Discussion on inheritance: France vs UK vs Sweden 1820-2010

Thomas Piketty

Paris School of Economics
March 2012

Computing inheritance flow

$$
B_{t} / Y_{t}=\mu_{t}^{*} m_{t} W_{t} / Y_{t}
$$

- $\mathrm{W}_{\mathrm{t}} / \mathrm{Y}_{\mathrm{t}}=$ aggregate wealth/income ratio
- $\mathrm{m}_{\mathrm{t}}=$ aggregate mortality rate
- $\mu_{\mathrm{t}}=$ ratio between average wealth of decedents and average wealth of the living (= age-wealth profile)
- $\mu_{t}^{*}=\left(1+v_{t}\right) \mu_{t}$, with $\left.v_{t}\right)=$ gifts-bequest ratio

Main Point

- Before computing B_{t} / Y_{t}, we need to compute $\mathrm{W}_{\mathrm{t}} / Y_{\mathrm{t}}$
- $\beta_{\mathrm{t}}=\mathrm{W}_{\mathrm{t}} / \mathrm{Y}_{\mathrm{t}}=$ aggregate wealth/income ratio
- In steady-state, Harrod-Domar-Solow formula: $\quad \beta^{*}=\mathbf{s} / \mathbf{g}$
($\mathrm{s}=$ saving rate, $\mathrm{g}=$ growth rate)
(i.e. $s=10 \%, g=2 \%$ implies $\beta^{*}=500 \%$)

Wealth-income ratio in France 1820-2010

Wealth-income ratio: France vs UK 1820-2010

Wealth-income ratio: France vs UK vs Sweden 1820-2010

[^0]
Figure 1: Annual inheritance flow as a fraction of national income, France 1820-2008

- There are two ways to become rich: either through one's own work, or through inheritance
- In the 19th century and early 20th, it was obvious to everybody that the 2nd channel was important: inheritance and successors are everywhere in the literature; huge inheritance flow in tax data
- Q: Does this belong to the past? Did modern growth kill the inheritance channel? E.g. rise of human capital and meritocracy?
- This paper answers « NO » to this question and attempts to explains why, taking France 1820-2050 as an illustration

Figure 1: Annual inheritance flow as a fraction of national income, France 1820-2008

$\begin{array}{llllllllll}1820 & 1840 & 1860 & 1880 & 1900 & 1920 & 1940 & 1960 & 1980 & 2000\end{array}$

Figure 2: Annual inheritance flow as a fraction of disposable income, France 1820-2008

$\begin{array}{llllllllll}1820 & 1840 & 1860 & 1880 & 1900 & 1920 & 1940 & 1960 & 1980 & 2000\end{array}$

What this paper does

- Documents \& explains this fact; draws lessons for other countries
- Main lesson: with $r>g$ (say, $r=4 \%-5 \%$ vs $\mathrm{g}=1 \%-2 \%$), then wealth coming from the past is being capitalized faster than growth, \& inherited wealth dominates self-made wealth
- Dynastic model: heirs save a fraction g / r of the return to inherited wealth, so that wealth-income ratio $\beta=W / Y$ is stationary. Then steady-state bequest flow $b_{y}=B / Y=\beta / H$, with $H=$ generation length. If $\beta=600 \%, H=30 \rightarrow b_{y}=20 \%$
- This can be generalized to more general saving models: if g small \& $r>g$, then b_{y} close to β / H

Application to the structure of

lifetime inequality

- Top incomes literature: Atkinson-Piketty OUP 2007 \& $2010 \rightarrow 23$ countries.. but pb with capital side: we were not able to decompose labor-based vs inheritance-based inequality, i.e. meritocratic vs rentier societies
\rightarrow This paper = positive aggregate analysis; but building block for future work with heterogenity, inequality \& optimal taxation

Data sources

- Estate tax data: aggregate data 18261964; tabulations by estate \& age brackets 1902-1964; national micro-files 1977-1984-1987-1994-2000-2006; Paris microfiles 1807-1932
- National wealth and income accounts: Insee official series 1949-2009; linked up with various series 1820-1949
- French estate tax data is exceptionally good: universal, fully integrated bequest and gift tax since 1791
- Key feature: everybody has to fill a return, even with very low estates
- 350,000 estate tax returns/year in 1900s and 2000s, i.e. 65% of the 500,000 decedents (US: < 2\%)
(memo: bottom 50\% wealth share < 10\%)

