A Theory of Optimal Capital Taxation

Thomas Piketty, Paris School of Economics Emmanuel Saez, UC Berkeley

November 2011

Motivation: The Failure of Capital Tax Theory

1) Standard theory: optimal tax rate τ_K=0% for all forms of capital taxes (stock- or flow-based)

→ Complete supression of inheritance tax, property tax, corporate tax, K income tax, etc. is desirable... including from the viewpoint of individuals with zero property!

2) Practice: EU27: tax/GDP = 39%, capital tax/GDP = 9%
 US: tax/GDP = 27%, capital tax/GDP = 8%
 (inheritance tax: <1% GDP, but high top rates)

➔ Nobody seems to believe this extreme zero-tax result – which indeed relies on very strong assumptions

3) Huge gap between theory and practice on optimal capital taxation is a major failure of modern economics

This Paper: Two Ingredients

In this paper we attempt to develop a realistic, tractable K tax theory based upon two key ingredients

1) Inheritance: life is not infinite, inheritance is a large part of aggregate wealth accumulation

2) Imperfect K markets: with uninsurable return risk, use lifetime K tax to implement optimal inheritance tax

With no inheritance (100% life-cycle wealth or infinite life) and perfect K markets, then the case for τ_{K} =0% is indeed very strong: 1+r = relative price of present consumption \rightarrow do not tax r, instead use redistributive labor income taxation τ_{L} only (Atkinson-Stiglitz)

- Key parameter: $b_y = B/Y$
 - = aggregate annual bequest flow B/national income Y
- Huge historical variations:

 b_y =20-25% in 19^C & until WW1 (=very large: rentier society) b_y <5% in 1950-60 (Modigliani lifecycle) (~A-S) b_y back up to ~15% by 2010 → inheritance matters again

- See « On the Long-Run Evolution of Inheritance France 1820-2050 », Piketty QJE'11
- **r>g story**: g small & r>>g \rightarrow inherited wealth is capitalized faster than growth $\rightarrow b_y$ high
- U-shaped pattern probably less pronounced in US
- \rightarrow Optimal τ_B is increasing with b_y (or r-g)

Annual inheritance flow as a fraction of national income, France 1820-2008

Annual inheritance flow as a fraction of disposable income, France 1820-2008

Result 1: Optimal Inheritance Tax Formula

• **Simple formula** for optimal bequest tax rate expressed in terms of estimable parameters:

$$\tau_B = \frac{1 - (1 - \alpha - \tau) s_{b0} / b_y}{1 + e_B + s_{b0}}$$

with: $b_y =$ bequest flow, $e_B =$ elasticity, $s_{b0} =$ bequest taste $\rightarrow \tau_B$ increases with b_y and decreases with e_B and s_{b0}

- For realistic parameters: τ_B=50-60% (or more..or less...)
- → our theory can account for the variety of observed top bequest tax rates (30%-80%)
- → hopefully our approach can contribute to a tax debate based more upon empirical estimates of key distributional & behavioral parameters (and less about abstract theory)

Top Inheritance Tax Rates 1900-2011

Result 2: Optimal Capital Tax Mix

- K market imperfections (e.g. uninsurable idiosyncratic shocks to rates of return) can justify shifting one-off inheritance taxation toward lifetime capital taxation (property tax, K income tax,..)
- Intuition: what matters is capitalized bequest, not raw bequest; but at the time of setting the bequest tax rate, there is a lot of uncertainty about what the rate of return is going to be during the next 30 years → so it is more efficient to split the tax burden
- → our theory can explain the actual structure & mix of inheritance vs lifetime capital taxation
- (& why high top inheritance and top capital income tax rates often come together, e.g. US-UK 1930s-1980s)

Top Income Tax Rates 1900-2011

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Link with previous work

- 1. Atkinson-Stiglitz JPupE'76: No capital tax in life-cycle model with homogenous tastes for savings, consumption-leisure separability and nonlinear labor income tax
- 2. Chamley EMA'86-Judd JPubE'85: No capital tax in the long run in an infinite horizon model with homogenous discount rate
- **3. Precautionary Savings**: Capital tax desirable when uncertainty about future earnings ability affect savings decisions
- **4. Credit Constraints** can restore desirability of capital tax to redistribute from the unconstrained to the constrained
- 5. Time Inconsistent Governments always want to tax existing capital \rightarrow here we focus on long-run optima with full commitment (most difficult case for $\tau_{\rm K}$ >0)

