Reflections on capital taxation

Thomas Piketty
Paris School of Economics

Collège de France - June 23rd 2011

Optimal tax theory

- What have have learned since 1970 ?
- We have made some (limited) progress regarding optimal labor income taxation
- But our understanding of optimal capital tax is close to zero...virtually no useful theory...
\rightarrow in this presentation, I will present new results on optimal capital taxation \& try to convince you that they are useful
(on-going work, «A Theory of Optimal Capital Taxation »,2011, joint with E. Saez)

Optimal labor income taxation

- Pre-tax labor income: y = θ I ($\theta=$ productivity $)$
- Disposable income: c = y - T(y)
- Mirrlees-Diamond-Saez formula:

$$
T^{\prime} /\left(1-T^{\prime}\right)=1 / e[1-F(y)] / y f(y)
$$

\rightarrow this is a useful formula, because it can used to put numbers and to think about real-world tax policy \& trade-offs in an informed way (or at least in a more informed way than in the absence of theory...)
(=minimalist definition of a useful theory)

- (1) If elasticity $e=$ flat, then marginal tax rates T'(y) should follow a U-shaped pattern: high at bottom \& top, but low in the middle, because high pop density; but e might be higher at bottom (extensive participation effects): study of work-credit trade-offs etc.
- (2) As $\mathbf{y} \rightarrow \boldsymbol{\infty}, \mathbf{T}^{\prime} \rightarrow \mathbf{1 / (1 + a e) ~ (a ~ = ~ P a r e t o ~ c o e f f) ~}$
($\mathrm{a}=2.5 \rightarrow 1.5$ in US since 70 s : fatter upper tail)
\rightarrow if $\mathrm{a}=1.5 \& \mathrm{e}=0.1, \mathrm{t}^{\prime}=87 \%$; but if $\mathrm{e}=0.5, \mathrm{t}^{\prime}=57 \%$
- Main limitation: at the top, e has little to do with labor supply; tax enforcement issues; rent extraction issues; marginal product illusion

Optimal capital taxation

- Standard theory: optimal capital rate $\mathrm{T}_{\mathrm{K}}=0 \% \ldots$
(Chamley-Judd, Atkinson-Stiglitz)
- Fortunately nobody seems to believe in this extreme result: nobody is pushing for the complete supression of corporate tax, inheritance tax, property tax, etc.
- Eurostat 2010: total tax burden EU27 = 39\% of GDP, including 9\% of GDP in capital taxes
- The fact that we have no useful theory to think about these large existing capital taxes is one of the major failures of modern economics

A Theory of Inheritance Taxation

- Inheritance $=1^{\text {st }}$ key ingredient of a proper theory of optimal capital taxation
- Imperfect K markets = $2^{\text {nd }}$ key ingredient (to go from inheritance tax to lifetime K tax)
- With no inheritance (100% life-cycle wealth) and perfect K markets, then the case for $t_{K}=0 \%$ is indeed very strong: $1+r=$ relative price of present consumption \rightarrow do not tax r (Atkinson-Stiglitz: do not distort relative prices, use redistributive labor income taxation only)
- Key parameter: $b_{y}=B / Y=$ aggregate annual bequest flow $B /$ national income Y
- Very large historical variations:
$b_{y}=20-25 \%$ of Y until WW1 (=very large)
$\mathrm{b}_{\mathrm{y}}<5 \%$ in 1950-1960 (\sim Modigliani lifecycle story)
by back up to $\sim 15 \%$ by 2010
- See « On the Long-Run Evolution of

Inheritance - France 1820-2050 »,
Piketty WP'10, forth.QJE'11

- $r>g$ story: g small \& $r \gg g \rightarrow$ inherited wealth capitalizes faster than growth $\rightarrow b_{y}$ high

Figure 9: Observed vs simulated inheritance flow B/Y, France 1820-2100

Why Chamley-Judd fails with inheritances?
C-J in the dynastic model implies that inheritance tax rate T_{K} should be zero in the long-run
(1) If social welfare is measured by the discounted utility of first generation then $\mathrm{T}_{\mathrm{K}}=0$ because inheritance tax creates an infinitely growing distortion but... this is a crazy social welfare criterion that does not make sense when each period is a generation
(2) If social welfare is measured by long-run steady state utility then $\mathrm{T}_{\mathrm{K}}=0$ because supply elasticity e of inheritance wrt to price is infinite but...
we want a theory where e is a free parameter

Why Atkinson-Stiglitz fails with inheritances?

