Discussion on inheritance: France vs UK vs Sweden 1820-2010

Thomas Piketty Paris School of Economics March 2012

Computing inheritance flow

$B_t/Y_t = \mu_t^* m_t W_t/Y_t$

- W_t/Y_t = aggregate wealth/income ratio
- m_t = aggregate mortality rate
- µ_t = ratio between average wealth of decedents and average wealth of the living (= age-wealth profile)
- $\mu_t^* = (1 + v_t)\mu_t$, with v_t)=gifts-bequest ratio

Main Point

- Before computing B_t/Y_t, we need to compute W_t/Y_t
- $\beta_t = W_t/Y_t = aggregate wealth/income ratio$
- In steady-state, Harrod-Domar-Solow formula: β* = s/g
- (s = saving rate, g= growth rate)
- (i.e. s=10%, g=2% implies $\beta^*=500\%$)

Wealth-income ratio in France 1820-2010

Wealth-income ratio: France vs UK 1820-2010

Sources: France: Piketty 2011; UK: Atkinson 2012, Giffen 1878, Goldsmith 1985

Wealth-income ratio: France vs UK vs Sweden 1820-2010

Sources: France: Piketty 2011; UK: Atkinson 2012, Giffen 1878, Goldsmith 1985; Sweden: Roine et al 2012

Figure 1: Annual inheritance flow as a fraction of national income, France 1820-2008

- There are two ways to become rich: either through one's own work, or through inheritance
- In the 19th century and early 20th, it was obvious to everybody that the 2nd channel was important: inheritance and successors are everywhere in the literature; huge inheritance flow in tax data

- Q: Does this belong to the past? Did modern growth kill the inheritance channel? E.g. rise of human capital and meritocracy?
- This paper answers « NO » to this question and attempts to explains why, taking France 1820-2050 as an illustration

Figure 1: Annual inheritance flow as a fraction of national income, France 1820-2008

Figure 2: Annual inheritance flow as a fraction of disposable income, France 1820-2008

What this paper does

- Documents & explains this fact; draws lessons for other countries
- Main lesson: with r>g (say, r=4%-5% vs g=1%-2%), then wealth coming from the past is being capitalized faster than growth, & inherited wealth dominates self-made wealth
- Dynastic model: heirs save a fraction g/r of the return to inherited wealth, so that wealth-income ratio β =W/Y is stationary. Then steady-state bequest flow b_y=B/Y= β /H, with H= generation length. If β =600%,H=30 \rightarrow b_y=20%
- This can be generalized to more general saving models: if g small & r>g, then b_v close to β/H

Application to the structure of lifetime inequality

- Top incomes literature: Atkinson-Piketty OUP 2007 & 2010 → 23 countries.. but pb with capital side: we were not able to decompose labor-based vs inheritance-based inequality, i.e. meritocratic vs rentier societies
- → This paper = positive aggregate analysis; but building block for future work with heterogenity, inequality & optimal taxation

Data sources

- Estate tax data: aggregate data 1826-1964; tabulations by estate & age brackets 1902-1964; national micro-files 1977-1984-1987-1994-2000-2006; Paris microfiles 1807-1932
- National wealth and income accounts: Insee official series 1949-2009; linked up with various series 1820-1949

- French estate tax data is exceptionally good: universal, fully integrated bequest and gift tax since 1791
- Key feature: everybody has to fill a return, even with very low estates
- 350,000 estate tax returns/year in 1900s and 2000s, i.e. 65% of the 500,000 decedents (US: < 2%)

(memo: bottom 50% wealth share < 10%)

Computing inheritance flow

$B_t/Y_t = \mu_t m_t W_t/Y_t$

- W_t/Y_t = aggregate wealth/income ratio
- m_t = aggregate mortality rate
- µ_t = ratio between average wealth of decedents and average wealth of the living (= age-wealth profile)
- → The U-shaped pattern of inheritance is the product of three U-shaped effects

Figure 1: Annual inheritance flow as a fraction of national income, France 1820-2008