Atkinson-Stiglitz fails with inheritances

A-S applies when sole source of lifetime income is labor: $c_1+c_2/(1+r)=\theta I-T(\theta I)$ ($\theta = \text{ productivity}, I = \text{ labor supply}$) Bequests provide an additional source of life-income: $c+b(\text{left})/(1+r)=\theta I-T(\theta I)+b(\text{received})$

- → conditional on θl, high b(left) is a signal of high b(received) [and hence low u_c] → "commodity" b(left) should be taxed even with optimal T(θl)
- two-dimensional heterogeneity requires two-dim. tax policy tool
- Extreme example: no heterogeneity in productivity θ but pure heterogeneity in bequests motives → bequest taxation is desirable for redistribution
- Note: bequests generate positive externality on donors and hence should be taxed less (but still >0)

Chamley-Judd fails with finite lives

- C-J in the dynastic model implies that inheritance tax rate $\tau_{\rm K}$ should be zero in the long-run
- (1) If social welfare is measured by the discounted utility of first generation then τ_K=0 because inheritance tax creates an infinitely growing distortion but...
 this is a crazy social welfare criterion that does not make sense when each period is a generation
- (2) If social welfare is measured by long-run steady state utility then $\tau_{\rm K}$ =0 because supply elasticity $e_{\rm B}$ of bequest wrt to price is infinite but...
 - we want a theory where e_B is a free parameter

A Good Theory of Optimal Capital Taxation

Should follow the optimal labor income tax progress and hence needs to capture key trade-offs robustly:

- 1) Welfare effects: people dislike taxes on bequests they leave, or inheritances they receive, but people also dislike labor taxes \rightarrow interesting trade-off
- Behavioral responses: taxes on bequests might
 (a) discourage wealth accumulation, (b) affect labor
 supply of inheritors (Carnegie effect) or donors
- 3) Results should be robust to heterogeneity in tastes and motives for bequests within the population and formulas should be expressed in terms of estimable "sufficient statistics"

Part 1: Optimal Inheritance Taxation

- Agent i in cohort t (1 cohort =1 period =H years, H≈30)
- Receives bequest b_{ti}=z_ib_t at beginning of period t
- Works during period t
- Receives labor income $y_{Lti} = \theta_i y_{Lt}$ at end of period t
- Consumes c_{ti} & leaves bequest b_{t+1i} so as to maximize:

With: $b_{t+1i} = end-of-life$ wealth (wealth loving) $\underline{b}_{t+1i} = (1-T_B)b_{t+1i}e^{rH} = net-of-tax$ capitalized bequest left (bequest loving) T_B =bequest tax rate, T_I =labor income tax rate

 $V_i()$ homogeneous of degree one (to allow for growth)

• Special case: Cobb-Douglas preferences:

 $\begin{array}{l} V_i(c_{ti},b_{t+1i},\underline{b}_{t+1i}) = c_{ti}^{1-s_i} b_{t+1i}^{s_{wi}} \underline{b}_{t+1i}^{s_{bi}} \ (\text{with } s_i = s_{wi} + s_{bi} \) \\ \rightarrow \quad b_{t+1i} = s_i \left[(1 - \tau_B) z_i b_t e^{rH} + (1 - \tau_L) \theta_i y_{Lt} \right] = s_i \, \underline{y}_{\underline{ti}} \end{array}$

• General preferences: $V_i()$ homogenous of degree one: $Max V_i() \rightarrow FOC V_{ci} = V_{wi} + (1-T_B)e^{rH}V_{bi}$ All choices are linear in total life-time income $\underline{y}_{\underline{t}\underline{i}}$ $\rightarrow b_{\underline{t}+1\underline{i}} = s_{\underline{i}} \underline{y}_{\underline{t}\underline{i}}$ Define $s_{bi} = s_{\underline{i}} (1-T_B)e^{rH}V_{bi}/V_{ci}$ Same as Cobb-Douglas but $s_{\underline{i}}$ and s_{bi} now depend on $1-T_B$ (income and substitution effects no longer offset each other)

- We allow for any distribution and any ergodic random process for taste shocks s_i and productivity shocks θ_i
- \rightarrow endogenous dynamics of the joint distribution $\Psi_t(z,\theta)$ of normalized inheritance z and productivity θ

- Macro side: open economy with exogenous return r, domestic output Y_t=K_t^αL_t^{1-α}, with L_t=L₀e^{gHt} and g=exogenous productivity growth rate (inelastic labor supply I_{ti}=1, fixed population size = 1)
- Period by period government budget constraint: T_LY_{Lt} + T_BB_te^{rH} = τY_t
 I.e. τ_L(1-α) + τ_Bb_{yt} = τ
 With τ = exogenous tax revenue requirement (e.g. τ=30%)

