The Origins of State Capacity

Property Rights, Taxation, and Politics

By TIMOTHY BESLEY AND TORSTEN PERSSON

Dinh, Thi Theu and Huang, Yang

Contents

- Motivation
- Main results
- Model
- Empirical Data

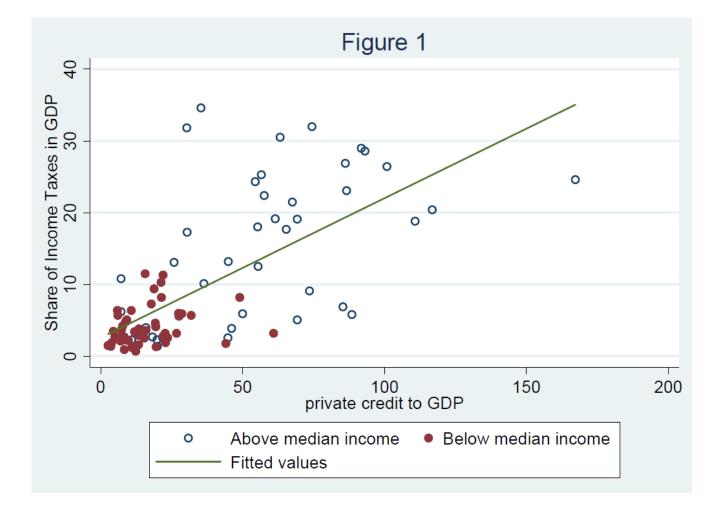
Motivation

• What are the determinants of state capacity?

- State capacity includes legal and fiscal capacity

- Legal capacity: the state's ability to enforce contracts and property rights. In order words, just to make the market work well.
- Fiscal capacity: the state's ability to raise revenue from taxes.

Rich countries have higher state capacity



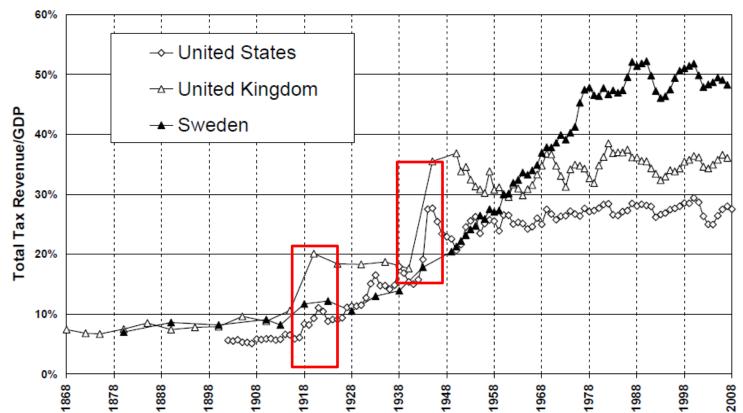
Main Results

Common interest public goods, political institutions etc.

Investments in legal and fiscal capacity

State capacity

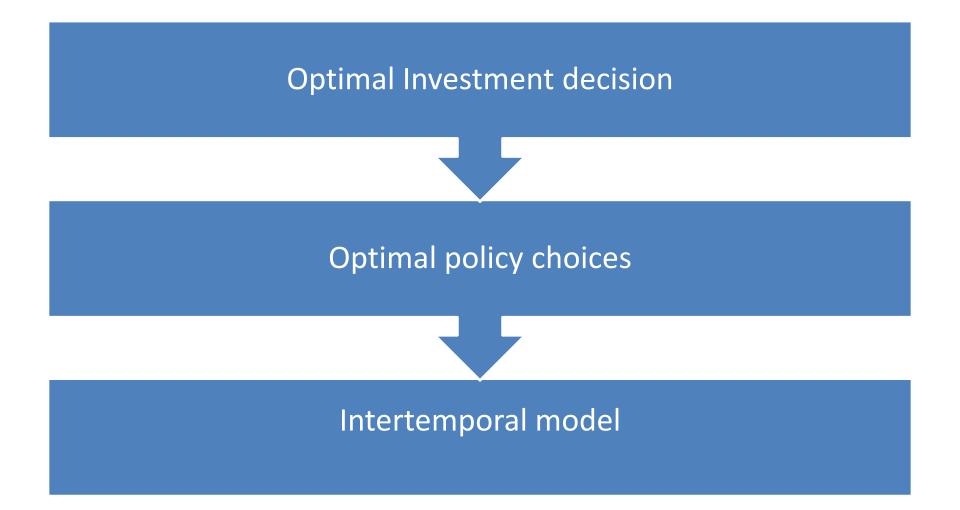
state capacity evolved in response to war



A. Tax revenue to GDP ratio in the US, UK, and Sweden

Source: Kleven-Kreiner-Saez (2009) Why can modern Governments Tax so much?

Model



Model – Policy Choices

Objective function:

(8)
$$\alpha_{s}G_{s} + \overline{\rho}\left(1 - t_{s}^{J}\right)\beta^{J}Y(p_{s}^{J}, \sigma^{J}, w^{J}) + \underline{\rho}\left(1 - t_{s}^{K}\right)\beta^{K}Y(p_{s}^{K}, \sigma^{K}, w^{K}),$$

Budget constraints:

(6)
$$\sum_{J} t_{1}^{J} \beta^{J} Y(p_{1}^{J}, \sigma^{J}, w^{J}) = G_{1} + [L(\pi_{2} - \pi_{1}) + F(\tau_{2} - \tau_{1})]$$
(7)
$$\sum_{J} t_{2}^{J} \beta^{J} Y(p_{2}^{J}, \sigma^{J}, w^{J}) = G_{2}$$

Institutional constraints:

$$p_{\scriptscriptstyle S}^J \leq \pi_{\scriptscriptstyle S}, \, p_{\scriptscriptstyle S}^K \leq \pi_{\scriptscriptstyle S}, \, t_{\scriptscriptstyle S}^J \leq \tau_{\scriptscriptstyle S} \text{ and } t_{\scriptscriptstyle S}^K \leq \tau_{\scriptscriptstyle S} \; .$$

Model – Policy Choices

• Solutions

$$p_{s}^{J} = p_{s}^{J} = \tau_{s}$$

$$\alpha_{s} \geq \bar{\rho} \longrightarrow t_{s}^{J} = t_{s}^{K} = \tau_{s} \quad G_{1} = \tau_{1}Y_{1} - L(\pi_{2} - \pi_{1}) - F(\tau_{2} - \tau_{1}) \qquad G_{2} = \tau_{2}Y_{2}$$

$$\alpha_{2} < \bar{\rho} \quad \bar{\rho} = \underline{\rho} = 1 \longrightarrow G_{s} = 0 \qquad t_{2}^{J} = t_{2}^{K} = 0 \qquad t_{1}^{J} = t_{1}^{K} = \hat{t}_{1}$$

$$\bar{\rho} > 1 > \underline{\rho} \longrightarrow G_{s} = 0 \qquad t_{1}^{K} = \tau_{1} \qquad t_{2}^{K} = \tau_{2}$$

$$t_{1}^{J} = \frac{\left[L(\pi_{2} - \pi_{1}) + F(\tau_{2} - \tau_{1})\right] - \tau_{1}\beta^{K}Y(\pi_{1}, \sigma^{K}, \omega^{K})}{\beta^{J}Y(\pi_{1}, \sigma^{J}, \omega^{J})} \qquad t_{2}^{J} = -\frac{\tau_{2}\beta^{K}Y(\pi_{2}, \sigma^{K}, \omega^{K})}{\beta^{J}Y(\pi_{2}, \sigma^{J}, \omega^{J})}$$

Model – Investment in State Capacity

Expected payoff to group J who hold the power

$$W^{J}(\tau_{2},\pi_{2}) = \gamma^{J} E \left\{ w_{J}^{J}(\alpha_{2},\tau_{2},\pi_{2}) \right\} + (1-\gamma^{J}) E \left\{ w_{K}^{J}(\alpha_{2},\tau_{2},\pi_{2}) \right\}$$

$$(9) \quad (\tau_{2},\pi_{2}) = (1-\tau_{2})[\overline{\rho}\beta^{J}Y(\pi_{2},\sigma^{J},w^{J}) + \underline{\rho}\beta^{K}Y(\pi_{2},\sigma^{K},w^{K})] + \tau_{2}\{([1-H(\overline{\rho})]E(\alpha_{2}|\alpha_{2} \ge \overline{\rho}) + H(\overline{\rho})[\gamma^{J}\overline{\rho} + (1-\gamma^{J})\underline{\rho}])[\beta^{J}Y(\pi_{2},\sigma^{J},w^{J}) + \beta^{K}Y(\pi_{2},\sigma^{K},w^{K})] \}$$