Figure 4: Wealth/income ratio in France 1820-

 1900s: Y = 35 billions francs or, W = 250 billions, B = 8.5 billions

 \rightarrow W/Y = 700%, B/Y = 25%

2008: Y = 1 700 billions € (i.e. 35 000€ per adult), W = 9 500 billions € (200 000€ per adult), B = 240 billions €

 Between 1900s and 1950s, W/Y divided by 3, but B/Y divided by 6 → the fall in W/Y explains about half of the fall in B/Y

Figure 8: The ratio between average wealth of decedents and average wealth of the living in France 1820-2008

Table 2: Raw age-wealth-at-death profiles in France, 1820-2008

	20-29	30-39	40-49	50-59	60-69	70-79	80+
1827	50%	63%	73%	100%	113%	114%	122%
1857	57%	58%	86%	100%	141%	125%	154%
1887	45%	33%	63%	100%	152%	213%	225%
1902	26%	57%	78%	100%	172%	176%	233%
1912	23%	54%	74%	100%	158%	176%	237%
1931	22%	59%	77%	100%	123%	137%	143%
1947	23%	52%	77%	100%	99%	76%	62%
1960	28%	52%	74%	100%	110%	101%	87%
1984	19%	55%	83%	100%	118%	113%	105%
2000	19%	46%	66%	100%	122%	121%	118%
2006	25%	42%	74%	100%	111%	106%	134%

How can we account for these facts?

- 1914-45 capital shocks played a big role, and it took a long time to recover
- Key question: why does the age-wealth profile become upward-sloping again?
- \rightarrow the r>g effect
- Where does the B/Y=20%-25% magic number come from? Why $\mu_t\uparrow$ seem to compensate exactly $m_t\downarrow$?

Theory 1: Demography

- To simplify: deterministic, stationary demographic structure: everybody becomes adult at age A, has one kid at age H, inherits at age I, and dies at age D
- 1900: A=20, H=30, D=60 \rightarrow I=D-H=30
- 2050: A=20, H=30, D=80 \rightarrow I=D-H=50
- mortality rate among adults:

 $m_t = 1/(D-A)$

(1900: about 2.5%; 2050: about 1.7%)

Theory 2: Production

•
$$Y_t = F(K_t, H_t) = F(K_t, e^{gt} L_t)$$

- g = exogenous productivity growth rate
- E.g. Cobb-Douglas: $F(K,H) = K^{\alpha} H^{1-\alpha}$
- $Y_t = Y_{Kt} + Y_{Lt}$, with $Y_{Kt} = r_t K_t = \alpha_t Y_t$
- Define $\beta_t = K_t/Y_t = W_t/Y_t$ (closed economy) (open economy: $W_t = K_t + FW_t$) (+ D_t)
- Then $\alpha_t = r_t \beta_t$, i.e. $r_t = \alpha_t / \beta_t$
- E.g. if β_t = 600%, α_t =30%, then r_t = 5%

Theory 3: Savings

 Aggregate savings rate = stable at about 10% of Y_t since 1820

 $\rightarrow \beta^{*} = s/g \quad (g=1\% \ \& \ s=6\% \rightarrow \beta^{*} = 600\%)$

- Exogenous saving: $S_t = sY_t = s_LY_{Lt} + s_KrW_t$
- Is s_K>s_L?
- Dynastic utility function: $s_{\kappa}=g/r$, $s_{L}=0$
- Bequest in the utility function: U(C,B)

 \rightarrow easy to generate $s_{K} > s_{L}$ (or $s_{K} < s_{L}$...)

