Public Economics: Tax \& Transfer Policies

(Master PPD \& APE, Paris School of Economics)
Thomas Piketty
Academic year 2015-2016
Lecture 4: Optimal Taxation of Labor Income (check on line for updated versions)

Roadmap of lecture 4

- Main theoretical results
- The optimal labor income tax problem
- Derivation of linear optimal tax formulas
- Derivation of non-linear optimal tax formulas
- Derivation of symptotic optimal marginal rates
- Evidence on U-shaped pattern of marginal rates
- Evidence \& theory on top marginal rates

Main theoretical results about optimal taxation of labor income

- (1) the social optimum usually involves a U-shaped pattern of marginal tax rates = in order to have high minimum income, one needs to withdraw it relatively fast (but not too fast) = relatively consistent with observed patterns (if we take into account transfers)
- (2) optimal top rates depends positively on income concentration (top income shares) and negatively on labor supply elasticities
(and positively on bargaining power at the top: very important if we want to understand Roosevelt-type confiscatory tax rates)
(for taxation of capital \& capital income,see lectures 5-6)
- Here I will only present the main results and intuitions. For complete technical details and proofs, see the following papers:
- Mirrlees, J., "An exploration in the theory of optimum income taxation", RES 1971
- Diamond, P., "Optimal Income Taxation: An Example with a U-Shaped Pattern of Optimal Marginal Rates", AER 1998 [article in pdf format]
- Saez, "Using Elasticities to Derive Optimal Income Tax Rates", RES 2001 [article in pdf format]
- Piketty-Saez, "Optimal Labor Income Taxation", 2013, Handbook of Public Economics, vol. 5
- Piketty-Saez-Stantcheva, "Optimal Taxation of Top Labor Incomes: A Tale of Three Elasticities", AEJ 2014 (see also Slides)

The optimal labor income tax problem

- Mirrlees (1971) : basic labor supply model used to analyze optimal labor income taxes
- Each agent i is characterized by an exogeneous wage rate w_{i} (=productivity)
- Labor supply I_{i}
- Pre-tax labor income $y_{i}=w_{i} l_{i}$
- Income tax $t=t\left(y_{i}\right)$
- $t\left(y_{i}\right)$ can be >0 or <0 : if <0, then this is an income transfer, or negative income tax
- After-tax labor income $z_{i}=y_{i}-t\left(y_{i}\right)$
- Agents choose labor supply I_{i} by maximizing $U\left(z_{i}, \mathrm{l}_{\mathrm{i}}\right)$
- Social welfare function $W=\int W\left(U\left(z_{i}, l_{i}\right)\right) f\left(y_{i}\right) d y_{i}$ subject to budgetary constraint: $\int \mathrm{t}\left(\mathrm{y}_{\mathrm{i}}\right) \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right) \mathrm{d} \mathrm{y}_{\mathrm{i}}=0$ (or $=\mathrm{G}$, with $\mathrm{G}=$ exogenous public spendings)
($f\left(y_{i}\right)$) density function for $y_{i}=$ partly endogenous, given exogenous distribution of productivities w_{i} and endogenous labor supply I_{i})
- If individual productivities w_{i} were fully observable, then the first-best efficient tax system would be $t=t\left(w_{i}\right)$, i.e. would not depend at all on labor supply behaviour, so that there would be no distorsion = lump-sum transfers, fully efficient redistribution
- However if the tax system can only depend on income, i.e. $t=t\left(y_{i}\right)$, e.g. because of unobservable productivites w_{i} (adverse selection), then we have an equity/efficiency trade-off
- >>> Mirrlees 1971 provides analytical solutions for the second-best efficient tax system in presence of such an adverse selection pb
- But problems with the Mirrlees 1971 formula:
- (i) very complicated and unintuitive formulas, hard to apply empirically
- (ii) only robust conclusion: with finite number of productivity types $\mathrm{w}_{\mathrm{i}}, \ldots, \mathrm{w}_{\mathrm{n}}$, then zero marginal rate on the top group = completely off-the-mark
- >>> Diamond (1998), Saez (2001): continuous distribution of types (no upper bound, so that the artificial zero-top-rate result disappears), firstorder derivation of the optimal tax formulas, very intuitive and easy-to-calibrate formulas
- Other limitation of Mirrlees model: pure adverse selection pb , i.e. $\mathrm{y}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}} \mathrm{l}_{\mathrm{i}}$ with private information on individual productivities/wage rates w_{i} and labor supply I_{i}
- In practice, the income generating process also involves effort and luck: income y_{i} is a stochastic fonction of w_{i}, I_{i} and effort e_{i} (work intensity, job search intensity, promotion effort). I.e. moral hazard and not only adverse selection.
- See e.g. model studied in lecture 2:
$\mathrm{y}_{0}=$ low-paid job; $\mathrm{y}_{1}=$ high-paid job ;
Probability $\left(y_{i}=y_{1}\right)=\pi_{0}+\theta e_{i}$ if parental income $=y_{0}$ Probability $\left(y_{i}=y_{1}\right)=\pi_{1}+\theta e_{i}$ if parental income $=y_{1}$
- The optimal tax formulas that I will present today work for all cases, i.e. any combination of adverse selection and moral hazard: all what matters is the elasticity of income y_{i} with respect to changes in the tax rate, independantly of whether this elasticity comes from l_{i}, e_{i}, etc.
= "sufficient statistics" approach

