD1 -0.287*** 
(0.058) 

-0.494*** 
(0.091) -0.774 -1.33 

MPETR 2.942*** 
(0.432) 

3.01*** 
(1.07) 7.928 8.112 

LOGNBCH -0.131*** 
(0.015) 

-0.091** 
(0.036) -0.131 -0.091 

LOGNBCH2 0.016*** 
(0.006) 

0.016 
(0.011) 0.016 0.016 

LOGPROD 0.233*** 
(0.032) 

0.274*** 
(0.067) 0.233 0.274 

LOGQUAL -0.254*** 
(0.069) 

0.018 
(0.144) -0.254 0.018 

ADUMGREN 0.173*** 
(0.026) 

0.179*** 
(0.053) 0.465 0.483 

ADUMPAR -0.055** 
(0.026) 

0.009 
(0.047) -0.147 0.026 

DUMEF13 -0.66*** 
(0.099) 

-0.109 
(0.202) -1.78 -0.293 
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A87 0.117*** 
(0.046) 

0.114** 
(0.046) 0.315 0.307 

A88 0.203*** 
(0.045) 

0.219*** 
(0.045) 0.548 0.589 

A89 0.336*** 
(0.043) 

0.362*** 
(0.044) 0.905 0.974 

A90 0.191*** 
(0.045) 

0.254*** 
(0.046) 0.514 0.684 

A91 0.227*** 
(0.044) 

0.329*** 
(0.046) 0.612 0.885 

A92 0.262*** 
(0.044) 

0.393*** 
(0.046) 0.707 1.06 

A93 0.457*** 
(0.042) 

0.599*** 
(0.045) 1.232 1.615 

A94 0.388*** 
(0.043) 

0.55*** 
(0.046) 1.046 1.481 

A95 0.297*** 
(0.044) 

0.482*** 
(0.048) 0.8 1.298 

A96 0.393*** 
(0.043) 

0.583*** 
(0.047) 1.059 1.572 

A97 0.373*** 
(0.043) 

0.575*** 
(0.048) 1.005 1.55 

C 0.95*** 
(0.105) 

0.372** 
(0.19) 2.561 1.003 

Log-vraisemblance 
R²-Adj for Step 2 -14009.8 -8978.58 

0.03   

 
§ Number of individuals = 465, Number of years = 12, Number of Observation = 5580 
§ Standard Errors computed from analytic second derivatives (Newton) for the TOTAL and 

First Step and from quadratic form of analytic first derivatives (Gauss) for the Second 
Step. 
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Table II.2 
 

 LOGLINEAR ON NOT_I MARGINAL IMPACTS 
Variables Total Within Total Within 

AGE2 -0.041* 
(0.021) 

-0.002 
(0.029) -0.109 -0.004 

AGE3 -0.104*** 
(0.026) 

-0.06 
(0.042) -0.276 -0.16 

AGE4 -0.144*** 
(0.03) 

-0.111** 
(0.055) -0.383 -0.295 

WOMAN -0.022 
(0.016) 

-0.04** 
(0.016) -0.058 -0.106 

ECOLE 0.032* 
(0.017) 

0.042** 
(0.016) 0.085 0.111 

DUMCH23 -0.012 
(0.019) 

-0.01 
(0.019) -0.031 -0.026 

DR1 0.135*** 
(0.042) 

-0.054 
(0.074) 0.36 -0.143 

DR2 0.058** 
(0.026) 

-0.041 
(0.046) 0.155 -0.109 

C2ANCCR -0.004 
(0.02) 

-0.02 
(0.04) -0.01 -0.054 

C3ANCCR 0.015 
(0.028) 

-0.011 
(0.056) 0.041 -0.029 

C2ANCD2 0.041 
(0.026) 

-0.021 
(0.031) 0.11 -0.055 

C3ANCD2 0.063** 
(0.029) 

0.039 
(0.046) 0.166 0.105 

C2ANCD1 0.033 
(0.052) 

0.025 
(0.059) 0.089 0.066 

C3ANCD1 0.006 
(0.05) 

0.069 
(0.077) 0.016 0.184 

MPETR 0.031 
(0.326) 

0.121 
(0.327) 0.082 0.322 

LOGNBCH -0.033*** 
(0.012) 

-0.025** 
(0.012) -0.033 -0.025 

LOGNBCH2 0.021*** 
(0.004) 

0.024*** 
(0.004) 0.021 0.024 

LOGPROD -0.046* 
(0.024) 

-0.049** 
(0.024) -0.046 -0.049 

LOGQUAL 0.57*** 
(0.051) 

0.579*** 
(0.05) 0.57 0.579 

ADUMGREN 0.029 
(0.019) 

0.044** 
(0.019) 0.077 0.118 

ADUMPAR 0.009 
(0.018) 

0.025 
(0.018) 0.023 0.067 

DUMEF13 0.501*** 
(0.074) 

0.551*** 
(0.073) 1.335 1.467 
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A87 -0.051* 
(0.03) 

-0.051* 
(0.028) -0.135 -0.135 

A88 -0.123*** 
(0.03) 

-0.122*** 
(0.028) -0.327 -0.325 

A89 -0.109*** 
(0.03) 