- **Dynastic model**: $U = \int e^{-\theta t} C_t^{1-\sigma}/(1-\sigma)$
- \rightarrow Ramsey steady-state:

$$r^* = \theta + \sigma g \ (> g)$$

- In effect: s_L*=0%, s_K=g/r*%
- Any wealth distribution s.t. f'(k*)=r* is a steady-state
- Intuition: Y_{Lt} grows at rate g, workers don't need to save; but capitalists need to save a fraction g/r of their capital income Y_{Kt} = r W_t , so that W_t grows at rate g

Steady-state age-wealth profile

- If s_L=0%, then the cross-sectional agewealth profile W_t(a) at time t is very simple:
- If A<a<I, then W_t(a) = 0 (zero wealth until age of inheritance)
- If I<a<D, then W_t(a) = W_t^{old} (growing at rate g, but independent of age a)

Intuition: young heirs receive larger estate (growing at rate g), but older heirs have capitalized their estate at rate $s_{K}=g/r$, so that the cross-sectional profile is flat

Figure 10: Steady-state cross-sectional age-wealth profile in the dynastic model with demographic noise

Proposition 1: Steady-state of dynastic model : $r=\theta+\sigma g$ (>g), $s_1=0$, $s_{\kappa}=g/r$, $\mu=(D-A)/H$ (>1) \rightarrow B/Y is independent of life expectancy: $\mu = (D-A)/H, m=1/(D-A), so$ $B/Y = \mu m W/Y = \beta/H$ E.g. if β=600%, H=30, then **B/Y=20%** 1900: D=60, I=30, m=2.5%, but µ=133% 2050: D=80, I=50, m=1.6%, but µ=200%»

Proposition 2: More generally: $\mu = [1 - e^{-(g - s_{k}r)(D - A)}]/[1 - e^{-(g - s_{k}r)(D - I)}]$ $\rightarrow \mu'(s_{k}) > 0, \mu'(r) > 0, \mu'(g) < 0$ (\rightarrow for g small, μ close to (D-A)/H)

Simulations

- I start from the observed age-wealth profile $W_t(a)$ in 1820 or 1900
- I take s_t and r_t from national accounts
- I take observed age-labor income (+transfer income) profiles
- I apply observed mortality rates by age group, and observed age structure of heirs, donors and donees
- I try different savings behavior to replicate observed dynamics of µ_t & B_t/Y_t

Figure 9: Observed vs simulated inheritance flow B/Y, France 1820-2100

Simulations 1: 19th century

- France 1820-1910 = quasi-steady-state
- $\beta = W/Y = 629\%$, g=1.0%, s=10.1%, $\alpha = 38\% \rightarrow r = 6.0\% >> g=1.0\%$
- Key fact about 19th century growth = rate of return r much bigger than g

→ wealth holders only need to save a small fraction of their capital income to maintain a constant or rising W/Y

($g_w = s/\beta = 1.3\% \rightarrow W/Y$ was slightly rising)

- → in order to reproduce both the 1820-1910 pattern of B/Y **and** the observed agewealth profile (rising at high ages), one needs to assume that most of the savings came from capital income (i.e. s_L close to 0 and s_K close to g/r)
- (consistent with high wealth concentration of the time)

Figure 11: Private savings rate in France 1820-2008

Figure 13: Labor & capital shares in (factor-price) national income, France 1820-2008

Figure 14: Rate of return vs growth rate France 1820-1913 9%

Simulations 2: 20th & 21st centuries

- Uniform savings s=s_K=s_L can reproduce both B/Y & observed age-wealth profiles over 1900-2008
- 2010-2050 simulations: g=1.7%, s=9.4%, α=26%, after-tax r=3.0%
- \rightarrow B/Y stabilizes at 16%
- But if g=1.0% & after-tax r=4.5% (rising global k share and/or k tax cuts), then B/Y converges towards 22%-23%

Applications to distributional analysis

- 19^c: top successors dominate top labor earners; top 1% spouse > top 1% job
- Cohorts born in 1900s-1950s: for the first time maybe in history, top labor incomes dominate top successors
- Cohorts born in 1970s-1980s & after: closer to 19^c rentier society than to 20^c meritocratic society. E.g. with labor income alone, hard to buy an appartment in Paris..