• Maximizing:

$$W^{J}\left(\tau_{2},\pi_{2}\right)-\lambda\left(\alpha_{1}\right)\left[L\left(\pi_{2}-\pi_{1}\right)+F\left(\tau_{2}-\tau_{1}\right)\right]$$

FOCs

$$\begin{pmatrix} \rho^{J} + \tau_{2}\lambda_{2}^{J} \end{pmatrix} (r_{H} - r_{L})\Omega \leq \lambda(\alpha_{1})L_{\pi}(\pi_{2} - \pi_{1}) \\ c.s.\pi_{2} - \pi_{1} \geq 0 \\ \lambda_{2}^{J} \Big[(1 + \pi_{2})(r_{H} - r_{L})\Omega + r_{L}(\beta^{J}w^{J} + \beta^{K}w^{K}) \Big] + \frac{r_{L} \cdot (\bar{\rho} - \underline{\rho}) \cdot \beta^{J}w^{J}\beta^{K}w^{K}(\sigma^{J} - \sigma^{K})}{\Omega} \leq \lambda(\alpha_{1})F_{\tau}(\tau_{2} - \tau_{1}) \\ c.s.\tau_{2} - \tau_{1} \geq 0. \\ (10) \qquad \lambda_{2}^{J} = \Big[1 - H(\bar{\rho}) \Big] \Big[E(\alpha_{2}|\alpha_{2} \geq \bar{\rho}) - \bar{\rho} - \omega^{J} \cdot (\bar{\rho} - \underline{\rho}) \Big] + H(\bar{\rho}) \Big[(\gamma^{J} - \omega^{J})(\bar{\rho} - \underline{\rho}) \Big] \\ (11) \qquad \rho^{J} = \underline{\rho} + \omega^{J}(\bar{\rho} - \underline{\rho}) .$$

Any factor that raises the value of the left hand side of both (12) and (13) will raise investments in both forms of state capacity.

Propositions

- Proposition 4 : Higher wealth higher investment
- Proposition 5: Higher expected demand for public goods higher investment
- Proposition 6: Higher political stability higher investment $\frac{\partial \lambda_2^J}{\partial \gamma^J} = H(\overline{\rho}) (\overline{\rho} \underline{\rho}) \ge 0$
- Proposition 7: More representative more investment
- Proposition 8: Greater economic power of the ruling group higher investment in legal capacity and lower investment in fiscal capacity

Implications for Economic Growth

$$\frac{Y_2 - Y_1}{Y_1} = \frac{(\pi_2 - \pi_1)(r_H - r_L)\Omega}{(1 + \pi_1)(r_H - r_L)\Omega + r_L \sum_J \beta^J w^J} \,.$$

• The growth rate is directly proportional to the investments in legal capacity.

A look at the Data

Table 1: Economic and Political Determinants of Legal Capacity

	(1)	(2)	(3)	(4)
	Private Credit to GDP	Ease of Access to Credit	Investor Protection	Index of Government
		(country rank)	(country rank)	Anti-diversion Policies
Incidence of External	0.510***	0.647**	0.029	0.576***
Conflict up to 1975	(0.143)	(0.191)	(0.209)	(0.170)
	()	()	(()
Incidence of Democracy	0.953	0.110	- 0.044	0.126**
up to 1975	(0.059)	(0.267)	(0.078)	(0.050)
up to 1970	(0.003)	(01207)	(0.070)	(0.000)
Incidence of Parliamentary	0.001	0.145	0.339**	0.112*
Democracy up to 1975	(0.063)	(0.114)	(0.137)	(0.061)
Democracy up to 1970	(0.000)	(0.111)	(0.107)	(0.001)
English Legal Origin	- 0.009	0.068	0.125**	- 0.007
Zilginii Zegin erigni	(0.033)	(0.057)	(0.063)	(0.040)
	(0.000)	(0.007)	(0.000)	(010 10)
Socialist Legal Origin	-	0.098	0.097	0.010***
oocaalor Degaa ongar		(0.111)	(0.115)	(0.035)
		(0.111)	(0.110)	(0.000)
German Legal Origin	0.406***	0.295***	- 0.008	0.248***
	(0.120)	(0.064)	0.149)	(0.053)
	(0.120)	(0.001)	0.113)	(0.000)
Scandinavian Legal Origin	0.112***	0.204***	0.087	0.254***
ocumulation begin official	(0.041)	(0.067)	(0.098)	(0.055)
	(0.011)	(0.007)	(0.070)	(0.000)
Observations	93	122	120	115
R-squared	0.524	0.334	0.256	0.596
N-squared	0.024	0.004	0.200	0.070

Notes to Table: Robust standard errors in parentheses: * significant at 10%; ** significant at 5%; *** significant at 1%. Socialist legal origin is dropped in column 1 due to Private Credit to GDP being missing for all countries in this category.

A look at the Data

	(1) One Minus Share of Trade Taxes in Total	(2) One Minus Share of Trade and Indirect	(3) Share of Income Taxes in GDP	(4) Share of Taxes in GDP
	Taxes	Taxes in Total Taxes		
Incidence of External	0.762***	0.598***	0.579***	0.555***
Conflict up to 1975	(0.250)	(0.241)	(0.220)	(0.162)
Incidence of Democracy	0.143	- 0.078	0.091	0.088
up to 1975	(0.077)	(0.100)	(0.059)	(0.059)
Incidence of Parliamentary	0.031	0.122	0.212***	0.160**
Democracy up to 1975	(0.083)	(0.103)	(0.078)	(0.068)
English Legal Origin	- 0.038	- 0.012	- 0.034	- 0.015
	(0.058)	(0.061)	(0.043)	(0.042)
Socialist Legal Origin	0.136**	- 0.222***	- 0.109***	- 0.119
	(0.058)	(0.037)	(0.065)	(0.031)
German Legal Origin	0.175***	0.196***	0.171*	0.010***
	(0.052)	(0.090)	(0.010)	(0.083)
Scandinavian Legal Origin	0.189**	0.068**	0.258**	0.292***
	(0.077)	(0.084)	(0.134)	(0.087)
Observations	103	103	103	103
R-squared	0.356	0.305	0.600	0.576

Table 2: Economic and Political Determinants of Fiscal Capacity

Notes to Table: Robust standard errors in parentheses: * significant at 10%; ** significant at 5%; *** significant at 1%

Thank you!

 $= \Omega(\Gamma_{H} - \Gamma_{k}) \left\{ \underline{P} + W^{J}(\overline{P} - \underline{P}) + \tau_{2} (\underline{P} W^{J} - \underline{P} - \overline{P} W) + \tau_{2} (\underline{P} W^{J} - \underline{P} - \overline{P} W) \right\}$ しょうしート(をう)モ (のを)のシミアン+ト(を)してがや+いトリアン $= \int (\Gamma_H - \Gamma_k) \left\{ e^3 + \tau_2 \lambda_2^3 \right\}$ where $\lambda_{2}^{3} = \left\{ [I - H(\bar{e})] [E(\partial_{2}|\partial_{2} \geq \bar{e}) + W^{3}(\bar{e} - \underline{e}) - \underline{e}] + H(\bar{e})(Y^{3} - W^{3})(\bar{e} - \underline{e}) \right\}$ $b_2 = \overline{b} + m_2(\underline{b} - \overline{b})$

 $\mathcal{W}^{J} = \frac{\varepsilon^{J} \mathcal{W}^{J} \beta^{J}}{\mathcal{D}} \qquad \mathcal{W}^{K} = \frac{\varepsilon^{K} \mathcal{W}^{K} \beta^{K}}{\mathcal{D}}$

 $\mathcal{D} = e_{j} m_{j} b_{j} + e_{k} m_{k} b_{k}$

 $\mathcal{T}_{2} = (1 - \mathcal{T}_{2}) \bar{\mathcal{T}}_{3} \bar{\mathcal{T}}_{3} = (1 - \mathcal{T}_{2}) \bar{\mathcal{T}}_{3} \bar{\mathcal{T}}_{$ $\{ [\beta^{3}6^{3}W^{3}(r_{H}-r_{z}) + \beta^{k}6^{k}W^{k}(r_{H}-r_{z}) \}$ $= \Pi(Y_H-Y_K) = \int (f-\tau_2)\overline{P} + \tau_2 \{(F-H(\overline{P}))\} = (d_2 | d_2 \ge \overline{P}) + H(\overline{P})[Y^3\overline{P} + (F-T^3)P]\} \cdot W^3$ + {(1-22)0+22 {(1-4(0)]E(02102>02+4(0)[120+(1-17)]}.W

From (9) to (12).