Computing inheritance flow

$$
B_{t} / Y_{t}=\mu_{t} m_{t} W_{t} / Y_{t}
$$

- $\mathrm{W}_{\mathrm{t}} / \mathrm{Y}_{\mathrm{t}}=$ aggregate wealth/income ratio
- $\mathrm{m}_{\mathrm{t}}=$ aggregate mortality rate
- $\mu_{\mathrm{t}}=$ ratio between average wealth of decedents and average wealth of the living (= age-wealth profile)
\rightarrow The U-shaped pattern of inheritance is the product of three U-shaped effects

Figure 1: Annual inheritance flow as a fraction of national income, France 1820-2008

Figure 4: Wealth/income ratio in France 1820-

- 1900s: $Y=35$ billions francs or, $W=250$ billions, $B=8.5$ billions
$\rightarrow \mathrm{W} / \mathrm{Y}=700 \%, \mathrm{~B} / \mathrm{Y}=25 \%$
- 2008: $Y=1700$ billions $€$ (i.e. $35000 €$ per adult), W = 9500 billions $€(200000 €$ per adult), $B=240$ billions $€$
$\rightarrow \mathrm{W} / \mathrm{Y}=560 \%, \mathrm{~B} / \mathrm{Y}=15 \%$
- Between 1900s and 1950s, W/Y divided by 3 , but B / Y divided by $6 \rightarrow$ the fall in W/Y explains about half of the fall in B / Y

Figure 8: The ratio between average wealth of decedents and average wealth of the living in France 1820-2008

Table 2: Raw age-wealth-at-death profiles in France, 1820-2008
$\begin{array}{lllllll}20-29 & 30-39 & 40-49 & 50-59 & 60-69 & 70-79 & 80+\end{array}$

1827	50%	63%	73%	$\mathbf{1 0 0 \%}$	113%	114%	122%
1857	57%	58%	86%	$\mathbf{1 0 0 \%}$	141%	125%	154%
1887	45%	33%	63%	100%	152%	213%	225%
1902	26%	57%	78%	$\mathbf{1 0 0 \%}$	172%	176%	233%
1912	23%	54%	74%	100%	158%	176%	237%
1931	22%	59%	77%	100%	123%	137%	143%
1947	23%	52%	77%	100%	99%	76%	62%
1960	28%	52%	74%	100%	110%	101%	87%
1984	19%	55%	83%	$\mathbf{1 0 0 \%}$	118%	113%	105%
2000	19%	46%	66%	100%	122%	121%	118%
2006	25%	42%	74%	100%	111%	106%	134%

How can we account for these facts?

- 1914-45 capital shocks played a big role, and it took a long time to recover
- Key question: why does the age-wealth profile become upward-sloping again?
\rightarrow the r>g effect
- Where does the $B / Y=20 \%-25 \%$ magic number come from? Why $\mu_{t} \uparrow$ seem to compensate exactly $\mathrm{m}_{\mathrm{t}} \downarrow$?

Theory 1: Demography

- To simplify: deterministic, stationary demographic structure: everybody becomes adult at age A , has one kid at age H, inherits at age I, and dies at age D
- 1900: $A=20, H=30, D=60 \rightarrow I=D-H=30$
- 2050: $A=20, H=30, D=80 \rightarrow I=D-H=50$
- mortality rate among adults:

$$
m_{t}=1 /(D-A)
$$

(1900: about 2.5\%; 2050: about 1.7\%)

Theory 2: Production

- $Y_{t}=F\left(K_{t}, H_{t}\right)=F\left(K_{t}, e^{g t} L_{t}\right)$
- $g=$ exogenous productivity growth rate
- E.g. Cobb-Douglas: $F(K, H)=K^{\alpha} H^{1-\alpha}$
- $Y_{t}=Y_{K t}+Y_{L t}$, with $Y_{K t}=r_{t} K_{t}=\alpha_{t} Y_{t}$
- Define $\beta_{t}=K_{t} / Y_{t}=W_{t} / Y_{t}$ (closed economy) (open economy: $\left.W_{t}=K_{t}+F W_{t}\right)\left(+D_{t}\right)$
- Then $\alpha_{t}=r_{t} \beta_{t}$, i.e. $r_{t}=\alpha_{t} / \beta_{t}$
- E.g. if $\beta_{t}=600 \%, \alpha_{t}=30 \%$, then $r_{t}=5 \%$