-0.103*** 
(0.029) -0.29 -0.274 

A90 -0.1*** 
(0.03) 

-0.085*** 
(0.03) -0.265 -0.227 

A91 -0.123*** 
(0.03) 

-0.104*** 
(0.031) -0.328 -0.277 

A92 -0.076** 
(0.03) 

-0.054* 
(0.032) -0.203 -0.143 

A93 -0.191*** 
(0.031) 

-0.167*** 
(0.033) -0.509 -0.444 

A94 -0.087*** 
(0.031) 

-0.065* 
(0.034) -0.232 -0.172 

A95 -0.057* 
(0.031) 

-0.03 
(0.035) -0.151 -0.08 

A96 -0.036 
(0.032) 

-0.007 
(0.037) -0.095 -0.019 

A97 -0.062** 
(0.032) 

-0.035 
(0.038) -0.166 -0.093 

DUMMY  
(ART=0) 

-1.119*** 
(0.014) 

-1.093*** 
(0.016) -2.979 -2.91 

C 0.566*** 
(0.077) 

0.516*** 
(0.071) 1.506 1.373 

Log likelihood 
R²-Adj 

-3482.77 
0.557 

-2941.03 
0.602   

  
§ Number of individuals = 465, Number of years = 12, Number of Observation = 5580 
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Table II.3 
 

 

 
LOGLINEAR ON 

MCIT_2 MARGINAL IMPACTS 

Variables TOTAL TWO STEP TOTAL TWO STEP 

AGE2 -0.022 
(0.036) 

0.006 
(0.05) -0.077 0.023 

AGE3 -0.103** 
(0.043) 

-0.028 
(0.073) -0.357 -0.097 

AGE4 -0.172*** 
(0.049) 

-0.019 
(0.096) -0.597 -0.066 

WOMAN -0.049* 
(0.029) 

-0.111*** 
(0.03) -0.172 -0.385 

ECOLE 0.062* 
(0.033) 

0.154*** 
(0.033) 0.215 0.536 

DUMCH23 0.078** 
(0.033) 

0.083** 
(0.034) 0.27 0.29 

DR1 0.306*** 
(0.084) 

-0.164 
(0.134) 1.065 -0.571 

DR2 0.101** 
(0.045) 

-0.057 
(0.067) 0.352 -0.197 

C2ANCCR -0.054 
(0.038) 

0.015 
(0.052) -0.187 0.052 

C3ANCCR -0.011 
(0.05) 

0.016 
(0.078) -0.038 0.054 

C2ANCD2 -0.022 
(0.044) 

-0.13** 
(0.053) -0.077 -0.451 

C3ANCD2 0.023 
(0.048) 

-0.072 
(0.083) 0.081 -0.251 

C2ANCD1 -0.051 
(0.096) 

-0.183** 
(0.093) -0.177 -0.638 

C3ANCD1 -0.01 
(0.097) 

-0.355** 
(0.148) -0.034 -1.234 

MPETR 1.756*** 
(0.597) 

1.944*** 
(0.62) 6.109 6.766 

LOGNBCH 0.011 
(0.021) 

0.053** 
(0.022) 0.011 0.053 

LOGNBCH2 0.015** 
(0.007) 

0.018** 
(0.007) 0.015 0.018 

LOGPROD -0.104** 
(0.043) 

-0.056 
(0.044) -0.104 -0.056 

LOGQUAL 0.28*** 
(0.09) 

0.301*** 
(0.093) 0.28 0.301 

ADUMGREN 0.128*** 
(0.035) 

0.141*** 
(0.037) 0.446 0.489 

ADUMPAR 0.031 
(0.033) 

0.082** 
(0.035) 0.107 0.284 

DUMEF13 0.29** 
(0.13) 

0.544*** 
(0.133) 1.009 1.894 
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A87 0.042 
(0.046) 

0.046 
(0.043) 0.147 0.16 

A88 0.0001 
(0.046) 

0.008 
(0.044) 0.0002 0.028 

A89 0.01 
(0.046) 

0.022 
(0.046) 0.036 0.077 

A90 0.006 
(0.047) 

0.027 
(0.05) 0.019 0.095 

A91 0.0004 
(0.047) 

0.032 
(0.053) -0.001 0.11 

A92 0.01 
(0.048) 

0.056 
(0.057) 0.034 0.195 

A93 -0.349*** 
(0.048) 

-0.309*** 
(0.061) -1.215 -1.073 

A94 -0.209*** 
(0.049) 

-0.17*** 
(0.065) -0.729 -0.593 

DUMMY  
(MCIT_2=0) 

-1.233*** 
(0.024) 

-1.095*** 
(0.027) -4.29 -3.808 

C 0.835*** 
(0.135) 

0.549*** 
(0.133) 2.904 1.909 

Log likelihood 
R²-Adj 

-3223.11 
0.50 

-2728.45 
0.58 (step1) 
0.46 (step2) 

  

§ Number of individuals = 352, Number of years = 9, Number of Observation = 3168 
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Graph II.1 
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Graph II.3 

 
 
 
 
 

Graph II.4 
 

Comparison of the Age and the Tenure effects
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TS estimation of the age effect on the average impact factor
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