First-order derivation of linear optimal labor income tax formulas

- Linear tax schemes: $\mathrm{t}(\mathrm{y})=\mathrm{ty}-\mathrm{t}_{0}$
- I.e. $t=$ constant marginal tax rate
- $\mathrm{t}_{0}>0=$ transfer to individuals with zero labor income ($\mathrm{RMI} / R S A$ in France)
- Define e = labor supply elasticity
- Definition: if the net-of-tax wage rate (1-t) w_{i} increases by 1%, labor supply I_{i} (and therefore labor income $y_{i}=w_{i} l_{i}$, for given w_{i}) increases by e\%
- E.g. if $U\left(z_{i}, l_{\mathrm{i}}\right)=\mathrm{z}_{\mathrm{i}}-\mathrm{V}\left(\mathrm{l}_{\mathrm{i}}\right)$ (separable utility, no income effect), with $V(I)=I^{1+\mu} /(1+\mu)$, then $e=1 / \mu$ FO condition: Max $w_{i} l_{i}-V\left(I_{i}\right) \rightarrow I_{i}=w_{i}^{1 / \mu}$ $\rightarrow \mathrm{dl}_{\mathrm{i}} / I_{\mathrm{i}}=\mathrm{edw} / \mathrm{w}_{\mathrm{i}} \quad$ with $\mathrm{e}=1 / \mu$
- More generally, whatever the labor income generating process $y_{i}=y$ (wage rate w_{i}, labor hours I_{i}, effort e_{i}, luck u_{i}), one can always define $\mathbf{e}=$ generalized labor supply elasticity = elasticity of labor income with respect to the net-of-tax rate: if the net-of-tax rate (1-t) increases by 1\%, observed labor income y increases by e\%
- I.e. if $t \rightarrow t+d t$, then 1- $t \rightarrow 1-t-d t$, so that 1-t declines by $\mathrm{dt} /(1-\mathrm{t}) \%$; therefore we have: $\mathrm{dy} / \mathrm{y}=-\mathrm{edt} /(1-\mathrm{t})$
- The generalized elasticity reflects changes in labor hours but also endogenous changes in wage rates: with higher taxes, maybe one will put less effort in education investment, or less effort in trying to get a promotion, etc.
- Assume that we're looking for the tax rate t* maximizing tax revenues $R=$ ty
- Revenue-maximizing tax rate $t^{*}=$ top of the Laffer curve
- Revenue-maximizing tax rate $t^{*}=$ social optimum if social welfare function $\mathrm{W}=$ Rawlsian (infinitely concave), i.e. in the limit case where the marginal social welfare $W^{\prime}=0$ for all $U>U_{\text {min, }}$ i.e. social objective $=$ maximizing minimum utility (maxmin) $=$ maximizing transfer t_{0}
- = useful reference point: by definition, socially optimal tax rates for non-Rawlsian social welfare functions W will be below revenue-maximizing tax levels
- First-order condition: if the tax rate goes from t to $t+d t$, then tax revenues go from R to $R+d R$, with:

$$
d R=y d t+t d y
$$

with $d y / y=-e d t /(1-t)$

- l.e. $d R=y d t-t$ ey $d t /(1-t)$
- $d R=0$ if and only if $t /(1-t)=1 / e$
- l.e. $\mathrm{t}^{*}=1 /(1+e)$
- I.e. pure elasticity effect : if the elasticity e is higher, then the optimal tax t^{*} is lower
- I.e. if $e=1$ then $t^{*}=50 \%$, if $e=0,1$ then $t^{*}=91 \%$, etc.
- = the basic principle of optimal taxation theory: other things equal, don't tax what's elastic
- Other example: Ramsey formulas on optimal indirect taxation: tax more the commodities with a less elastic demand, and conversely