 $b_{yt} = e^{rH}B_t/Y_t = capitalized inheritance-output ratio$

• Government objective:

We take $\tau \ge 0$ as given and solve for the optimal tax mix τ_L, τ_B maximizing steady-state SWF = $\int \omega_{z\theta} V_{z\theta} d\Psi(z,\theta)$ with $\Psi(z,\theta)$ = steady-state distribution of z and θ $\omega_{z\theta}$ = social welfare weights

Equivalence between T_B and T_K

• In basic model, tax τ_B on inheritance is equivalent to tax τ_K on annual return r to capital as:

 $\underline{b}_{ti} = (1 - \tau_B)b_{ti}e^{rH} = b_{ti}e^{(1 - \tau_K)rH}$, i.e. $\tau_K = -\log(1 - \tau_B)/rH$

- E.g. with r=5% and H=30, $\tau_B = 25\% \leftrightarrow \tau_K = 19\%$, $\tau_B = 50\% \leftrightarrow \tau_K = 46\%$, $\tau_B = 75\% \leftrightarrow \tau_K = 92\%$
- This equivalence no longer holds with
 (a) tax enforcement constraints, or (b) life-cycle savings,
- or (c) uninsurable risk in r=r_{ti}
- \rightarrow Optimal mix τ_B, τ_K then becomes an interesting question (see below)

- Special case: taste and productivity shocks s_i and θ_i are i.e. across and within periods (no memory)
- \rightarrow s=E(s_i | θ_i ,z_i) \rightarrow simple aggregate transition equation:

$$b_{t+1i} = s_i [(1 - \tau_B) z_i b_t e^{rH} + (1 - \tau_L) \theta_i y_{Lt}]$$

$$\rightarrow b_{t+1} = s [(1 - \tau_B) b_t e^{rH} + (1 - \tau_L) y_{Lt}]$$

Steady-state convergence: b_{t+1}=b_te^{gH}

$$\rightarrow \qquad b_{yt} \rightarrow b_y = \frac{s(1-\tau-\alpha)e^{(r-g)H}}{1-se^{(r-g)H}}$$

- b_y increases with r-g (capitalization effect, Piketty QJE'11)
- If r-g=3%,r=10%,H=30, α =30%,s=10% $\rightarrow b_v$ =20%
- If r-g=1%, τ =30%,H=30, α =30%,s=10% $\rightarrow b_y$ =6%

• General case: under adequate ergodicity assumptions for random processes s_i and θ_i :

Proposition 1 (unique steady-state): for given τ_B, τ_L , then as $t \to +\infty$, $b_{yt} \to b_y$ and $\Psi_t(z, \theta) \to \Psi(z, \theta)$

• Define:
$$e_B = \frac{db_y}{d(1-\tau_B)} \frac{1-\tau_B}{b_y}$$

- e_B = elasticity of steady-state bequest flow with respect to net-of-bequest-tax rate 1- τ_B
- With $V_i()$ = Cobb-Douglas and i.i.d. shocks, $e_B = 0$
- For general preferences and shocks, $e_B > 0$ (or <0)
- \rightarrow we take e_B as a free parameter

 Meritocratic rawlsian optimum, i.e. social optimum from the viewpoint of zero bequest receivers (z=0):

Proposition 2 (zero-receivers tax optimum)

$$\tau_B = \frac{1 - (1 - \alpha - \tau) s_{b0} / b_y}{1 + e_B + s_{b0}}$$

with: s_{b0} = average bequest taste of zero receivers

- T_B increases with b_v and decreases with e_B and s_{b0}
- If bequest taste $s_{b0}=0$, then $T_B = 1/(1+e_B)$
- \rightarrow standard revenue-maximizing formula
- If $e_B\!\rightarrow\!+\infty$, then $\tau_B^{}\rightarrow 0$: back to Chamley-Judd
- If $e_B=0$, then $T_B<1$ as long as $s_{b0}>0$
- I.e. zero receivers do not want to tax bequests at 100%, because they themselves want to leave bequests
- → trade-off between taxing rich successors from my cohort vs taxing my own children

Example 1: τ=30%, α=30%, s_{bo}=10%, e_B=0

- If $b_y = 20\%$, then $T_B = 73\% \& T_L = 22\%$
- If $b_v = 15\%$, then $\tau_B = 67\% \& \tau_L = 29\%$
- If $b_v = 10\%$, then $T_B = 55\% \& T_L = 35\%$
- If $b_y = 5\%$, then $T_B = 18\% \& T_L = 42\%$
- → with high bequest flow b_y, zero receivers want to tax inherited wealth at a higher rate than labor income (73% vs 22%); with low bequest flow they want the oposite (18% vs 42%)

