Reflections on capital taxation

Thomas Piketty Paris School of Economics

Collège de France – June 23rd 2011

Optimal tax theory

- What have have learned since 1970?
- We have made some (limited) progress regarding optimal labor income taxation
- But our understanding of optimal capital tax is close to zero...virtually no useful theory...
- → in this presentation, I will present new results on optimal capital taxation & try to convince you that they are useful

(on-going work, « A Theory of Optimal Capital Taxation »,2011, joint with E. Saez)

Optimal labor income taxation

- Pre-tax labor income: $y = \theta I (\theta = productivity)$
- Disposable income: c = y T(y)
- Mirrlees-Diamond-Saez formula:

T'/(1-T') = 1/e [1-F(y)]/yf(y)

→ this is a useful formula, because it can used to put numbers and to think about real-world tax policy & trade-offs in an informed way (or at least in a more informed way than in the absence of theory...)

(=minimalist definition of a useful theory)

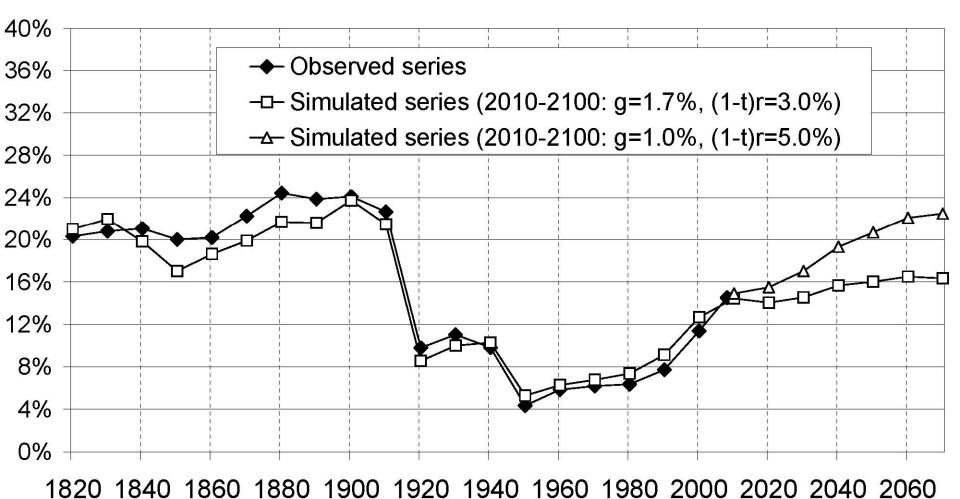
- (1) If elasticity e = flat, then marginal tax rates T'(y) should follow a U-shaped pattern: high at bottom & top, but low in the middle, because high pop density; but e might be higher at bottom (extensive participation effects): study of work-credit trade-offs etc.
- (2) As $y \rightarrow \infty$, T' $\rightarrow 1/(1+ae)$ (a = Pareto coeff)

(a=2.5 \rightarrow 1.5 in US since 70s: fatter upper tail)

 \rightarrow if a=1.5 & e=0.1, t'=87%; but if e=0.5, t'=57%

 Main limitation: at the top, e has little to do with labor supply; tax enforcement issues; rent extraction issues; marginal product illusion

Optimal capital taxation


- Standard theory: optimal capital rate τ_κ=0%... (Chamley-Judd, Atkinson-Stiglitz)
- Fortunately nobody seems to believe in this extreme result: nobody is pushing for the complete supression of corporate tax, inheritance tax, property tax, etc.
- Eurostat 2010: total tax burden EU27 = 39% of GDP, including 9% of GDP in capital taxes
- The fact that we have no useful theory to think about these large existing capital taxes is one of the major failures of modern economics

A Theory of Inheritance Taxation

- Inheritance = 1st key ingredient of a proper theory of optimal capital taxation
- Imperfect K markets = 2nd key ingredient (to go from inheritance tax to lifetime K tax)
- With no inheritance (100% life-cycle wealth) and perfect K markets, then the case for t_K=0% is indeed very strong: 1+r = relative price of present consumption → do not tax r (Atkinson-Stiglitz: do not distort relative prices, use redistributive labor income taxation only)

- Key parameter: b_y = B/Y = aggregate
 annual bequest flow B/national income Y
- Very large historical variations:
- b_v=20-25% of Y until WW1 (=very large)
- b_y<5% in 1950-1960 (~Modigliani lifecycle story) b_y back up to ~15% by 2010
- See « On the Long-Run Evolution of Inheritance – France 1820-2050 », Piketty WP'10, forth.QJE'11
- **r>g story**: g small & r>>g \rightarrow inherited wealth capitalizes faster than growth $\rightarrow b_v$ high

Figure 9: Observed vs simulated inheritance flow B/Y, France 1820-2100

Why Chamley-Judd fails with inheritances?