First-order derivation of non-linear optimal labor income tax formulas

- General non-linear tax schedule $t(y)$
- I.e. marginal tax rates $t^{\prime}(y)$ can vary with y
- Note $f(y)$ the density function for labor income, and $F(y)=\int_{z<y} f(z) d z=$ distribution function ($=$ fraction of pop with income < y)
- Assume one wants to increase the marginal tax rate from t^{\prime} to $t^{\prime}+d t^{\prime}$ over some income bracket [$\left.y ; y+d y\right]$. Then tax revenues go from R to $R+d R$, with:
- $d R=(1-F(y)) d t^{\prime} d y-f(y) d y t^{\prime}$ ey $d t^{\prime} /\left(1-t^{\prime}\right)$
- $d R=0$ if and only if $t^{\prime *} /\left(1-t^{* *}\right)=(1-F(y)) / y f(y) 1 / e$
- Key formula: $t^{\prime *} /\left(1-t^{\prime *}\right)=(1-F(y)) / y f(y) 1 / e$
- l.e. two effects:
- Elasticity effect: higher elasticities e imply lower marginal tax rates $\mathrm{t}^{\prime *}$
- Distribution effect: higher (1-F)/yf ratios imply higher marginal rates t^{*} *
- Intuition : (1-F)/yf = ratio between the mass of people above y (=mass of people paying more tax) and the mass of people right at y (=mass of people hit by adverse incentives effects)
- For low y , the ratio (1-F)/yf is necessarily declining: other things equal, marginal rates should fall
- But for high y, the ratio (1-F)/yf is usually increasing: other things equal, marginal rates should rise
>>> for constant elasticity profiles, U-shaped pattern of marginal tax rates

Asymptotic optimal marginal rates for top incomes

- With a Pareto distribution $1-\mathrm{F}(\mathrm{y})=(\mathrm{k} / \mathrm{y})^{\mathrm{a}}$ and $f(y)=a k^{\mathrm{a}} / \mathrm{y}^{(1+a)}$, then (1-F)/yf converges towards $1 / a$, i.e. $\mathrm{t}^{\prime *}$ converges towards:
- t^{*} = $\mathbf{1 / (1 + a e) ~}$
- with e= elasticity, $\mathrm{a}=$ Pareto coefficient
- Intuition: higher a (i.e. lower coefficient $b=a /(a-1)$, i.e. less fat upper tail = less income concentration) imply lower tax rates, and conversely
- Exemple: if $\mathrm{e}=0,5$ and $\mathrm{a}=2, \mathrm{t}^{* *}=50 \%$ But if $e=0,1$ and $a=2, t^{* *}=83 \%$
- Reminder on key property of Pareto distributions: ratio average/threshold = constant
- Note $y^{*}(y)$ the average income of the population above threshold y . Then $\mathrm{y}^{*}(\mathrm{y})$ can be expressed as follows :
- $y^{*}(y)=\left[\int_{z>y} z f(z) d z\right] /\left[\int_{z>y} f(z) d z\right]$

$$
=\left[\int_{z>y} \mathrm{dz} / \mathrm{z}^{\mathrm{a}}\right] /\left[\int_{z>y} \mathrm{dz} / \mathrm{z}^{(1+\mathrm{a})}\right]=a y /(\mathrm{a}-1)
$$

- l.e. $y^{*}(y) / y=b=a /(a-1)(a n d a=b /(b-1))$
- In practice : b is usually around 2 , but can vary quite a lot For top incomes
- France 2010s, US 1970s: b=1.7-1.8 (a=2.2-2.3)
- France or US 1910s, US 2010s: $b=2.2-2.5$ ($a=1.7-1.8$) For top wealth:
- France today: b=2.3-2.5; France 1910s: b=3-3.5
- Higher b coefficients $=$ fatter upper-tail of the distribution = higher concentration of income (or wealth)