A-S applies when sole source of lifetime income is labor: $\mathrm{c}_{1}+\mathrm{c}_{2} /(1+\mathrm{r})=\theta \mathrm{I}-\mathrm{T}(\theta \mathrm{l})$
Inheritances provide an additional source of life-income:
$\mathrm{c}+\mathrm{b}($ left $) /(1+r)=\theta \mid-\mathrm{T}(\theta \mathrm{l})+\mathrm{b}($ received $)$
\rightarrow conditional on $\theta \mathrm{I}$, high b (left) is a signal of high b (received) [and hence low u_{c}] \rightarrow "Commodity" b(left) should be taxed even with optimal $\mathrm{T}(\theta \mathrm{I})$

Extreme example: no heterogeneity in θ but pure heterogeneity in bequests motives $\boldsymbol{\rightarrow}$ bequest taxation is desirable for redistribution
Note: bequests generate positive externality on donors and hence should be taxed less (but still >0)

A Good Theory of Optimal Inheritance Tax

Should follow the optimal labor income tax progress and hence needs to capture key trade-offs robustly:

1) Welfare effects: people dislike taxes on bequests they leave, or inheritances they receive, but people also dislike labor taxes \rightarrow interesting trade-off
2) Behavioral responses: taxes on bequests might (a) discourage wealth accumulation, (b) affect labor supply of inheritors (Carnegie effect) or donors
3) Results should be robust to heterogeneity in tastes and motives for bequests within the population and formulas should be expressed in terms of estimable "sufficient statistics"

Simplified 1-period model

- Agent i in cohort t (1 cohort =1 period =H years)
- Born at the begining of period t
- Receives bequest $b_{t i}$ at beginning of period t
- Works during period t
- Receives labor income y_{Lti} at end of period t
- Consumes c_{ti} \& leaves bequest $\mathrm{b}_{\mathrm{t}+1 \mathrm{i}}$
- $\operatorname{Max} U\left(\mathrm{c}_{\mathrm{ti}}, \mathrm{b}_{\mathrm{t}+1 \mathrm{i}}\right)=\left(1-\mathrm{s}_{\mathrm{Bi}}\right) \log \left(\mathrm{c}_{\mathrm{ti}}\right)+\mathrm{s}_{\mathrm{Bi}} \log \left(\mathrm{b}_{\mathrm{t}+1 \mathrm{i}}\right)$
s.c. $c_{t i}+b_{t+1 i} \leq y_{L t i}+b_{t i} e^{r H}$ (H=generation length)

$$
\rightarrow b_{\mathrm{t}+1 \mathrm{i}}=\mathrm{s}_{\mathrm{Bi}}\left(\mathrm{y}_{\mathrm{Lti}}+\mathrm{b}_{\mathrm{ti}} \mathrm{e}^{\mathrm{rH}}\right)
$$

- Steady-state growth: $\mathrm{Y}_{\mathrm{t}}=\mathrm{K}_{\mathrm{t}}{ }^{a} \mathrm{H}_{\mathrm{t}}^{1-\alpha}$, with $\mathrm{H}_{\mathrm{t}}=\mathrm{H}_{0} \mathrm{e}^{\mathrm{gt}}$ and $g=e x o g e n o u s$ productivity growth rate
- Assume $E\left(s_{B i} \mid y_{L t i}, b_{t i}\right)=s_{B}$ (i.e. preference shocks s_{Bi} i.i.d. \& indep. from $\mathrm{y}_{\mathrm{Lti}}$ \& b_{ti} shocks)
- Then the aggregate transition equation takes a simple linear form:

$$
\begin{gathered}
B_{t+1}=s_{B}\left(Y_{L t}+B_{t} e^{r H}\right) \\
b_{y t}=B_{t} / Y_{t} \rightarrow b_{y}=s_{B}(1-\alpha) e^{(r-g) H} /\left(1-s_{B} e^{(r-g) H}\right)
\end{gathered}
$$