Theory 3: Savings

- Aggregate savings rate = stable at about 10% of Y_{t} since 1820
$\rightarrow \beta^{*}=s / g \quad\left(g=1 \% \& s=6 \% \rightarrow \beta^{*}=600 \%\right)$
- Exogenous saving: $S_{t}=s Y_{t}=s_{L} Y_{L t}+s_{K} r W_{t}$
- Is $\mathbf{S}_{K}>\mathbf{S}_{\mathrm{L}}$?
- Dynastic utility function: $s_{K}=g / r, s_{L}=0$
- Bequest in the utility function: $U(C, B)$
\rightarrow easy to generate $s_{K}>s_{L}\left(\right.$ or $\left.s_{K}<s_{L} \ldots\right)$
- Dynastic model: $U=\int e^{-\theta t} C_{t}^{1-\sigma /(1-\sigma)}$
\rightarrow Ramsey steady-state:

$$
r^{*}=\theta+\sigma g \quad(>g)
$$

- In effect: $\mathbf{s}_{\mathrm{L}}{ }^{*}=\mathbf{0} \%, \mathbf{s}_{\mathrm{K}}=\mathrm{g} / \mathrm{r}^{*} \%$
- Any wealth distribution s.t. $f^{\prime}\left(k^{*}\right)=r^{*}$ is a steady-state
- Intuition: $Y_{\text {Lt }}$ grows at rate g, workers don't need to save; but capitalists need to save a fraction g / r of their capital income $Y_{k t}=r W_{t}$, so that W_{t} grows at rate g

Steady-state age-wealth profile

- If $\mathrm{s}_{\mathrm{L}}=0 \%$, then the cross-sectional agewealth profile $W_{t}(a)$ at time t is very simple:
- If $\mathrm{A}<\mathrm{a}<$ I, then $\mathrm{W}_{\mathrm{t}}(\mathrm{a})=0$ (zero wealth until age of inheritance)
- If $\mathrm{I}<\mathrm{a}<\mathrm{D}$, then $\mathrm{W}_{\mathrm{t}}(\mathrm{a})=\mathrm{W}_{\mathrm{t}}^{\text {old }}$ (growing at rate g , but independant of age a)
Intuition: young heirs receive larger estate (growing at rate g), but older heirs have capitalized their estate at rate $\mathrm{s}_{\mathrm{K}}=\mathrm{g} / \mathrm{r}$, so that the cross-sectional profile is flat

Figure 9: Steady-state cross-sectional age-wealth profile in the dynastic model ($\mathrm{r}=\theta+\sigma \mathrm{g}, \mathrm{s}_{\mathrm{L}}=\mathbf{0}, \mathrm{s}_{\mathrm{K}}=\mathrm{g} / \mathrm{r}$)

Figure 10: Steady-state cross-sectional age-wealth profile in the dynastic model with demographic noise

Proposition 1: Steady-state of dynastic model :

$$
r=\theta+\sigma g(>g), s_{L}=0, s_{K}=g / r, \mu=(D-A) / H(>1)
$$

$\rightarrow B / Y$ is independant of life expectancy:

$$
\begin{array}{r}
\mu=(D-A) / H, m=1 /(D-A), \text { so } \\
B / Y=\mu \mathrm{m} W / Y=\beta / H
\end{array}
$$

E.g. if $\beta=600 \%, H=30$, then $B / Y=\mathbf{2 0 \%}$ 1900: $D=60, I=30, m=2.5 \%$, but $\mu=133 \%$ 2050: $D=80, I=50, m=1.6 \%$, but $\mu=200 \%$ »

Proposition 2: More generally:

$$
\mu=\left[1-e^{-\left(g-s_{k} r\right)(D-A)}\right] /\left[1-e^{-\left(g-s_{k} r\right)(D-1)}\right]
$$