Intuition: with low b_y (high g), not much to gain from taxing bequests, and this is bad for my own children
 With high b_y (low g), it's the opposite: it's worth taxing bequests, so as to reduce labor taxation and allow zero receivers to leave a bequest

Example 2: τ=30%, α=30%, s_{bo}=10%, b_y=15%

- If $e_B = 0$, then $T_B = 67\% \& T_L = 29\%$
- If $e_B = 0.2$, then $T_B = 56\% \& T_L = 31\%$
- If $e_B = 0.5$, then $T_B = 46\% \& T_L = 33\%$
- If $e_B = 1$, then $T_B = 35\% \& T_L = 35\%$

 \rightarrow behavioral responses matter but not hugely as long as the elasticity e_B is reasonnable

Kopczuk-Slemrod 2001: e_B =0.2 (US) (French experiments with zero-children savers: e_B =0.1-0.2) • **Proposition 3** (z%-bequest-receivers optimum):

$$\tau_B = \frac{1 - (1 - \alpha - \tau) s_{bz} / b_y - (1 + e_B + s_{bz}) z / \theta_z}{(1 + e_B + s_{bz})(1 - z / \theta_z)}$$

- If z large, T_B <0: top successors want bequest subsidies
- But since the distribution of inheritance is highly concentrated (bottom 50% successors receive ~5% of aggregate flow), the bottom-50%-receivers optimum turns out to be very close to the zero-receivers optimum
- Perceptions about wealth inequality & mobility matter a lot: if bottom receivers expect to leave large bequests, then they may prefer low bequest tax rates
- \rightarrow it is critical to estimate the right distributional parameters

- Proposition 7 (optimum with elastic labor supply): $\tau_B = \frac{1 - (1 - \alpha - \tau \cdot (1 + e_L))s_{b0}/b_y}{1 + e_B + s_{b0} \cdot (1 + e_L)}$
- Race between two elasticities: e_B vs e_L
- T_B decreases with e_B but increases with e_L

Example : τ=30%, α=30%, s_{bo}=10%, b_v=15%

- If $e_B = 0 \& e_L = 0$, then $\tau_B = 67\% \& \tau_L = 29\%$
- If $e_B = 0.2 \& e_L = 0$, then $\tau_B = 56\% \& \tau_L = 31\%$
- If $e_B = 0.2 \& e_L = 0.2$, then $\tau_B = 59\% \& \tau_L = 30\%$
- If $e_B = 0.2 \& e_L = 1$, then $\tau_B = 67\% \& \tau_L = 29\%$

Other extensions

- **Optimal non-linear bequest tax**: simple formula for top rate; numerical solutions for full schedule
- **Closed economy**: $F_{K} = R = e^{rH} 1 = generational return$
- \rightarrow optimal tax formulas continue to apply as in open economy with e_B, e_L being the pure supply elasticities
- Lifecycle saving: assume agents consume between age A and D, and have a kid at age H. E.g. A=20, D=80, H=30, so that everybody inherits at age I=D-H=50.

 \rightarrow Max V(U,b,b) with U = [$\int_{A \le a \le D} e^{-\delta a} c_a^{1-\gamma}$]^{1/(1-\gamma)}

→ same b_y and T_B formulas as before, except for a factor λ correcting for when inheritances are received relative to labor income: $\lambda \approx 1$ if inheritance received around mid-life (early inheritance: b_v,T_B \uparrow ; late inheritance: b_v,T_B \downarrow)

Part 2: From inheritance tax to lifetime K tax

- One-period model, perfect K markets: equivalence btw bequest tax and lifetime K tax as $(1 \tau_B)e^{rH} = e^{(1 \tau_K)rH}$
- Life-cycle savings, perfect K markets: it's always better to have a big tax τ_B on bequest, and zero lifetime capital tax τ_K , so as to avoid intertemporal consumption distorsion
- However in the real world most people seem to prefer paying a property tax $\tau_{\rm K}$ =1% during 30 years rather than a big bequest tax $\tau_{\rm B}$ =30%
- Total K taxes = 9% GDP, but bequest tax <1% GDP
- In our view, the observed collective choice in favour of lifetime K taxes is a rational consequence of K markets imperfections, not of tax illusion

Simplest imperfection: fuzzy frontier between capital income and labor income flows, can be manipulated by taxpayers (self-employed, top executives, etc.) (= tax enforcement problem)

Proposition 4: With fully fuzzy frontier, then $\tau_{K}=\tau_{L}$ (capital income tax rate = labor income tax rate), and bequest tax $\tau_{B}>0$ is optimal iff bequest flow b_{y} sufficiently large

Define $\underline{T}_B = T_B + (1-T_B)T_K R/(1+R)$, with R=e^{rH}-1.