Appendix

From (9) to (13)

- $= -\overline{\rho} p^{3} [G^{3}(HT_{2})(H-F_{2})+F_{2}] W^{3} \underline{\rho} p^{k} [G^{k}(HT_{2})(H-F_{2})+F_{2}] W^{k}$ $+ \left\{ [I-H(\overline{\rho})] E(\partial_{2}|\partial_{2} \gg \overline{\rho}) + H(\overline{\rho})[F^{3}\overline{\rho} + (I-F^{3})\underline{\rho}] \right\} \cdot \left\{ p^{3} [G^{3}(HT_{2})(H-F_{2})+F_{2}] W^{3} + p^{k} [G^{k}(HT_{2})(H-F_{2})+F_{2}] W^{k} \right\}$
- $= \left\{ \left\{ \left[H(\overline{P}) = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac$
- $= \lambda_{z}^{3} [(H_{T_{z}})(F_{H}-F_{z})] + F_{z}(\beta^{3}W^{3} + \beta^{k}W^{k})]$ where $\lambda_{z}^{3} = [(H_{T_{z}})(F_{H}-F_{z})] = [(G_{z})(G_{z}) + M_{z}^{3}(F_{z}) + M_{z}^{3}(F_{z}))] = [(G_{z})(F_{z})(F_{z})(F_{z}) + M_{z}^{3}(F_{z}))]$

Dinh, Thi Theu

Origins of State Capacity (Besley and Persson) Derivations of Formulas

Deriving (4), p. 6, Besley and Persson

From (2) and (3)

Income of a high-return individual in group J $\begin{bmatrix} V_{H} + P_{S}^{J}(T_{H} - T_{L}) \end{bmatrix} W^{J}$

Income of a low-return individual in group J

GWJ

of: share of group I agents with high returns

=) Average income of an individual in group J:

$$\sigma^{J}\left[r_{H} + P_{S}^{J}(r_{H} - r_{L})\right] W^{J} + (1 - \sigma^{J})r_{L} W$$

$$= \sigma^{J}\left[r_{H} + P_{S}^{J}(r_{H} - r_{L}) - r_{L}\right] W^{J} + r_{L} W^{J}$$

$$= \left[\sigma^{J}\left(1 + P_{S}^{J}\right)(r_{H} - r_{L}) + r_{L}\right] \cdot W^{J}$$

Proof of Propositions (1) and (2) (p. 8 and p. 9)

The Incumbent Government has the following abjective function

$$f(t_{s}^{T}, t_{s}^{K}, p_{s}^{T}, B^{K}, G)$$

$$= a_{s}G_{s} + \bar{g}(1-t_{s}^{T})\bar{B}^{Y}(p_{s}^{T}, \sigma', w^{T}) + \underline{p}(1-t_{s}^{K})\bar{B}^{K}Y(p_{s}^{K}, \sigma', w^{K})$$

subject to the following constraints $B^{J}, B^{K} \leq TS, \quad t_{S}^{J}, t_{S}^{K} \leq TS$ $\sum_{J} t_{J}^{J} B^{J} Y(B^{J}, \sigma^{J}, w^{J}) = G_{1} + L(T_{2} - T_{1}) + F(T_{2} - T_{1})$ $\sum_{J} t_{J}^{J} B^{J} Y(B^{J}, \sigma^{J}, w^{J}) = G_{2}$ Substitute $G_{1} = \sum_{T} t_{J}^{J} B^{T} Y(B^{J}, \sigma^{J}, w^{J}) - L(T_{2} - T_{1}) - F(T_{2} - T_{1}) \text{ and } G_{2}$

Substitute $G_1 = \sum_{i=1}^{n} t_i \beta f(B_0, \sigma, w) = L(B_0, \sigma, w) = L(B_0, \sigma, w)$ into the objective function, we obtain:

$$f(t_{s}^{T}, t_{s}^{K}, p_{s}^{T}, p_{s}^{K}) = d_{s} \cdot \left[t_{s}^{T} \beta^{T} Y(p_{s}^{T}, \sigma^{T}, w^{T}) + t_{s}^{K} \beta^{K} Y(p_{s}^{K}, \sigma^{K}, w^{K}) - \frac{1}{2} L(\tau_{2} - \tau_{1}) + F(\tau_{2} - \tau_{1}) \right]$$

$$+ \overline{p} (1 - t_{s}^{T}) \beta^{T} Y(p_{s}^{T}, \sigma^{T}, w^{T}) + \underline{p} (1 - t_{s}^{K}) \beta^{K} Y(p_{s}^{K}, \sigma^{K}, w^{K})$$

$$= (d_{s} - \overline{p}) t_{s}^{T} \beta^{T} Y(p_{s}^{T}, \sigma^{T}, w^{T}) + (d_{s} - \underline{p}) t_{s}^{K} \beta^{K} Y(p_{s}^{K}, \sigma^{K}, w^{K})$$

$$+ \overline{p} \beta^{T} Y(p_{s}^{T}, \sigma^{T}, w^{T}) + \underline{p} \beta^{K} Y(p_{s}^{K}, \sigma^{K}, w^{K}) - \frac{1}{2} d_{s} \left[L(\tau_{2} - \tau_{1}) + F(\tau_{2} - \tau_{1}) \right]$$

$$with Y(p_{s}^{T}, \sigma^{T}, w^{T}) = \left[\sigma^{T} (1 + p_{s}^{T})(r_{H} - r_{L}) + r_{L} \right] w^{T}$$

$$Face 2-TD$$

We maximize this (the last) expression of $f(t_{s}^{T}, t_{s}^{K}, p_{s}^{T}, p_{s}^{K})$ Subject to the following constraints $P_{s}^{T} \leq T_{s}$, $p_{s}^{K} \leq T_{s}$, $t_{s}^{K} \leq T_{s}$, $t_{s}^{T} \leq T_{s}$ Derived from the budget constraints $f(t_{s}^{T}, t_{s}^{T}, t_{s}^{T}, w^{T}) \leq L(T_{a} - T_{1}) - F(T_{a} - T_{1})$ $- \sum_{T} t_{a}^{T} p_{s}^{T} Y(p_{s}^{T}, t_{s}^{T}, w^{T}) \leq 0$

Period 1 :

$$\begin{split} L_{i} &= f(t_{i}^{J}, t_{i}^{K}, p_{i}^{J}, p_{i}^{K}) - \lambda_{i}(p_{i}^{J} - \pi_{i}) - \lambda_{a}(p_{i}^{K} - \pi_{i}) - \lambda_{3}(t_{i}^{J} - \tau_{i}) - \lambda_{4}(t_{i}^{K} - \tau_{i}) - \lambda_{4}(t_{i}^{K} - \tau_{i}) - \lambda_{5} \left[-\Sigma t_{i}^{J} \beta^{J} Y(p_{i}^{J}, \sigma^{J}, w^{J}) + L(\pi_{a} - \pi_{i}) + F(\tau_{2} - \tau_{i}) \right] \end{split}$$

$$\frac{\partial L_{i}}{\partial p_{i}^{T}} = \frac{\partial f}{\partial p_{i}^{T}} - \lambda_{i} + \lambda_{5} \cdot t_{i}^{T} B_{i}^{T} \frac{\partial Y(p_{i}^{T}, \sigma^{T}, w^{T})}{\partial p_{i}^{T}}$$

$$= \left[(\alpha_{i} - \overline{p}) t_{i}^{T} + \overline{p} \right] \cdot B^{T} \cdot \frac{\partial Y(p_{i}^{T}, \sigma^{T}, w^{T})}{\partial p_{i}^{T}} - \lambda_{i} + \lambda_{5} t_{i}^{T} B^{T} \frac{\partial Y(p_{i}^{T}, \sigma^{T}, w^{T})}{\partial p_{i}^{T}} \right]$$