$\rightarrow \mu^{\prime}\left(s_{K}\right)>0, \mu^{\prime}(r)>0, \mu^{\prime}(g)<0$
(\rightarrow for g small, μ close to (D-A)/H)

Simulations

- I start from the observed age-wealth profile $W_{t}(a)$ in 1820 or 1900
- I take s_{t} and r_{t} from national accounts
- I take observed age-labor income (+transfer income) profiles
- I apply observed mortality rates by age group, and observed age structure of heirs, donors and donees
- I try different savings behavior to replicate observed dynamics of $\mu_{t} \& B_{t} / Y_{t}$

Figure 9: Observed vs simulated inheritance flow B / Y, France 1820-2100

Simulations 1: 19th century

- France 1820-1910 = quasi-steady-state
- $\beta=W / Y=629 \%, g=1.0 \%, s=10.1 \%$, $\alpha=38 \% \rightarrow r=6.0 \% \gg \mathrm{~g}=1.0 \%$
- Key fact about 19th century growth = rate of return r much bigger than g
\rightarrow wealth holders only need to save a small fraction of their capital income to maintain a constant or rising W/Y
$\left(g_{\mathrm{w}}=\mathrm{s} / \beta=1.3 \% \rightarrow \mathrm{~W} / \mathrm{Y}\right.$ was slightly rising)
\rightarrow in order to reproduce both the 1820-1910 pattern of B / Y and the observed agewealth profile (rising at high ages), one needs to assume that most of the savings came from capital income (i.e. s_{L} close to 0 and s_{K} close to g / r)
(consistent with high wealth concentration of the time)

Figure 11: Private savings rate in France 1820-2008

Figure 13: Labor \& capital shares in (factor-price) national income, France 1820-2008

Figure 14: Rate of return vs growth rate France 1820-1913

Figure 15: Capital share vs savings rate France 1820-1913

Simulations 2: 20th \& 21st centuries

- Uniform savings $s=s_{K}=s_{L}$ can reproduce both B / Y \& observed age-wealth profiles over 1900-2008
- 2010-2050 simulations: $\mathrm{g}=1.7 \%$, $\mathrm{s}=9.4 \%$, $\alpha=26 \%$, after-tax $r=3.0 \%$
$\rightarrow B / Y$ stabilizes at 16%
- But if $g=1.0 \%$ \& after-tax $r=4.5 \%$ (rising global k share and/or k tax cuts), then B/Y converges towards $22 \%-23 \%$

Applications to distributional analysis

- 19c: top successors dominate top labor earners; top 1\% spouse > top 1\% job
- Cohorts born in 1900s-1950s: for the first time maybe in history, top labor incomes dominate top successors
- Cohorts born in 1970s-1980s \& after: closer to 19^{c} rentier society than to 20^{c} meritocratic society. E.g. with labor income alone, hard to buy an appartment in Paris..

Figure 11: The share of inheritance in lifetime ressources received by cohorts born in 1820-2020 60\% 56\% 52\% 48\% 44\% 40\% 36\% 32\% 28\% 24\% 20\% 16\%
12\% 8\%

1820184018601880190019201940196019802000202

Table 3: Intra-cohort distributions of labor income and inheritance, France, 1910 vs 2010

Figure 12: Top 50\% successors vs top 50\% labor income earners (cohorts born in 1820-2020)

1820184018601880190019201940196019802000202

Figure 13: Top 10\% successors vs top 10\% labor income earners (cohorts born in 1820-2020)

1820184018601880190019201940196019802000202

Figure 14: Top 1\% successors vs top 1\% labor income earners (cohorts born in 1820-2020)

1820184018601880190019201940196019802000202

Figure 15: Cohort fraction inheriting more than bottom 50\% lifetime labor resources (cohorts born in 1820-2020)

Application to the share of inheritance in total wealth

- Modigliani AER 1986, JEP 1988: inheritance = 20\% of total U.S. wealth
- Kotlikoff-Summers JPE 1981, JEP 1988: inheritance $=80 \%$ of total U.S. wealth
- Three problems: - Bad data
- We do not live in a stationary world: lifecycle wealth was much more important in the 1950s-1970s than it is today
- We do not live in a representative-agent world \rightarrow new definition of inheritance share

Figure 18: The share of non-capitalized inheritance in aggregate wealth accumulation, France 1850-2100

185018701890191019301950197019902010203020502070209

Figure 19: The share of capitalized inheritance in

What have we learned?