Evidence on U-shaped pattern of marginal rates

$$
\mathbf{t}^{\prime} * /\left(1-\mathbf{t}^{\prime *}\right)=(1-F(y)) / y f(y) 1 / e
$$

- The distribution effect $(1-F(y)) / y f(y)$ is typically $U-$ shaped; so if elasticity effect $e=e(y) \approx s t a b l e ~ o v e r ~ y, ~$ then the social optimum involves a U-shaped pattern of marginal tax rates
- Same conclusion with general SWF as long as marginal social welfare weights not too far from Rawlsian social welfare function
- Basic intuition = in order to have high minimum income, one needs to withdraw it relatively fast (but not too fast) = relatively consistent with observed patterns (if we take into account transfers)
- The increasing part of the U-shaped pattern (for upper half incomes) is due to income tax progressivity \rightarrow rising marginal rates at the top
- The decreasing part (for bottom half incomes) is due to the withdrawal of income transfers, which also creates high marginal rates
\rightarrow Observed pattern of marginal rates in France: U-shaped curve (see RFE 97 graphs, paper)

Figure 1
Taux moyens et taux marginaux (personnes seules)

Figure 2
Taux moyens et taux marginaux (personnes seules) hors coti sations retraites

- Simplified example for France 2013 (see here for detailed simulations and computer codes for French transfers \& taxes)
- If labor income $\mathrm{y}=0$, then $\mathrm{t}(\mathrm{y})=-\mathrm{t}_{0}: \mathrm{t}_{0}=$ transfer to individuals with zero labor income $\approx 500 € /$ month for RMI/RSA in France
- If labor income $y=y_{\text {min }}=$ full-time minimum wage, you receive no transfer any more (unless you have children); net minimum wage $\approx 1100 € / \mathrm{m}$, gross min. wage $\approx 1400 € / \mathrm{m}$, total labor cost $\approx 1700 € / \mathrm{m}$
(CSG+employee payroll tax $\approx 20 \%$; employer payroll tax $\approx 20 \%$)
- Note: total labor cost would be $\approx 2000 € / \mathrm{m}$ at the level of the minimum wage in the absence of low-wage payroll tax cut: employer payroll tax $\approx 20 \%$ at $y_{\text {min }} \rightarrow$ back to $\approx 40 \%$ at $1,6 \times y_{\text {min }}$
- As pre-tax income y goes from $\mathrm{y}=0$ to $\mathrm{y}=1700 €$, after-tax income y-t(y) goes from 500 to $1100 €$, and $t(y)$ goes from -500 to $+600 €$, i.e. rises by $1100 €$
\rightarrow marginal tax rate associated to the transition between pretax incomes 0 and $y_{\text {min }}=\Delta t / \Delta y=1100 / 1700=65 \%$
(if we include VAT \& other indirect taxes, the marginal tax rate on minimum wage workers would be closer to $75-80 \%$)
- The pb is that if one wants to reduce this marginal rate (say, by further cuts in low-wage payroll tax), then one has to raise the marginal rate higher up in the distribution (say, btw $\mathrm{y}_{\text {min }}$ and $1,6 \times y_{\text {min }}$)
\rightarrow complex trade-off, current U-shaped pattern might be not too far from optimal
- Note: the simplified computations above only apply to labor incomes: rising effective tax rates (=progressivity) and U-shaped marginal tax rates
- If one introduces specific tax regimes and tax exemptions for capital incomes (with preferential tax treatment for capital gains, exemptions from many social contributions, etc.), then one gets a different picture: effective tax rates decline at the very top, i.e. inverted-U-shaped pattern of effective tax rates
- See Landais-Piketty-Saez 2011 for detailed computer codes and micro files on French tax systems; see IPP reports for updates; see following graph for a summary

Un système faiblement progressif: décomposition par impôts

Evidence on top marginal rates

- Observed top marginal rates go from $20-30 \%$ to $80-90 \%$
- One possible interpretation = different beliefs about elasticities of labor supply (see this paper for a learning model: it is difficult to estimate e with certainty)
- $\mathbf{t}^{\prime *}=\mathbf{1 / (1 + a e)}$ (with e= elasticity, a = Pareto coefficient)
- If $\mathrm{e}=1$ and $\mathrm{a}=2, \mathrm{t}^{\prime *}=33 \%$
- If $\mathrm{e}=0,5$ and $\mathrm{a}=2, \mathrm{t}^{*} *=50 \%$
- If $\mathrm{e}=0,1$ and $\mathrm{a}=2, \mathrm{t}^{*}$ * $=83 \%$

Figure 14.1. Top income tax rates, 1900-2013

The top marginal tax rate of the income tax (applying to the highest incomes) in the U.S. dropped from 70% in 1980
to 28% in 1988. Sources and series: see piketty.pse.ens.ficcaptal21c.