 $\tau_{K}{=}\tau_{L}{\rightarrow}$ adjust τ_{B} down to keep $\underline{\tau}_{B}$ the same as before

 \rightarrow comprehensive income tax + bequest tax

= what we observe in many countries

Uninsurable uncertainty about future rate of return:

what matters is $b_{ti}e^{r_{ti}H}$, not b_{ti} ; but at the time of setting the bequest tax rate τ_B , nobody knows what the rate of return $1+R_{ti}=e^{r_{ti}H}$ is going to be during the next 30 or 40 years...

(idiosyncratic + aggregate uncertainty)

→ with uninsurable shocks on returns r_{ti}, it's more efficient to split the tax burden between one-off transfer taxes and lifetime capital taxes

Exemple: when you inherit a Paris appartment worth 100 000€ in 1972, nobody knows what the total cumulated return will be btw 1972 & 2012; so it's better to charge a moderate bequest tax and a larger annual tax on property values & flow returns • Assume rate of return $R_{ti} = \varepsilon_{ti} + \xi e_{ti}$

With: ε_{ti} = i.i.d. random shock with mean R₀

e_{ti} = effort put into portfolio management (how much time one spends checking stock prices, looking for new investment opportunities, monitoring one's financial intermediary, etc.)

 $c(e_{ti}) = convex effort cost proportional to portfolio size$

- Define e_R = elasticity of aggregate rate of return R with respect to net-of-capital-income-tax rate 1-τ_K
- If returns mostly random (effort parameter small as compared to random shock), then e_R≈0
- Conversely if effort matters a lot, then e_R large

Proposition 5. Depending on parameters, optimal capital income tax rate τ_K can be > or < than optimal labor income tax rate τ_L; if e_R small enough and/or b_y large enough, then τ_K > τ_L

(=what we observe in UK & US during the 1970s)

Example : τ =30%, α =30%, s_{bo} =10%, b_y =15%, e_B = e_L =0

- If $e_R = 0$, then $\tau_K = 100\%$, $\tau_B = 9\%$ & $\tau_L = 34\%$
- If e_R =0.1, then τ_K =78%, τ_B =35% & τ_L =35%
- If e_R =0.3, then τ_K =40%, τ_B =53% & τ_L =36%
- If e_R =0.5, then τ_K =17%, τ_B =56% & τ_L =37%
- If $e_R = 1$, then $\tau_K = 0\%$, $\tau_B = 58\%$ & $\tau_L = 38\%$

Govt Debt and Capital Accumulation

- So far we imposed period-by-period govt budget constraint: no accumulation of govt debt or assets allowed
- In closed-economy, optimum capital stock should be given by modified Golden rule: F_K= r* = δ + Γg with δ = govt discount rate, Γ = curvature of SWF
- If govt cannot accumulate debt or assets, then capital stock may be too large or too small
- If govt can accumulate debt or assets, then govt can achieve modified Golden rule
- In that case, long run optimal τ_B is given by a formula similar to previous one (as $\delta \rightarrow 0$): capital accumulation is **orthogonal** to redistributive bequest and capital taxation

Conclusion

- (1) Main contribution: simple, tractable formulas for analyzing optimal tax rates on inheritance and capital
- (2) Main idea: economists' emphasis on 1+r = relative price is excessive (intertemporal consumption distorsions exist but are probably second-order)
- (3) The important point about the rate of return to capital r is that
 (a) r is large: r>g → tax inheritance, otherwise society is dominated by rentiers
 (b) r is volatile and unpredictable → use lifetime K taxes

(b) r is volatile and unpredictable \rightarrow use lifetime K taxes to implement optimal inheritance tax

Extension to optimal consumption tax T_C

- Consumption tax $\tau_{\rm C}$ redistributes between agents with different tastes $s_{\rm i}$ for wealth & bequest, not between agents with different inheritance $z_{\rm i}$; so $\tau_{\rm C}$ cannot be a subsitute for $\tau_{\rm B}$
- But T_C can be a useful complement for T_B , T_L (Kaldor'55)
- E.g. a positive τ_C>0 can finance a labor subsidy τ_L<0: as compared to τ_B>0, τ_L<0, this allows to finance redistribution by taxing rentiers who consume a lot more than rentiers who save a lot; given the bequest externality, this is a smart thing to do
- \rightarrow extended optimal tax formulas for T_B , T_L , T_C
- Extension to optimal wealth tax T_w vs T_K (2-period model)