$$= \left[(\alpha_{1} - \overline{p} + \lambda_{5})t_{1}^{J} + \overline{p} \right] \cdot \overrightarrow{p} \cdot \overrightarrow{\sigma} \cdot \overrightarrow{w} \cdot (r_{H} - r_{L}) - \lambda_{1}$$

$$= \left[(\alpha_{1} + \lambda_{5})t_{1}^{J} + (1 - t_{1}^{J})\overline{p} \right] \overrightarrow{p} \cdot \overrightarrow{\sigma} \cdot \overrightarrow{w} \cdot (r_{H} - r_{L}) - \lambda_{1} = 0$$

$$\frac{\partial L_{i}}{\partial p_{i}^{K}} = \left[(\alpha_{1} - \underline{p} + \lambda_{5})t_{1}^{K} + \underline{p} \right] \cdot \overrightarrow{p} \cdot \overrightarrow{\sigma} \cdot \overrightarrow{w} \cdot (r_{H} - r_{L}) - \lambda_{2}$$

$$= \left[(\alpha_{1} + \lambda_{5})t_{1}^{K} + (1 - t_{1}^{K})\underline{p} \right] \cdot \overrightarrow{p} \cdot \overrightarrow{\sigma} \cdot \overrightarrow{w} \cdot (r_{H} - r_{L}) - \lambda_{2} = 0$$

$$\frac{\partial L_{i}}{\partial t_{1}^{J}} = (\alpha_{1} - \overline{p}) \overrightarrow{p}^{J} Y(p_{1}^{J}, \sigma^{J}, w^{J}) - \lambda_{3} + \lambda_{5} \cdot \overrightarrow{p}^{J} Y(p_{1}^{J}, \sigma^{J}, w^{J})$$

$$\left(\alpha_{1} - \overline{p} + \lambda_{5} \right) \cdot \overrightarrow{p}^{T} \left[\overrightarrow{\sigma}^{J} (1 + p_{1}^{J})(r_{H} - r_{L}) + r_{L} \right] w^{J} - \lambda_{3} = 0$$

$$\frac{\partial L_{I}}{\partial t_{i}^{k}} = \left(d_{1} - \frac{p}{2} + \lambda_{5}\right) \beta^{k} \left[\sigma^{k} \left(1 + p_{i}^{k}\right) (r_{H} - r_{L}) + r_{L}\right] w^{k} - \lambda_{4} = 0$$

Page 3-TTD

$$\begin{split} \lambda_{2}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5} \geq O \\ \lambda_{1} (p_{1}^{T} - \pi_{1}) &= O \\ \lambda_{a} (p_{1}^{K} - \pi_{1}) &= O \\ \lambda_{3} (t_{1}^{K} - \tau_{1}) &= O \\ \lambda_{5} (t_{1}^{T} - \tau_{1}) &= O \\ \lambda_{5} \left[- \Sigma t_{1}^{T} \vec{p}^{T} Y(p_{1}^{T}, \sigma_{1}^{T}, w^{T}) + L(\pi_{2} - \pi_{1}) + F(\tau_{2} - \tau_{1}) \right] = O \\ \end{split}$$
Since the first term of $\frac{\partial L_{1}}{\partial p_{1}^{T}} \geq O \Rightarrow \lambda_{1} \geq O \Rightarrow p_{1}^{T} - \pi_{1} = O \Rightarrow \left[p_{1}^{T} = \pi_{1} \right] \\ \text{the first term of } \frac{\partial L_{1}}{\partial p_{1}^{L}} \geq O \Rightarrow \lambda_{2} \geq O \Rightarrow \lambda_{2} \geq O \Rightarrow \left[t_{1}^{T} = \tau_{1} \right] \\ \text{the first term of } \frac{\partial L_{1}}{\partial p_{1}^{L}} \geq O \Rightarrow \lambda_{2} \geq O \Rightarrow \left[t_{1}^{T} = \tau_{1} \right] \\ \text{the first term of } \frac{\partial L_{1}}{\partial p_{1}^{L}} \geq O \Rightarrow \lambda_{2} \geq O \Rightarrow \left[t_{1}^{T} = \tau_{1} \right] \\ \text{the first term of } \frac{\partial L_{1}}{\partial p_{1}^{L}} \geq O \Rightarrow \lambda_{2} \geq O \Rightarrow \left[t_{1}^{T} = \tau_{1} \right] \\ \text{the first term of } \frac{\partial L_{1}}{\partial p_{1}^{L}} \geq O \Rightarrow \lambda_{2} \geq O \Rightarrow \left[t_{1}^{T} = \tau_{1} \right] \\ \text{the first term of } \frac{\partial L_{1}}{\partial p_{1}^{L}} \geq O \Rightarrow \lambda_{2} \geq O \Rightarrow \left[t_{1}^{T} = \tau_{1} \right] \\ \text{the first term of } \frac{\partial L_{1}}{\partial p_{1}^{L}} \geq O \Rightarrow \lambda_{2} \geq O \Rightarrow \left[t_{1}^{T} = \tau_{1} \right] \\ \text{the first term of } \frac{\partial L_{1}}{\partial t_{1}^{L}} \geq O \Rightarrow \lambda_{2} \geq O \Rightarrow \left[t_{1}^{T} = \tau_{1} \right] \\ \text{the first term of } \frac{\partial L_{1}}{\partial t_{1}^{L}} \geq O \Rightarrow \lambda_{2} \geq O \Rightarrow \left[t_{1}^{T} = \tau_{1} \right] \\ \Rightarrow \text{from the expression } \frac{\partial L_{1}}{\partial t_{1}^{T}} = O \Rightarrow \left[t_{1}^{T} = \tau_{1} \right] \\ \Rightarrow Model predicts transbert generation, \\ and there is a generation, \\ and there is a generation, \\ t_{1}^{T} \in t_{2}^{T} = t_{1}^{T} \\ \text{if } d_{1} = 1 \Rightarrow Mody have \quad \lambda_{2} = \lambda_{3} = \lambda_{4} = O \Rightarrow t_{1}^{T} \leq \tau_{1}, \\ t_{1}^{T} t_{2}^{T} T = \lambda_{3} = \lambda_{4} = O \Rightarrow t_{1}^{T} \leq \tau_{1}, \\ t_{1}^{T} t_{2}^{T} T = t_{1}^{T} \\ \text{the } 1^{ST} term of \quad \frac{\partial L_{1}}{\partial t_{1}^{T}} \geq O \Rightarrow \lambda_{4} \geq O \Rightarrow \left[t_{1}^{T} = \tau_{1} \right] \\ \text{the } t_{1}^{ST} term of \quad \frac{\partial L_{1}}{\partial t_{1}^{T}} \geq O \Rightarrow \lambda_{4} \geq O \Rightarrow \left[t_{1}^{T} = \tau_{1} \right] \\ \text{the } t_{1}^{ST} term of \quad \frac{\partial L_{1}}{\partial t_{1}^{T}} \geq D \Rightarrow \lambda_{4} \geq O \Rightarrow \left[t_{1}^{T} = \tau_{1} \right] \\ \text{the } t_{1}^{ST} term of \quad \frac{\partial L_{1}}{\partial t_{1}^{T}} \geq D \Rightarrow \lambda_{4} \geq O \Rightarrow \left[t_{1}^{T} = \tau_{1} \right] \\ \text{the } t_{1}^{T} term of \quad \frac{\partial L_{1$

$$\Rightarrow \begin{bmatrix} \overline{q}_{1} = \overline{t}_{1} \sum_{T} \overline{\beta}^{T} Y(\overline{\pi}_{1}, \sigma^{T}, w^{T}) - L(\overline{\pi}_{a} - \overline{\pi}_{1}) - F(\overline{t}_{a} - \overline{t}_{1}) \\ \cdot \text{ If } d_{1} \langle \overline{p} : From the expression of $\frac{\partial L_{1}}{\partial t_{1}^{T}}$, and from $\lambda_{3} \ge 0$

$$\Rightarrow d_{1} - \overline{p} + \lambda_{5} \ge 0 \Rightarrow \lambda_{5} \ge 0$$