Figure 11: The share of inheritance in lifetime ressources received by cohorts born in 1820-2020

Table 3: Intra-cohort distributions of labor income andinheritance, France, 1910 vs 2010

Figure 14: Top 1% successors vs top 1% labor income earners (cohorts born in 1820-2020)

Application to the share of inheritance in total wealth

- Modigliani AER 1986, JEP 1988: inheritance = 20% of total U.S. wealth
- Kotlikoff-Summers JPE 1981, JEP 1988: inheritance = 80% of total U.S. wealth
- Three problems: Bad data
- We do not live in a stationary world: lifecycle wealth was much more important in the 1950s-1970s than it is today
- We do not live in a representative-agent world \rightarrow new definition of inheritance share

1850 1870 1890 1910 1930 1950 1970 1990 2010 2030 2050 2070 2090

What have we learned?

- Capital accumulation takes time; one should not look at past 10 or 20 yrs and believe this is steady-state; life cycle theorists were too much influenced by what they saw in the 1950s-1970s...
- Inheritance is likely to be a big issue in the 21st century
- Modern economic growth did not kill inheritance; the rise of human capital simply did not happen; g>0 but small not very different from g=0

- A lot depends on r vs g+n:
- → China/India: inheritance doesn't matter
- \rightarrow US: inheritance smaller than in Europe
- → Italy, Spain, Germany (n<0): U-shaped pattern probably even bigger than France
- → world, very long run: g+n=0%: inheritance and past wealth will play a dominant role; back to 19th century intuitions
- But no normative model... difficult conceptual issues before we have good optimal k tax theory (endogenous r)
- \rightarrow see Piketty-Saez, in progress...

Table 1: Accumulation of private wealth in France, 1820-2009							
	Real growth rate of national income	Real growth rate of private wealth	Savings- induced wealth growth rate	Capital-gains- induced wealth growth rate	<i>Memo: Consumer price inflation</i>		
	g	g _w	g _{ws} = s/β	q	р		
1820-2009	1.8%	1.8%	2.1%	-0.3%	4.4%		
1820-1913	1.0%	1.3%	1.4%	-0.1%	0.5%		
1913-2009	2.6%	2.4%	2.9%	-0.4%	8.3%		
1913-1949	1.3%	-1.7%	0.9%	-2.6%	13.9%		
1949-1979	5.2%	6.2%	5.4%	0.8%	6.4%		
1979-2009	1.7%	3.8%	2.8%	1.0%	3.6%		

Table 2: Rates of return vs growth rates in France, 1820-2009							
	Growth rate of national income	Rate of return on private wealth	Capital tax rate	After-tax rate of return	Real rate of capital gains	Rate of capital destruct. (wars)	After-tax real rate or return (incl. k gains & losses)
	g	r = α/β	т _К	r _d = (1-τ _K)α/β	q	d	r _d = (1-τ _K)α/β + q + d
1820-2009	1.8%	6.8%	19%	5.4%	-0.1%	-0.3%	5.0%
1820-1913	1.0%	5.9%	8%	5.4%	-0.1%	0.0%	5.3%
1913-2009	2.6%	7.8%	31%	5.4%	-0.1%	-0.7%	4.6%
1913-1949	1.3%	7.9%	21%	6.4%	-2.6%	-2.0%	1.8%
1949-1979	5.2%	9.0%	34%	6.0%	0.8%	0.0%	6.8%
1979-2009	1.7%	6.9%	39%	4.3%	1.0%	0.0%	5.3%

Figure 5:Wealth/disposable income ratio France 1820-2008

Figure 6: Mortality rate in France, 1820-2100

Figure 7: Age of decedents & heirs in France, 1820-2100

1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

Figure A1: Annual inheritance flow as a fraction of national income, France 1900-2008 (annual series) 32% - Economic flow (computed from national 28% wealth estimates, mortality tables and observed age-wealth profiles) 24% ---- Fiscal flow (computed from observed bequest and gift tax data, inc. tax exempt 20% assets) 16% 12% 8% 4% 0%

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Figure A3: Wealth-disposable income ratio in France 1896-2009 (annual series)