- b_{y} is an increasing function of $r-g, \alpha \& S_{B}$
- $r-g=3 \%, H=30, a=30 \%, s_{B}=10 \% \rightarrow b_{y}=23 \%$
- b_{y} indep. from tax rates $\mathrm{T}_{\mathrm{L}} \& \mathrm{~T}_{\mathrm{B}}$ (elasticity $\mathrm{e}=0$)

Optimal inheritance tax formulas

- Rawlsian optimum, i.e. from the viewpoint of those who receive zero bequest $\left(\mathrm{b}_{\mathrm{ti}}=0\right)$
- Proposition 1 (pure redistribution, zero revenue) Optimal bequest tax: $\mathbf{T}_{\mathrm{B}}=\left[\mathrm{b}_{\mathrm{y}}-\mathrm{s}_{\mathrm{B}}(1-\alpha)\right] / \mathbf{b}_{\mathbf{y}}\left(1+\mathrm{s}_{\mathrm{B}}\right)$
- If $b_{y}=20 \%, a=30 \%, s_{B}=10 \%$, then $T_{B}=59 \%$
- I.e. bequests are taxed at $\mathrm{T}_{\mathrm{B}}=59 \%$ in order to finance a labor subsidy $\mathrm{T}_{\mathrm{L}}=\mathrm{T}_{\mathrm{B}} \mathrm{b}_{\mathrm{y}} /(1-\alpha)=17 \%$ \rightarrow zero receivers do not want to tax bequests at 100%, because they themselves want to leave bequests \rightarrow trade-off between taxing successors from my cohort vs my own children
- Proposition 2 (exo. revenue requirements tY) $T_{B}=\left[b_{y}-S_{B}(1-\alpha-T)\right] / b_{y}\left(1+s_{B}\right), T_{L}=\left(T-T_{B} b_{y}\right) /(1-\alpha)$
- If $\mathrm{t}=30 \% \& \mathrm{~b}_{\mathrm{y}}=20 \%$, then $\mathrm{T}_{\mathrm{B}}=73 \% \& \mathrm{~T}_{\mathrm{L}}=22 \%$
- If $\mathrm{T}=30 \% \& b_{y}=10 \%$, then $\mathrm{T}_{\mathrm{B}}=55 \%$ \& $\mathrm{T}_{\mathrm{L}}=35 \%$
- If $\mathrm{T}=30 \% \& \mathrm{~b}_{\mathrm{y}}=5 \%$, then $\mathrm{T}_{\mathrm{B}}=18 \%$ \& $\mathrm{T}_{\mathrm{L}}=42 \%$
\rightarrow with high bequest flow b_{y}, zero receivers want to tax inherited wealth at a higher rate than labor income (73% vs 22%); with low bequest flow they want the oposite (18% vs 42%)
- The level of the bequest flow b_{y} matters a lot for the level of the optimal bequest $\operatorname{tax}_{\mathrm{B}}$
- Intuituion: with low b_{y} (high g), not much to gain from taxing bequests, and this is bad for my children; i.e. with high g what matters is the future, not the rentiers of the past
- but with high b_{y} (low g), it's the opposite: it's worth taxing bequests \& rentiers, so as to reduce labor taxation and to allow people with zero inheritance to leave a bequest...
- Proposition 3 (any utility function, elasticity e>0)

$$
T_{B}=\left[b_{y}-s_{B 0}(1-\alpha-T)\right] / b_{y}\left(1+e+s_{B 0}\right)
$$

With $\mathrm{s}_{\mathrm{B} 0}=$ aver. eff. saving rate of zero receivers $e=$ elasticity of bequest flow b_{y} wrt $1-T_{B}$