- C-J in the dynastic model implies that inheritance tax rate τ_{K} should be zero in the long-run
- (1) If social welfare is measured by the discounted utility of first generation then τ_K=0 because inheritance tax creates an infinitely growing distortion but...
 this is a crazy social welfare criterion that does not
 - make sense when each period is a generation

(2) If social welfare is measured by long-run steady state utility then τ_K=0 because supply elasticity e of inheritance wrt to price is infinite but...
 we want a theory where e is a free parameter

Why Atkinson-Stiglitz fails with inheritances?

- A-S applies when sole source of lifetime income is labor: $c_1+c_2/(1+r)=\theta I-T(\theta I)$
- Inheritances provide an additional source of life-income: c+b(left)/(1+r)=θI-T(θI)+b(received)
- →conditional on θl, high b(left) is a signal of high b(received) [and hence low u_c] → "Commodity" b(left) should be taxed even with optimal T(θl)
- Extreme example: no heterogeneity in θ but pure heterogeneity in bequests motives → bequest taxation is desirable for redistribution
- Note: bequests generate positive externality on donors and hence should be taxed less (but still >0)

A Good Theory of Optimal Inheritance Tax

- Should follow the optimal labor income tax progress and hence needs to capture key trade-offs robustly:
- 1) Welfare effects: people dislike taxes on bequests they leave, or inheritances they receive, but people also dislike labor taxes \rightarrow interesting trade-off
- 2) Behavioral responses: taxes on bequests might
 (a) discourage wealth accumulation, (b) affect labor
 supply of inheritors (Carnegie effect) or donors
- 3) Results should be **robust** to heterogeneity in tastes and motives for bequests within the population and formulas should be expressed in terms of estimable "sufficient statistics"

Simplified 1-period model

- Agent i in cohort t (1 cohort =1 period =H years)
- Born at the begining of period t
- Receives bequest b_{ti} at beginning of period t
- Works during period t
- Receives labor income y_{Lti} at end of period t
- Consumes c_{ti} & leaves bequest b_{t+1i}
- Max U(c_{ti}, b_{t+1i})=(1-s_{Bi})log(c_{ti})+s_{Bi}log(b_{t+1i})

s.c. $c_{ti} + b_{t+1i} \le y_{Lti} + b_{ti} e^{rH}$ (H=generation length) $\rightarrow b_{t+1i} = s_{Bi} (y_{Lti} + b_{ti} e^{rH})$

- Steady-state growth: Y_t=K^αH^{1-α}, with H_t=H₀e^{gt} and g=exogenous productivity growth rate
- Assume E(s_{Bi} | y_{Lti}, b_{ti}) = s_B (i.e. preference shocks s_{Bi} i.i.d. & indep. from y_{Lti} & b_{ti} shocks)
- Then the aggregate transition equation takes a simple linear form:

$$B_{t+1} = s_B (Y_{Lt} + B_t e^{rH})$$

$$b_{yt} = B_t / Y_t \rightarrow b_y = s_B (1 - \alpha) e^{(r-g)H} / (1 - s_B e^{(r-g)H})$$

- b_y is an increasing function of r-g, α & s_B
- r-g=3%,H=30, α =30%,s_B=10% \rightarrow b_y=23%
- b_y indep. from tax rates $T_L \& T_B$ (elasticity e=0)

Optimal inheritance tax formulas

- Rawlsian optimum, i.e. from the viewpoint of those who receive zero bequest (b_{ti}=0)
- Proposition 1 (pure redistribution, zero revenue)
 Optimal bequest tax: τ_B = [b_y-s_B(1-α)]/b_y(1+s_B)
- If $b_y = 20\%, \alpha = 30\%, s_B = 10\%$, then $\tau_B = 59\%$
- I.e. bequests are taxed at $\tau_B = 59\%$ in order to finance a labor subsidy $\tau_L = \tau_B b_y/(1-\alpha) = 17\%$
- → zero receivers do not want to tax bequests at 100%, because they themselves want to leave bequests → trade-off between taxing successors from my cohort vs my own children

- Proposition 2 (exo. revenue requirements τ Y) $\tau_B = [b_y - s_B(1 - \alpha - \tau)]/b_y(1 + s_B), \tau_L = (\tau - \tau_B b_y)/(1 - \alpha)$
- If $\tau=30\%$ & b_y=20%, then $\tau_B=73\%$ & $\tau_L=22\%$
- If $\tau=30\%$ & $b_y=10\%$, then $\tau_B=55\%$ & $\tau_L=35\%$
- If $\tau=30\%$ & $b_y=5\%$, then $\tau_B=18\%$ & $\tau_L=42\%$