$$\Rightarrow \sum_{T} \overline{t}_{1}^{T} \overline{\beta}^{T} Y(\overline{\pi}_{1}, \sigma^{T}, w^{T}) = L(\overline{\pi}_{a} - \overline{\pi}_{1}) + F(\overline{t}_{a} - \overline{t}_{1})$$

$$\Rightarrow \begin{bmatrix} \overline{q}_{1} = 0 \end{bmatrix}$$

Also, since $d_{1} - \overline{p} + \lambda_{5} \ge 0$
and $d_{1} - \underline{p} + \lambda_{5} \ge 0$

$$\Rightarrow d_{1} - \underline{p} + \lambda_{5} \ge 0$$

$$\Rightarrow d_{1} - \underline{p} + \lambda_{5} \ge 0$$

$$\Rightarrow the first term of \frac{\partial L_{1}}{\partial t_{1}^{K}} \ge 0 \Rightarrow \lambda_{4} \ge 0$$

$$\Rightarrow \begin{bmatrix} \overline{t}_{1}^{T} = \overline{L}\\ (\overline{\pi}_{a} - \overline{\pi}_{1}) + F(\overline{t}_{a} - \overline{t}_{1}) - \overline{t}_{1} \overline{\beta}^{K} Y(\overline{\pi}_{1}, \sigma^{K}, w^{K}) \\ \overline{p}^{T} Y(\overline{\pi}_{1}, \sigma^{T}, w^{T}) \end{bmatrix}$$

$$\cdot \text{ If } d_{1} = \overline{p} \Rightarrow \text{ the first term of } \frac{\partial L_{1}}{\partial t_{1}^{K}} \ge 0 \Rightarrow \lambda_{4} \ge 0$$

$$\sum_{T} \frac{t_{1}^{T} \overline{p}^{T} Y(\overline{\pi}_{1}, \sigma^{T}, w^{T}) \ge L(\overline{\pi}_{a} - \overline{\pi}_{1}) + F(\overline{t}_{a} - \overline{t}_{1})}$$

$$Ray have \lambda_{3} = \lambda_{5} = 0,$$

$$\frac{\zeta_{1}}{\zeta} = \frac{\zeta_{1}}{V(\overline{\pi}_{1}, \sigma^{T}, w^{T}) \ge L(\overline{\pi}_{a} - \overline{\pi}_{1}) + F(\overline{t}_{a} - \overline{t}_{1})}$$$$

Page 5-TTD

Period 2

Since the optimization problem of period 1 differs from that of period 2 only in the budget constraint in period 1: $-\Sigma t_{i}^{T} B^{T} Y(p_{i}^{T}, b_{i}^{T}, w_{i}^{T}) \leq -L(\pi_{a} - \pi_{i}) - F(\tau_{a} - \tau_{i})$

in period 2:
$$-\sum_{J} t_{2}^{J} g^{J} \gamma(p_{2}, \sigma, w) = 0$$

(p. 3 of this document)

Solutions of the period 2 optimization problem are (for comparison with period 1 solution, document)

$$\begin{aligned} & \textcircled{P}_{2}^{T} = P_{2}^{K} = \overline{T}_{2} \\ & \textcircled{H} \ \overline{P} = \underline{P} = I \\ & & \textcircled{H} \ \overline{P} = \underline{P} = I \\ & & & \textcircled{H} \ \alpha_{2} \\ & & & \swarrow \ \tau_{2} \\ & & & & & \swarrow \ \tau_{2} \\ & & & & & & \swarrow \ \tau_{2} \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & &$$

(F) IF 亨>P • If $d_a \ge \overline{p}$, $t_a^{J} = \overline{t_a}$; $t_a^{K} = \overline{t_a}$; $G_a = \overline{t_a} \cdot \overline{\Sigma} \overrightarrow{\beta} (\overline{m_a}, \overline{\sigma}, w^{J})$ $\cdot \text{If } \lambda_2 < \overline{p}, \ G_2 = 0; \ t_2^k = \overline{t_2}; \ t_2^T = -\frac{\overline{t_2} \cdot B^k Y(\overline{t_2}, \overline{\sigma}, \overline{w}^k)}{B^* Y(\overline{t_2}, \overline{\sigma}, \overline{w})}$ • If $d_2 = \overline{P}$, $t_2^{k} = \overline{L}_2$, may have $\lambda_3 = \lambda_5 = 0$ $\Rightarrow \sum t_{a}^{J} \mathcal{B}^{J} Y(\pi_{a}, \sigma^{J}, w^{J}) > 0$

 $t_2^T \leq T_2$

Page 6-TTD

Derivation of (9) from (15) and (16) [(15), (16) appear in Appendix, p. 21, 22]

Note that (15), (16), are devived from (8), and

that in (16), the authors made a small typo error, the last term is written as $T_2(p-\bar{p}) \beta^T Y(\pi_s, \sigma^T, w^T)$ it should be $T_2(p-\bar{p}) \beta^T Y(\pi_s, \sigma^T, w^T)$

$$- \text{Then}:$$

$$W^{T}(\tau_{2}, \pi_{2}) = \gamma^{T} E^{T} E^{T} W_{T}^{T} (d_{2}, \tau_{2}, \pi_{2})^{T} + (1 - \gamma^{T}) E^{T} W_{K}^{T} (d_{2}, \tau_{2}, \pi_{2})^{T} = \gamma^{T} E^{T} [M + (1 - H(p)) \cdot E(N) + H(p) \cdot P] + (1 - \gamma^{T}) \cdot [M + (1 - H(p)) \cdot E(N) + H(p) \cdot Q] + (1 - \gamma^{T}) \cdot [M + (1 - H(p)) \cdot E(N) + H(p) \cdot Q] = M + [1 - H(p)] \cdot E(N) + H(p) \cdot [\gamma^{T} \cdot P + (1 - \gamma^{T}) \cdot Q] = \overline{p} \overline{p}^{T} Y (\pi_{2}, \sigma^{T}, w^{T}) + \underline{p} \frac{\beta^{K}}{\beta} Y (\pi_{2}, \sigma^{K}, w^{K}) + (1 - H(p)) \cdot \tau_{2} \cdot \underline{E} [(d_{2} - \overline{p}) \cdot \overline{\beta}^{T} Y (\pi_{2}, \sigma^{T}, w^{T}) + (d_{2} - \underline{p}) \beta^{K} Y (\pi_{3}, \sigma^{T}, w^{T}) d_{2}\overline{p}] + H(p) \cdot [\gamma^{T} \cdot \underline{\tau}_{2} (\overline{p} - \underline{p}) \beta^{K} Y (\pi_{3}, \sigma^{T}, w^{T}) + (H(p) \cdot \underline{\tau}_{3}, \overline{\tau}, w^{T}) d_{2}\overline{p}] + H(p) \cdot [\gamma^{T} \cdot \underline{\tau}_{3} (\overline{p} - \underline{p}) \beta^{K} Y (\pi_{3}, \sigma^{T}, w^{T}) + (H(p) \cdot \underline{\tau}_{3}, \overline{\tau}, w^{T})] d_{2}\overline{p}] + H(p) \cdot [\gamma^{T} \cdot \underline{\tau}_{3} (\overline{p} - \underline{p}) \beta^{K} Y (\pi_{3}, \sigma^{T}, w^{T}) + (H(p) \cdot \underline{\tau}_{3}, \overline{\tau}, w^{T})] d_{3}\overline{p}] d_{3}\overline{p}] + H(p) \cdot [\gamma^{T} \cdot \underline{\tau}_{3} (\overline{p} - \underline{p}) \beta^{K} Y (\pi_{3}, \sigma^{T}, w^{T}) + (H(p) \cdot \underline{\tau}_{3}, \overline{\tau}, w^{T})] d_{3}\overline{p}] d$$