- Capital accumulation takes time; one should not look at past 10 or 20 yrs and believe this is steady-state; life cycle theorists were too much influenced by what they saw in the 1950s-1970s...
- Inheritance is likely to be a big issue in the 21st century
- Modern economic growth did not kill inheritance; the rise of human capital simply did not happen; $g>0$ but small not very different from $\mathrm{g}=0$
- A lot depends on r vs g+n:
\rightarrow China/India: inheritance doesn't matter
\rightarrow US: inheritance smaller than in Europe
\rightarrow Italy, Spain, Germany ($\mathrm{n}<0$): U-shaped pattern probably even bigger than France
\rightarrow world, very long run: $\mathrm{g}+\mathrm{n}=0 \%$: inheritance and past wealth will play a dominant role; back to 19th century intuitions
- But no normative model... difficult conceptual issues before we have good optimal k tax theory (endogenous r)
\rightarrow see Piketty-Saez, in progress...

Table 1: Accumulation of private wealth in France, 1820-2009

	Real growth rate of national income g	Real growth rate of private wealth g_{w}	Savings- induced wealth growth rate $\mathrm{g}_{\mathrm{ws}}=\mathrm{s} / \beta$	Capital-gains- induced wealth growth rate	Memo: Consumer price inflation
$1820-2009$	1.8%	1.8%	2.1%	-0.3%	p
$1820-1913$	1.0%	1.3%	1.4%	-0.1%	0.4%
$1913-2009$	2.6%	2.4%	2.9%	-0.4%	8.3%
$1913-1949$	1.3%	-1.7%	0.9%	-2.6%	13.9%
$1949-1979$	5.2%	6.2%	5.4%	0.8%	6.4%
$1979-2009$	1.7%	3.8%	2.8%	1.0%	3.6%

Table 2: Rates of return vs growth rates in France, 1820-2009

	Growth rate of national income	Rate of return on private wealth $r=\alpha / \beta$	Capital tax rate T_{K}	After-tax rate of return $\begin{gathered} r_{d}= \\ \left(1-T_{K}\right) \alpha / \beta \end{gathered}$	Real rate of capital gains q	Rate of capital destruct (wars) d	After-tax real rate of return (incl. k gains \& losses) $\begin{gathered} r_{d}= \\ \left(1-T_{K}\right) \alpha / \beta+ \\ q+d \end{gathered}$
1820-2009	1.8\%	6.8\%	19\%	5.4\%	-0.1\%	-0.3\%	5.0\%
1820-1913	1.0\%	5.9\%	8\%	5.4\%	-0.1\%	0.0\%	5.3\%
1913-2009	2.6\%	7.8\%	31\%	5.4\%	-0.1\%	-0.7\%	4.6\%
1913-1949	1.3\%	7.9\%	21\%	6.4\%	-2.6\%	-2.0\%	1.8\%
1949-1979	5.2\%	9.0\%	34\%	6.0\%	0.8\%	0.0\%	6.8\%
1979-2009	1.7\%	6.9\%	39\%	4.3\%	1.0\%	0.0\%	5.3\%

Figure 5:Wealth/disposable income ratio France 18202008

Figure 6: Mortality rate in France, 1820-2100

182018401860188019001920194019601980200020202040206020802100

Figure 7: Age of decedents \& heirs in France, 1820-2100

182018401860188019001920194019601980200020202040206020802100

Figure A1: Annual inheritance flow as a fraction of national income, France 1900-2008 (annual series)

Figure A2: Wealth-income ratio in France 1896-2009 (annual series)

Figure A3: Wealth-disposable income ratio in France 1896. 2009 (annual series)

[^0]: Sources: France: Piketty 2011; UK: Atkinson 2012, Giffen 1878, Goldsmith 1985; Sweden: Roine et al 2012