- Empirical evidence: real labor supply elasticities $\approx 0,2-0,3$ at most (higher elasticities usually come from pure income shifting, i.e. if one can transfer income to a less taxed tax base: in principle, this can be solved by a broader tax base) $\rightarrow \mathrm{t}^{*} \approx 60-70 \%$?
- See P. Diamond \& E. Saez, "The Case for a Progressive Tax: From Basic Research to Policy Recommendations", JEP 2011
- For a survey on empirical estimates of labor supply elasticities, see E. Saez, J. Slemrod and S. Gierz, "The Elasticity of Taxable Income with Respect to Marginal Tax Rates: A Critical Review", JEL 2010 [article in pdf format]
- However the perfect-competition model (labor income = marginal product) may not be sufficient to analyze Roosevelt-type tax rates \& the recent surge in US top incomes
- A model with imperfect competition and CEO bargaining power (CEOs can sometime extract some than their marginal product) is more promising
- See Piketty-Saez-Stantcheva, "Optimal Taxation of Top Labor Incomes: A Tale of Three Elasticities", AEJ 2014 (see also Slides)
- With imperfect competition and bargaining power, the optimal tax formula becomes more complicated and can justify confiscatory tax rates
- Augmented formula: $\tau=\left(1+\right.$ tae $\left._{2}+\mathrm{ae}_{3}\right) /(1+a e)$
- With $e=e_{1}+e_{2}+e_{3}$
$=$ labor supply elasticity $\mathrm{e}_{1}+$ income shifting elasticity e_{2} + bargaining elasticity e_{3} (= more intensive bargaining with lower tax rate)
- Key point: $\tau \uparrow$ as elasticity $\mathrm{e}_{3} \uparrow$
\rightarrow for a given total elasticity e , the decomposition between the three elasticities $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}$ is critical

Table 5: Synthesis of Various Scenarios

$$
\text { Total elasticity } \mathrm{e}=\mathrm{e}_{1}+e_{2}+e_{3}=\quad 0.5
$$

Scenario 1: Standard supply side tax effects		Scenario 2: Tax avoidance effects		Scenario 3: Compensation bargaining effects	
		(a) current narrow tax base	(b) after base broadening		
$\mathrm{e}_{1}=$	0.5	$\mathrm{e}_{1}=0.2$	$e_{1}=0.2$	$\mathrm{e}_{1}=$	0.2
$\mathrm{e}_{2}=$	0.0	$\mathrm{e}_{2}=0.3$	$\mathrm{e}_{2}=0.1$	$\mathrm{e}_{2}=$	0.0
$\mathrm{e}_{3}=$	0.0	$\mathrm{e}_{3}=0.0$	$\mathrm{e}_{3}=0.0$	$\mathrm{e}_{3}=$	0.3

Scenario 1
$\mathrm{T}^{\star}=$
57%
:---:
(a) $\mathrm{e}_{2}=0.3$ (b) $\mathrm{e}_{2}=0.1$ $\mathrm{~T}^{\star}=62 \%$ $\mathrm{~T}^{\star}=71 \%$

This table presents optimal top tax rates in the case where the overall elasticity of reported taxable income is e-0.5 in three scenarlos depending on how this total elasticity breaks down into the standard labor supply elasticity (e_{1}), the tax avoidance elasticity (e_{2}), the compensation bargaining elasticity (e_{2}). In scenario 1_{2}, the only elasticity is e_{1}. In scenario 2 . both e_{1} and e_{2} are present, income shifted away from the regular tax ls assumed to be taxed at rate $\mathbf{t - 2 0 \%}$. Scenario $2 a$ considers the case of the current narrow base with avoidance opportunities and scenario 2 b considers the case where the base is first broadened so that e_{2} falls to $\mathbf{0 . 1}$ (end hence e falls to 0.3). In scenario 3 , both e_{1} and e_{3} are present. In all cases, top tax rates are set to maximize tax revenue ralsed from top bracket eamers.