Page 7-TTD

$$\begin{split} & \mathsf{W}_{(\tau_{a},\tau_{a}^{-})}^{T} = \bar{\varphi}\mathcal{T} + \underline{\varphi} \,\mathsf{K} \,+ \,(\mathbf{1} - \mathsf{H}_{(\overline{p})}), \, \tau_{2}, \, \mathbf{E}\left[\left(\mathbf{a}_{3},\overline{\varphi}\right)\mathcal{I} + \left(\mathbf{a}_{2},\underline{\varphi}\right)\mathcal{I}\right] \\ &= \bar{\beta}\mathcal{T} + \underline{\rho} \,\mathsf{K} \,+ \, \tau_{2}, \,(\underline{1} - \mathsf{H}_{(\overline{p})}), \, \mathbf{E}\left[\left(\mathbf{a}_{2},(\mathbf{1} + \mathbf{K}) - \left(\overline{\rho}\mathcal{I} + \underline{\rho}\mathbf{K}\right)\right] \mathbf{a}_{2} \gg \bar{\varphi}\right] \\ &+ \mathcal{H}_{(\overline{p})}, \, \left[\chi^{T}_{\overline{p}} \,\mathsf{K} - \chi^{T}_{\overline{p}} \,\mathsf{K} + \left(\mathbf{1} - \chi^{T}\right) \underline{\rho}\mathcal{I} - \left(\mathbf{1} - \chi^{T}\right) \overline{\rho}\mathcal{I}\right] \\ &= \bar{\beta}\mathcal{I} + \underline{\rho} \,\mathsf{K} \,+ \, \tau_{2}, \,(\underline{1} - \mathsf{H}_{(\overline{p})}), \, \left[\mathbf{E}\left(\mathbf{a}_{2}\right), \,(\mathbf{1} + \mathbf{K}\right) - \left(\overline{\rho}\mathcal{I} + \underline{\rho}\mathbf{K}\right)\right] \mathbf{a}_{2} \gg \bar{\varphi}\right] \\ &+ \mathcal{I}_{2}, \, \mathcal{H}_{(\overline{p})}, \left[\chi^{T}_{\overline{p}} \,\mathsf{K} - \chi^{T}_{\overline{p}} \,\mathsf{K} + \left(\mathbf{1} - \chi^{T}\right) \underline{\rho}\mathcal{I} - \left(\mathbf{1} - \chi^{T}\right) \overline{\rho}\mathcal{I}\right] \\ &= \bar{\beta}\mathcal{I} + \underline{\rho} \,\mathsf{K} \,+ \, \tau_{2}, \,(\mathbf{1} - \mathsf{H}_{(\overline{p})}), \left[\mathbf{E}\left(\mathbf{a}_{2}\right), \,(\mathcal{I} + \mathbf{K}\right) - \left(\overline{\beta}\mathcal{I} + \underline{\rho}\mathbf{K}\right)\right] \mathbf{a}_{2} \gg \bar{\varphi}\right] \\ &+ \mathcal{I}_{3}, \, \mathcal{H}_{(\overline{p})}, \left[-\left(\overline{\beta}\mathcal{I} + \underline{\rho}\mathbf{K}\right) + \chi^{T}_{3} \,\mathsf{K} + \left(\mathbf{1} - \chi^{T}\right) \underline{\rho}\mathcal{I} + \chi^{T}_{3} \,\mathsf{F}\mathcal{I}\right] \\ &= \left[\overline{\rho}\mathcal{I} + \underline{\rho} \,\mathsf{K}\right], \left[\mathbf{1} - \tau_{2} \,\left(\mathbf{1} - \mathcal{H}_{(\overline{p})}\right)\right] - \tau_{2}, \mathcal{H}_{(\overline{p})}\right] + \tau_{3} \,\left[\left[-\mathcal{H}_{(\overline{p})}\right], \,\mathsf{E}\left(\mathbf{a}_{2}\right) \mathbf{a}_{2} \,\mathsf{F}\overline{\rho}\right] \\ &+ \tau_{4}, \, \mathcal{H}_{(\overline{p})}, \left[\mathbf{1} - \tau_{2} \left(\mathbf{1} - \mathcal{H}_{(\overline{p})}\right)\right] - \tau_{2}, \mathcal{H}_{(\overline{p})}\right] + \tau_{4} \,\mathsf{E}\left[\left[-\mathcal{H}_{(\overline{p})}\right], \,\mathsf{E}\left(\mathbf{a}_{2}\right) \mathbf{a}_{2} \,\mathsf{F}\overline{\rho}\right), (\mathcal{I} + \mathbf{K}\right) \\ &= \left[\overline{\rho}\mathcal{I} + \underline{\rho} \,\mathsf{K}\right], \left[\mathbf{1} - \tau_{2} \left(\mathbf{1} - \mathcal{H}_{\overline{p}}\right)\right] - \tau_{2}, \mathcal{H}_{(\overline{p})}, \,\mathsf{E}\left(\mathbf{a}_{3}\right) \mathbf{a}_{2} \,\mathsf{F}\overline{\rho}\right) + \mathcal{H}_{(\overline{p})}, \left(\mathcal{I} + \mathbf{K}\right) \\ &+ \tau_{4}, \,\mathcal{H}_{(\overline{p})}, \left(\mathcal{I}^{T}_{3} \,\mathsf{F}^{T} \left(\mathbf{1} - \mathbf{a}_{3}\right) \,\mathsf{F}^{T} \,\mathsf{F}^{T} \,\mathsf{K}^{T} \,\mathsf{F}_{3}, \sigma^{T}, \mathbf{m}^{T}\right)\right] \\ &= \left[\mathbf{f}\mathcal{I} + \underline{\rho} \,\mathsf{K}\right], \left[\mathbf{I} - \tau_{2}\right] + \tau_{4} \,\mathsf{E}\left[\left(\mathbf{I} - \mathcal{H}_{\overline{p}\right)\right], \,\mathsf{E}\left(\mathbf{a}_{3}\right) \mathbf{a}_{2} \,\mathsf{F}^{T} \,\mathsf{F}^{T} \,\mathsf{K}^{T} \,\mathsf{F}_{3}, \sigma^{T}, \mathbf{m}^{T}\right)\right] \\ &+ \left[\mathbf{f}\mathcal{I} + \mathbf{f}\mathcal{I} \,\mathsf{K}\right] \\ &= \left[\mathbf{f}\mathcal{I} + \mathbf{f}\mathcal{I} \,\mathsf{K}\right], \left[\mathbf{f}\mathcal{I} = \mathbf{f}\mathcal{I}^{T} \,\mathsf{K}\right] \,\mathsf{K}^{T} \,\mathsf{K$$

$$\begin{split} & \underbrace{\text{Deriving } (12) (p.11, \text{Besleys Person })}_{\text{Note}} : Y(\pi_{2}, \sigma^{J}, w^{J}) = \left[\sigma^{J} (1 + \pi_{2}) (r_{H} - r_{L}) + r_{L} \right] \cdot w^{J} \\ & W^{J}(\pi_{2}, \pi_{2}) = (1 - \tau_{2}) \cdot \left[\overline{p} \, \beta^{J} Y(\pi_{2}, \sigma^{J}, w^{J}) + \underline{p} \, \beta^{K} Y(\pi_{2}, \sigma^{K}, w^{K}) \right] \\ & + \tau_{2} \cdot \left[(1 - H(\overline{p})) \cdot E(d_{2} | a_{2} \ge \overline{p}) + H(\overline{p}) \cdot \left(\chi^{J} \overline{p} + (1 - \chi^{J}) \underline{p} \right) \right] \\ & \cdot \left[\beta^{J} Y(\pi_{2}, \sigma^{J}, w^{J}) + \beta^{K} Y(\pi_{2}, \sigma^{K}, w^{K}) \right] \end{split}$$

$$\begin{split} \frac{\partial W^{J}(\tau_{a}, \pi_{a})}{\partial \pi_{a}} &= (1 - \tau_{a}) \cdot \left[\overline{p} \beta^{J} \sigma^{J}(r_{H} - r_{L}) w^{J} + \underline{p} \beta^{K} \sigma^{K}(r_{H} - r_{L}) w^{K} \right] \\ &+ \tau_{a} \cdot \left[(1 - H(\overline{p})) \cdot E(a_{a}) a_{b} \geqslant \overline{p}) + H(\overline{p}) \cdot (\gamma^{T} \overline{p} + (1 - \gamma^{T}) \underline{p}) \right] \\ &\cdot \left[\beta^{J} \sigma^{J}(r_{H} - r_{L}) w^{J} + \beta^{K} \sigma^{K}(r_{H} - r_{L}) w^{K} \right] \end{split}$$

$$= (1 - \tau_2) \left[\bar{p} \omega^J \Omega (r_H - r_L) + \underline{p} \omega^K \Omega (r_H - r_L) \right]$$