→ with high bequest flow b_y, zero receivers want to tax inherited wealth at a higher rate than labor income (73% vs 22%); with low bequest flow they want the oposite (18% vs 42%)

- The level of the bequest flow b_y matters a lot for the level of the optimal bequest tax T_B
- Intuituion: with low b_y (high g), not much to gain from taxing bequests, and this is bad for my children; i.e. with high g what matters is the future, not the rentiers of the past
- but with high b_y (low g), it's the opposite: it's worth taxing bequests & rentiers, so as to reduce labor taxation and to allow people with zero inheritance to leave a bequest...

- Proposition 3 (any utility function, elasticity e>0)
 T_B=[b_y-s_{B0}(1-α-τ)]/b_y(1+e+s_{B0})
 With s_{B0} = aver. eff. saving rate of zero receivers
 e= elasticity of bequest flow b_v wrt 1-τ_B
- If b_y =10%, s_{B0} =10%, and e=0 then τ_B =55% & τ_L =35%
- If e=0.2, then $T_B = 46\% \& T_L = 36\%$
- If e=0.5, then T_B =37.5% & T_L =37.5%
- Behavioral responses matter but not hugely as long as elasticity is reasonable
- Note that if s_{B0} = 0 (zero receivers never want to leave bequests), we obtain τ_B=1/(1+e), the classical revenue maximizing inverse elasticity rule

From inheritance tax to capital tax

- With perfect K markets, it's always better to have a big tax τ_B on bequest, and zero lifetime tax τ_K on K stock or K income, so as to avoid intertemporal distorsion
- However in the real world most people prefer paying a property tax $\tau_{\rm K}$ =1% during 30 years rather than a big bequest tax $\tau_{\rm B}$ =30%
- Total K taxes = 9% GDP, but bequest tax <1%
- In our view, the collective choice in favour of lifetime K taxes is a rational consequence of K markets imperfections, not of tax illusion

- Other reason for lifetime K taxes: fuzzy frontier between capital income and labor income, can be manipulated by taxpayers
- Proposition 4: With fuzzy frontier, then $\tau_{K}=\tau_{L}$ (capital income tax rate = labor income tax rate), and bequest tax $\tau_{B}>0$ iff bequest flow b_{y} sufficiently large
- → comprehensive income tax + bequest tax = what we observe in many countries
- (= what Mirrlees Review proposes; except for « normal rate » exemption \rightarrow this would require an even larger bequest tax rate τ_B)

- Pb: in real world, K-labor frontier not entirely fuzzy; see property tax example → one needs K market imperfections to explain obs. tax preferences
- Two kinds of K market imperfections:
- (1) Liquidity pbs: paying τ_B=30% might require successors to sell the property (borrowing constraints + indivisibility pb)

→ empirically, this seems to be an important reason why people dislike inheritance taxes (« death taxes ») much more than property taxes & other lifetime K taxes

- (2) Uninsurable uncertainty about future rate of return on inherited wealth: what matters is $b_{ti} e^{rH}$, not b_{ti} ; but at the time of setting the bequest tax rate T_B , nobody has any idea about the future rate of return during the next 30 years... (idyosincratic + aggregate uncertainty)
- → with uninsurable uncertainty on r, it's more efficient to split the tax burden between one-off transfer taxes and flow capital taxes paid during entire lifetime

 In case the intertemporal elasticity of substitution is small, and liquidity pb and/or uninsurable uncertainty on future r is substantial, then maybe it's not too surprising to find that lifetime capital taxes dominate one-off transfer taxes in the real world Proposition 5. Depending on parameters, optimal capital income tax rate τ_K can be > or
 < than labor income tax rate τ_L; if IES σ small enough and/or b_y large enough, then τ_K > τ_L

(=what we observe in UK & US until the 1970s)

- True optimum: K tax exemption for self-made wealth (savings accounts); but this requires complex individual wealth accounts
- Progressive consumption tax cannot implement rawlsian optimum (bc labor & inheritance treated similarly by T_C)

(Kaldor 1955: progressive τ_{C} + bequest tax τ_{B})

Conclusion

- Main contribution: simple, tractable formulas for analyzing optimal tax rates on inheritance and capital
- Main idea: economists' emphasis on 1+r=relative price & second-order intertemporal distorsions is excessive
- The important point about r is that it's large (r>g → tax inheritance, otherwise society is dominated by rentiers), volatile and unpredictable (→ use lifetime K taxes to implement optimal inheritance tax)