- If $b_{y}=10 \%, s_{B 0}=10 \%$, and $e=0$ then $T_{B}=55 \%$ \& $T_{L}=35 \%$
- If $e=0.2$, then $T_{B}=46 \% \& T_{L}=36 \%$
- If $e=0.5$, then $T_{B}=37.5 \% \& T_{L}=37.5 \%$
- Behavioral responses matter but not hugely as long as elasticity is reasonable
- Note that if $\mathrm{s}_{\mathrm{B} 0}=0$ (zero receivers never want to leave bequests), we obtain $T_{B}=1 /(1+e)$, the classical revenue maximizing inverse elasticity rule

From inheritance tax to capital tax

- With perfect K markets, it's always better to have a big tax T_{B} on bequest, and zero lifetime $\operatorname{tax} \mathrm{T}_{\mathrm{K}}$ on K stock or K income, so as to avoid intertemporal distorsion
- However in the real world most people prefer paying a property tax $\mathrm{T}_{\mathrm{K}}=1 \%$ during 30 years rather than a big bequest tax $\mathrm{T}_{\mathrm{B}}=30 \%$
- Total K taxes $=9 \%$ GDP, but bequest tax $<1 \%$
- In our view, the collective choice in favour of lifetime K taxes is a rational consequence of K markets imperfections, not of tax illusion
- Other reason for lifetime K taxes: fuzzy frontier between capital income and labor income, can be manipulated by taxpayers
- Proposition 4: With fuzzy frontier, then $\mathrm{T}_{\mathrm{K}}=\mathrm{T}_{\mathrm{L}}$ (capital income tax rate = labor income tax rate), and bequest tax $T_{B}>0$ iff bequest flow b_{y} sufficiently large
\rightarrow comprehensive income tax + bequest tax
= what we observe in many countries
(= what Mirrlees Review proposes; except for « normal rate » exemption \rightarrow this would require an even larger bequest tax rate T_{B})
- Pb: in real world, K-labor frontier not entirely fuzzy; see property tax example \rightarrow one needs K market imperfections to explain obs. tax preferences
- Two kinds of K market imperfections:
(1) Liquidity pbs: paying $\mathrm{T}_{\mathrm{B}}=30 \%$ might require successors to sell the property (borrowing constraints + indivisibility pb)
\rightarrow empirically, this seems to be an important reason why people dislike inheritance taxes (« death taxes ») much more than property taxes \& other lifetime K taxes
(2) Uninsurable uncertainty about future rate of return on inherited wealth: what matters is $b_{t i} e^{r H}$, not $b_{t i}$; but at the time of setting the bequest tax rate T_{B}, nobody has any idea about the future rate of return during the next 30 years... (idyosincratic + aggregate uncertainty)
\rightarrow with uninsurable uncertainty on r, it's more efficient to split the tax burden between one-off transfer taxes and flow capital taxes paid during entire lifetime
- In case the intertemporal elasticity of substitution is small, and liquidity pb and/or uninsurable uncertainty on future r is substantial, then maybe it's not too surprising to find that lifetime capital taxes dominate one-off transfer taxes in the real world
- Proposition 5. Depending on parameters, optimal capital income tax rate T_{K} can be > or < than labor income tax rate T_{L}; if IES σ small enough and/or b_{y} large enough, then $T_{K}>T_{L}$ (=what we observe in UK \& US until the 1970s)
- True optimum: K tax exemption for self-made wealth (savings accounts); but this requires complex individual wealth accounts
- Progressive consumption tax cannot implement rawlsian optimum (bc labor \& inheritance treated similarly by T_{C})
(Kaldor 1955: progressive $\mathrm{T}_{\mathrm{C}}+$ bequest tax T_{B})

Conclusion

- Main contribution: simple, tractable formulas for analyzing optimal tax rates on inheritance and capital
- Main idea: economists' emphasis on
 intertemporal distorsions is excessive
- The important point about r is that it's large ($r>g \rightarrow$ tax inheritance, otherwise society is dominated by rentiers), volatile and unpredictable (\rightarrow use lifetime K taxes to implement optimal inheritance tax)