Top 1\% share and top tax rates 1960-2009

Top tax rates and average growth 1960-2009

A Growth and Change in Top Marginal TaxRate

Top tax rates and average growth 1960-2009

A Average CEOcompensation

Table 4: International CEO Pay Evidence

Outcome (LHS variable)	$\begin{aligned} & \text { Log(CEO } \\ & \text { pay } \end{aligned}$	$\begin{aligned} & \text { Log(CEOO } \\ & \text { pay } \end{aligned}$	$\begin{gathered} \text { Log(CEO } \\ \text { pay) } \end{gathered}$	$\begin{aligned} & \mathrm{Log}(\mathrm{CEO} \\ & \mathrm{pay}) \end{aligned}$	$\begin{gathered} \text { Log(CEO } \\ \text { salay } \end{gathered}$	Log(CEO bonus and equity pay
	(1)	(2)	(3)	(4)	(5)	(6)
Explanatory variables (RHS variables)						
$\log (1 \cdot \mathrm{Top}$ MTR)	$\begin{aligned} & 1.97^{7+4} \\ & (0.27) \end{aligned}$	$\begin{aligned} & 1.90^{+4+6} \\ & (0.286) \end{aligned}$	$\begin{aligned} & 1.92+4 * \\ & (0.336) \end{aligned}$	$\begin{aligned} & 1.90^{+4 x} \\ & (0.328) \end{aligned}$	$\begin{aligned} & 0.35^{*} \\ & (0.189) \end{aligned}$	$\begin{aligned} & 4.68^{4+4} \\ & (0.782) \end{aligned}$
Governance index			$\begin{aligned} & -0.10^{0+44} \\ & (0.020) \end{aligned}$	$\begin{aligned} & -0.19^{4+4} \\ & (0.038) \end{aligned}$	$\begin{gathered} -0.02 \\ (0.072) \end{gathered}$	$\begin{gathered} 0.26 \\ (0.201) \end{gathered}$
$\log (1-T o p$ MTR)*Governance index				$\begin{aligned} & -0.13^{+4} \\ & (0.057) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (0.089) \end{aligned}$	$\begin{gathered} -0.03 \\ (0.281) \end{gathered}$
Firm and CEO controls	no	yes	yes	yes	yes	yes
Number of observations	2,959	2,844	2,711	2,711	2,691	2,711

Table 5: Synthesis of Various Scenarios

$$
\text { Total elasticity } \mathrm{e}=\mathrm{e}_{1}+e_{2}+e_{3}=\quad 0.5
$$

Scenario 1: Standard supply side tax effects		Scenario 2: Tax avoidance effects		Scenario 3: Compensation bargaining effects	
		(a) current narrow tax base	(b) after base broadening		
$\mathrm{e}_{1}=$	0.5	$\mathrm{e}_{1}=0.2$	$e_{1}=0.2$	$\mathrm{e}_{1}=$	0.2
$\mathrm{e}_{2}=$	0.0	$\mathrm{e}_{2}=0.3$	$\mathrm{e}_{2}=0.1$	$\mathrm{e}_{2}=$	0.0
$\mathrm{e}_{3}=$	0.0	$\mathrm{e}_{3}=0.0$	$\mathrm{e}_{3}=0.0$	$\mathrm{e}_{3}=$	0.3

Scenario 1
$\mathrm{T}^{\star}=$
57%
:---:
(a) $\mathrm{e}_{2}=0.3$ (b) $\mathrm{e}_{2}=0.1$ $\mathrm{~T}^{\star}=62 \%$ $\mathrm{~T}^{\star}=71 \%$

This table presents optimal top tax rates in the case where the overall elasticity of reported taxable income is e-0.5 in three scenarlos depending on how this total elasticity breaks down into the standard labor supply elasticity (e_{1}), the tax avoidance elasticity (e_{2}), the compensation bargaining elasticity (e_{2}). In scenario 1_{2}, the only elasticity is e_{1}. In scenario 2 . both e_{1} and e_{2} are present, income shifted away from the regular tax ls assumed to be taxed at rate $\mathbf{t - 2 0 \%}$. Scenario $2 a$ considers the case of the current narrow base with avoidance opportunities and scenario 2 b considers the case where the base is first broadened so that e_{2} falls to $\mathbf{0 . 1}$ (end hence e falls to 0.3). In scenario 3 , both e_{1} and e_{3} are present. In all cases, top tax rates are set to maximize tax revenue ralsed from top bracket eamers.