+ $\tau_2 \cdot \left[(1 - H(\bar{p})) E (d_2 | d_2 \ge \bar{p}) + H(\bar{p}) (\sqrt[3]{p} + (1 - \sqrt[3]{p}) \right] \cdot (r_H - r_L) (\omega^J \Omega + \omega^K \Omega)$
 $\left((\omega^J, \omega^K, \Omega \text{ defined under (10) } p \cdot \Pi \right)$

$$= (1 - \tau_{2}) (r_{H} - r_{L}) \Omega (\bar{p} \omega^{J} + \underline{p} \omega^{K}) + \tau_{2} \cdot [(1 - H(\bar{p})) E(d_{2} | d_{2} \ge \bar{p}) + H(\bar{p}) (\gamma^{J} \bar{p} + (1 - \gamma^{J}) \underline{p}] (r_{H} - r_{L}) \Omega (since \omega^{J} + \omega^{K} = 1)$$

$$= (r_{H} - r_{L}) \Omega (\bar{p} w^{T} + \bar{p} w^{K})$$

$$+ (r_{H} - r_{L}) \Omega \tau_{2} \cdot \left[(1 - H(\bar{p})) \cdot E(d_{2} | d_{2} \ge \bar{p}) + H(\bar{p}) (\gamma^{T} \bar{p} + (1 - \gamma^{T}) \underline{p}) - \bar{p} w^{T} - \underline{p} w^{K} \right]$$

Since $\overline{p}w^{T} + pw^{K} = \overline{p}w^{T} + p(1 - w^{T}) = p + (\overline{p} - p)w^{T} = p^{T}$ defined in formula (11), p. 11, Besley & Persson

Page 9-TTD

$$\begin{split} & \frac{\partial W^{T}(\tau_{2}, \pi_{2})}{\partial \pi_{2}} = (r_{H} - r_{L}) \Omega P^{T} \\ & + (r_{H} - r_{L}) \Omega \tau_{2} \cdot \left[(I - H(\bar{p})) \cdot E(a_{2} | a_{2} \ge \bar{p}) + H(\bar{p}) (\gamma^{T} \bar{p} + (I - \gamma^{T}) \underline{p}) - \underline{p} - (\bar{p} - \underline{p}) \omega^{T} \right] \\ & \text{In the 2}^{nd} \text{ term }, \\ & (I - H(\bar{p})) \cdot E(a_{2} | a_{2} \ge \bar{p}) + H(\bar{p}) \cdot (\gamma^{T} \bar{p} + (I - \gamma^{T}) \underline{p}) - \underline{p} - (\bar{p} - \underline{p}) \omega^{T} \\ & = (I - H(\bar{p})) \cdot \left[E(a_{2} | a_{2} \ge \bar{p}) - \underline{p} - (\bar{p} - \underline{p}) \omega^{T} \right] + H(\bar{p}) \left[\gamma^{T} \bar{p} + (I - \gamma^{T}) \underline{p} - \underline{p} - (\bar{p} - \underline{p}) \omega^{T} \right] \\ & = \left[(I - H(\bar{p})) \cdot \left[E(a_{2} | a_{2} \ge \bar{p}) - \underline{p} - (\bar{p} - \underline{p}) \omega^{T} \right] + H(\bar{p}) \cdot \left[\gamma^{T} (\bar{p} - \underline{p}) - \omega^{T} (\bar{p} - \underline{p}) \omega^{T} \right] \\ & = \left[(I - H(\bar{p})) \cdot \left[E(a_{2} | a_{2} \ge \bar{p}) - \underline{p} - (\bar{p} - \underline{p}) \omega^{T} \right] + H(\bar{p}) \cdot \left[\gamma^{T} (\bar{p} - \underline{p}) - \omega^{T} (\bar{p} - \underline{p}) \right] \\ & = \left[(I - H(\bar{p})) \cdot \left[E(a_{2} | a_{2} \ge \bar{p}) - \underline{p} - (\bar{p} - \underline{p}) \omega^{T} \right] + H(\bar{p}) \cdot (\gamma^{T} - \omega^{T}) (\bar{p} - \underline{p}) \right] \\ & = \left[(I - H(\bar{p})) \cdot \left[E(a_{2} | a_{2} \ge \bar{p}) - \underline{p} - (\bar{p} - \underline{p}) \omega^{T} \right] + H(\bar{p}) \cdot (\gamma^{T} - \omega^{T}) (\bar{p} - \underline{p}) \right] \\ & \text{Therefore} , \quad \frac{\partial w^{T} (\tau_{2}, \tau_{2})}{\partial \pi_{2}} = (r_{H} - r_{L}) \Omega \cdot \left(p^{T} + \tau_{2} \lambda_{2}^{T} \right) \\ & \text{where} \qquad \lambda_{2}^{T} = \left[(I - H(\bar{p})) \right] \left[E(a_{2} | a_{2} \ge \bar{p}) - \underline{p} - (\bar{p} - \underline{p}) \omega^{T} \right] + H(\bar{p}) (\gamma^{T} - \omega^{T}) (\bar{p} - \underline{p}) \right] \end{aligned}$$

Deriving (13) (p. 11, Besley & Persson)

Note:
$$Y(\pi_{2}, \sigma^{J}, w^{J}) = \left[\sigma^{J}(1+\pi_{2})(r_{H}-r_{L})+r_{L}\right] \cdot w^{J}$$

 $W_{(\tau_{a}, \pi_{a})}^{J} = (1-\tau_{a}) \cdot \left[\overline{p} \beta^{J} Y(\pi_{a}, \sigma^{J}, w^{J})+\underline{p} \beta^{K} Y(\pi_{a}, \sigma^{K}, w^{K})\right]$
 $+ \tau_{a} \cdot \left[(1-H(\overline{p})) \cdot E(a_{a} | a_{a} \gg \overline{p}) + H(\overline{p}) \cdot (\gamma^{J} \overline{p} + (1-\gamma^{J})\underline{p})\right]$
 $\cdot \left[\beta^{J} Y(\pi_{a}, \sigma^{J}, w^{J}) + \beta^{K} Y(\pi_{a}, \sigma^{K}, w^{K})\right]$

$$\frac{\partial W^{J}(\tau_{a}, \overline{\tau_{a}})}{\partial \tau_{a}} = -\overline{p} \overline{\beta}^{T} \left[\overline{\sigma}^{T} (1 + \overline{\tau_{a}}) (r_{H} - r_{L}) + r_{L} \right] W^{J} - \underline{p} \overline{\beta}^{K} \left[\overline{\sigma}^{K} (1 + \overline{\tau_{a}}) (r_{H} - r_{L}) + r_{L} \right] W^{K} \right]$$

$$+ \left[\left(1 - H(\overline{p}) \right) \cdot E(d_{a} | d_{a} \ge \overline{p}) + H(\overline{p}) \cdot \left(\sqrt{\overline{p}} + (1 - \sqrt{\overline{p}}) \underline{p} \right) \right]$$

$$\cdot \left[\overline{\beta}^{T} \left[\overline{\sigma}^{T} (1 + \overline{\tau_{a}}) (r_{H} - r_{L}) + r_{L} \right] W^{J} + \overline{\beta}^{K} \left[\overline{\sigma}^{K} (1 + \overline{\tau_{a}}) (r_{H} - r_{L}) + r_{L} \right] W^{K} \right]$$

Note from page 10 of this document (2nd page of the derivation of formula (12)) that

$$\lambda_{2}^{T} = [1 - H(\bar{p})] \cdot [E(d_{2}|d_{2} \exists \bar{p}) - \underline{p} - (\bar{p} - \underline{p})\omega^{T}] + H(\bar{p}) \cdot (\chi^{T} - \omega^{T})(\bar{p} - \underline{p})$$

$$= [1 - H(\bar{p})] \cdot E(d_{2}|d_{2} \ge \bar{p}) + H(\bar{p}) \cdot (\chi^{T} \bar{p} + (1 - \chi^{T})\underline{p}) - [\underline{p} + (\bar{p} - \underline{p})\omega^{T}]$$
(This appears below "in the 2nd term" also on $p \cdot 10$ of this document.)
Since $\underline{p} + (\bar{p} - \underline{p})\omega^{T} = \bar{p}\omega^{T} + \underline{p}(1 - \omega^{T}) = \bar{p}\omega^{T} + \underline{p}\omega^{K}$

$$(\omega^{T} + \omega^{K} = 1 \text{ as explained on } p \cdot 11 \text{ of Besley } \theta \text{ Persson's paper})$$

$$Dage U - TLD$$

We have

$$\lambda_{2}^{J} = \left[I - H(\bar{p}) \right] \cdot E(d_{2} | d_{2} \geq \bar{p}) + H(\bar{p}) \left(\gamma^{J} \bar{p} + (I - \gamma^{J}) \underline{p} \right) - \left[\bar{p} \omega^{J} + \underline{p} \omega^{K} \right]$$

Thus

$$\begin{split} & \frac{\partial W^{T}(\tau_{2}, \pi_{2})}{\partial \tau_{2}} = \left[\left(1 - H(\bar{q}) \right) E(\lambda_{2} | \lambda_{2} \geqslant \bar{q}) + H(\bar{q}) \cdot \left(\gamma^{T} \bar{p} + (1 - \gamma^{T}) \underline{q} \right) \right] \\ & \cdot \left[p^{T} \left[p^{T} \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + r_{L} \right] w^{T} + p^{K} \left[p^{K} (1 + \pi_{2}) (r_{H} - r_{L}) + r_{L} \right] w^{K} \right] \\ & - \bar{p} p^{T} \left[p^{T} \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + r_{L} \right] w^{T} - \underline{q} p^{K} \left[p^{K} (1 + \pi_{2}) (r_{H} - r_{L}) + r_{L} \right] w^{K} \right] \\ & = \left[\left(1 - H(\bar{p}) \right) \cdot E(\lambda_{2} | \lambda_{2} \geqslant \bar{p}) + H(\bar{p}) \cdot \left(\gamma^{T} \bar{p} + (1 - \gamma^{T}) \underline{q} \right) - \left(\bar{p} w^{T} + \underline{p} w^{K} \right) \right] \\ & \cdot \left[w^{T} \Omega \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + r_{L} p^{T} w^{T} + w^{K} \Omega \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + r_{L} p^{K} w^{K} \right] \\ & + \left[\bar{p} w^{T} + \underline{p} w^{K} \right] \cdot \left[w^{T} \Omega \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + p^{T} w^{T} r_{L} \right] - \underline{q} \left[w^{K} \Omega \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + p^{K} w^{K} r_{L} \right] \\ & - \bar{p} \left[w^{T} \Omega \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + p^{T} w^{T} r_{L} \right] - \underline{q} \left[w^{K} \Omega \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + p^{K} w^{K} r_{L} \right] \\ & - \left[\bar{p} w^{T} + \underline{p} w^{K} \right] \left[\Omega \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + r_{L} \left(p^{T} w^{T} + p^{K} w^{K} \right) \right] \\ & + \left[\bar{p} w^{T} + \underline{p} w^{K} \right] \left[\Omega \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + r_{L} \left(p^{T} w^{T} + p^{K} w^{K} \right) \right] \\ & - \bar{p} \left[w^{T} \Omega \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + r_{L} \left(p^{T} w^{T} + p^{K} w^{K} \right) \right] \\ & - \bar{p} \left[w^{T} \Omega \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + r_{L} \left(p^{T} w^{T} + p^{K} w^{K} \right) \right] \\ & - \bar{p} \left[w^{T} \Omega \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + p^{T} w^{T} r_{L} \right] - \underline{p} \left[w^{K} \Omega \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + p^{K} w^{K} r_{L} \right] \\ & - \bar{p} \left[w^{T} \Omega \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + p^{T} w^{T} r_{L} \right] - \underline{p} \left[w^{K} \Omega \left(1 + \pi_{2} \right) (r_{H} - r_{L}) + p^{K} w^{K} r_{L} \right] \\ & (\text{Since } w^{T} + w^{K} = 1, p. 11, \text{ Besley and Persson }) \end{aligned}$$

Page 12,TTD

$$= \lambda_{2}^{T} \left[\Omega \left((I + \pi_{2})(r_{H} - r_{L}) + r_{L} \left(p_{w}^{T} + p_{w}^{K} p_{w}^{K} \right) \right]$$

$$+ r_{L} \cdot \left\{ \left[\overline{p} \ \omega^{T} + p_{w} \omega^{K} \right] \cdot \left[p_{w}^{T} w^{T} + p_{w}^{K} w^{K} \right] - \overline{p} \ p_{w}^{T} w^{T} - p_{w}^{T} p_{w}^{K} \right\}$$

$$\left(\text{Since} \quad \overline{p} \ \omega^{T} \Omega \left((I + \pi_{2})(r_{H} - r_{L}) \text{ is canceled out from the } 2^{nd} g_{s}^{sd} \text{ term} \right)$$

$$\frac{r_{w}^{K} \Omega \left((I + \pi_{2})(r_{H} - r_{L}) + r_{L} \left(p_{w}^{T} + p_{w}^{K} w^{K} \right) \right]$$

$$= \lambda_{2}^{T} \left[\Omega \left((I + \pi_{2})(r_{H} - r_{L}) + r_{L} \left(p_{w}^{T} + p_{w}^{K} w^{K} \right) \right]$$

$$+ r_{L} \left\{ \left[\overline{p} \ \omega^{T} + p_{w}^{K} \right] \cdot \left[p_{w}^{T} + p_{w}^{K} w^{K} \right] - \overline{p} \left[(\omega^{T} + \omega^{K}) g^{T} w^{T} - p_{w}^{T} w^{K}) g^{K} w^{K} \right]$$

$$= \lambda_{2}^{T} \left[\Omega \left((I + \pi_{2})(r_{H} - r_{L}) + r_{L} \left(p_{w}^{T} + p_{w}^{K} w^{K} \right) \right]$$

$$+ r_{L} \left\{ \left[\overline{p} \ \omega^{T} + p_{w}^{K} w^{K} - w^{K} p^{T} w^{T} \right] + p_{w}^{T} \left[(w^{T} + w^{K}) g^{K} w^{K} \right] \right\}$$

$$= \lambda_{2}^{T} \left[\Omega \left((I + \pi_{2})(r_{H} - r_{L}) + r_{L} \left(p_{w}^{T} w^{T} + p_{w}^{K} w^{K} \right) \right]$$

$$+ r_{L} \cdot \left\{ \overline{p} \left[w^{T} p_{w}^{K} w^{K} - w^{K} p^{T} w^{T} \right] + p_{w}^{T} \left[w^{K} p_{w}^{T} w^{T} - w^{T} p_{w}^{K} w^{K} \right] \right\}$$

$$= \lambda_{2}^{T} \left[\Omega \left((I + \pi_{2})(r_{H} - r_{L}) + r_{L} \left(p_{w}^{T} w^{T} + p_{w}^{K} w^{K} \right) \right]$$

$$+ r_{L} \cdot \left[\overline{p} - p \right] \cdot \left[w^{T} p_{w}^{K} w^{K} - w^{K} p^{T} w^{T} \right]$$

$$= \lambda_{2}^{T} \left[\Omega \left((I + \pi_{2})(r_{H} - r_{L}) + r_{L} \left(p_{w}^{T} w^{T} + p_{w}^{K} w^{K} \right) \right]$$

$$+ r_{L} \cdot \left[\overline{p} - p \right] \cdot \left[w^{T} p_{w}^{K} w^{K} - w^{K} p^{T} w^{T} \right]$$

$$= \lambda_{2}^{T} \left[\Omega \left((I + \pi_{2})(r_{H} - r_{L}) + r_{L} \left(p_{w}^{T} w^{T} + p_{w}^{K} w^{K} \right) \right]$$

$$+ r_{L} \left[\overline{p} - p \right] \cdot \frac{p_{w}^{T} w^{T} p_{w}^{T} w^{T} w^{T} p_{w}^{T} w^{T} \right]$$

$$\left[\left(s_{IRee} \ w^{T} w^{T} - \frac{p_{w}^{T} p_{w}^{T} w^{T} w^{T} p_{w}^{T} w^{T} \right)$$

$$\left[\left(s_{IRee} \ w^{T} w^{T} p_{w}^{T} w^{T} w^{T} p_{w}^{T} w^{T} w^{T} p_{w}^{T} w^{T} w^{T} w^{T} w^{T} p_{w}^{T} w^{T} w^$$