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Roadmap of course notes 
• How can we explain aggregate accumulation, i.e. the 

equilibrium level of β = W/Y? 
• The pure lifecycle model 
• The dynastic model 
• The random-shocks model: explaining the relation 

between wealth concention & r-g 
• Explaining the long-run evolution of inheritance & 

share of inherited wealth 
 
For more details on these theoretical models, see 

Piketty-Zucman, « Wealth & Inheritance in the Long 
Run », Handbook of Income Distribution 2015 
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How can we explain β = W/Y?  
• We first need a theory of why people own wealth: if economic 

agents only care about current consumption, then they should 
not own any wealth, i.e. β=0. So we need a dynamic model (at 
least two periods) where agents care about the future.  

• OLG model: agents maximize U(ct ,ct+1 ), where ct = young-age 
consumption (working age) & ct+1 = old-age consumption  

• Depending on utility function U(.,.) (rate of time preference, 
etc.), demographic parameters, etc., one obtains different 
saving rates and long run β (see « Modigliani triangle » formula) 

• Pb with the pure life-cycle model: individuals are supposed to 
die with zero wealth; in the real world, inherited wealth is also 
important 

• Models with utility for bequest: U(ct ,wt+1 ), where ct = lifetime 
consumption (young + old) & wt+1 = bequest (wealth) left to 
next generation  

• Depending on the strength of the bequest motive in utility 
function U(c,w), one can obtain any saving rate and long run β 
 



Harrod-Domar-Solow formula: β=s/g 
• Exemple: if agents maximize U(ct,Δwt=wt+1-wt), then with U(c,Δ)=c1-s Δs, we get a 

fixed saving rate st=s, and βt→ β = s/g 
           (i.e. Max U(ct,Δwt) under ct+Δwt≤yt  → Δwt = s yt ) 
 
• More generally, this is what we get in any one-good capital accumulation 

model, whatever the saving motives and utility fonctions behind the saving rate 
st : 

 
• I.e. assume that: Wt+1 = Wt + stYt 
      →  dividing both sides by Yt+1, we get: βt+1 = βt (1+gwt)/(1+gt) 
With 1+gwt = 1+st/βt = saving-induced wealth growth rate 
1+gt = Yt+1/Yt = total income growth rate (productivity+population) 
• If saving rate st→ s and growth rate gt → g, then: 
                                   βt → β = s/g 
• Exemple: if s=10%, g=2%, βt → β = 500% 
• This is a pure accounting identity: β = 500% is the only wealth-income ratio such 

that a saving rate of 10% of income corresponds to a growth rate of 2% of the 
capital stock 

• Intuition: the more you save, the more you accumulate, especially in a slow-
growth economy 

     (on these models, see Piketty-Zucman 2015 & Piketty-Zucman 2014 section 3) 
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Another special case: the dynastic model 
 

• Pure dynastic model = model with infinite horizon and fixed rate of time 
preference = individuals behave as if they were infinitely lived 
 

• Discrete time version: Ut = ∑t≥0 U(ct)/(1+θ)t   (θ = rate of time preference) 
• Budget constraint:  ∑t≥0 ct/(1+r)t ≤  ∑t≥0 yt/(1+r)t  
 
• rt = rate of return = = f’(kt) = borrowing interest rate (perfect capital markets) 
• Closed economy, representative agent: ind. wealth wt = per capita capital stock kt 
• First-order condition: U’(ct+1)/U’(ct)=(1+θ)/(1+r) 
• Assume U(c)= c1-γ/(1-γ), i.e. U’(c)= c-γ , (U(c)=log(c) if γ=1) 
• FO condition:  ct+1 =ct [(1+r)/(1+θ)]1/γ  
• Intuition: if r > θ, then agents want to postpone consumption to the future 

(conversely if r < θ), and all the more so if γ close to 0, i.e. U(c) close to linear 
• γ = curvature of U(c) (risk aversion coefficient), 1/ γ = intertemporal elasticity of 

substitution 
• Steady-state growth path: yt = y0 (1+g)t, kt = k0 (1+g)t , ct = c0 (1+g)t 
→  1+r = (1+θ) x (1+g)γ     (with continuous time: r = θ + γ g ) 
→ if g=0, then r=θ (>g) : rate of return is entirely determined by preferences 



 
• With Cobb-Douglas production function y=f(k)=kα , then 

r=f’(k)=αkα-1 , so that capital income rk=αy, i.e. capital-income 
ratio β=k/y= α/r  

• I.e. if r = θ + γ g , then β=α/(θ + γ g) 
• Exemple: if g=0, θ=5% and α=25%, then β= α/θ =500% 
• I.e. if lower θ (more patient), higher β 
• In effect, in the dynastic model, agents save a fraction g/r of 

their capital income rk, so that their wealth rises at rate g, like 
the rest of the economy (i.e. with g=1% and r=5%, they save 
1/5=20% of their capital income, and eat the rest 
 

→ saving rate s = α g/r 
capital-income ratio β = s/g= α/r =g=0 
= special case of Harrod-Domar-Solow formula 



 
• To summarize: Harrod-Domar-Solow formula β = s/g is a pure accounting 

formula and is valid with any saving motive and utility function  
  
• Wealth increase in the utility function: Max U(ct,Δwt=wt+1-wt) 
→ if U(c,Δ)=c1-s Δs, then fixed saving rate st=s,  βt→ β = s/g 
           (i.e. Max U(ct,Δwt) under ct+Δwt≤yt  → Δwt = s yt ) 
  
• Total wealth or bequest in the utility function: Max U(ct,wt+1) 
→ if U(c,w)=c1-s ws, then wt+1=s(wt + yt), βt → β = s/(g+1-s) = s’/g 
  (with s’=s(1+β)-β = corresponding saving rate out of income) 
 
• Pure OLG lifecycle model: saving rate s determined by demographic structure 

(more time in retirement → higher s), then  βt→ β = s/g 
 
• Dynastic utility:  
     Max Σ U(ct)/(1+θ)t , with U(c)=c1-1/γ/(1-1/γ)  
→ unique long rate rate of return rt → r = θ +γg > g  
→ long run saving rate st→ s = αg/r, βt → β = α/r = s/g  
 
            (on these models, see Piketty-Zucman 2014 section 3) 
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The pure lifecycle model 
 

• Modigliani triangle formula: useful formula to compute the quantity of pension 
wealth that one needs to accumulate for old-age purposes (as a fonction of 
demographic and economic parameters) 

 
• Pure life-cycle model = individuals die with zero wealth (no inheritance), wealth 

accumulation is entirely driven by life-cycle motives (i.e. savings for retirement) 
  
• Simplest model to make the point: fully stationary model n=g=r=0 (zero 

population growth, zero economic growth, zero interest rate = capital is a pure 
storage technology and has no productive use) 

  (see Modigliani, “Life Cycle, Individual Thrift and the Wealth of Nations”, AER 1986)  
 

• Age profile of labor income:   
• Note YLa = labor income at age a 
• YLa =YL>0 for all A<a<A+N  (A = adulthood; A+N = retirement age) 
• YLa = 0 for all A+N<a<A+D  (A+D = age at death) 

http://piketty.pse.ens.fr/fichiers/enseig/ecoineg/EcoIneg_fichiers/ModiglianiNobelLecture1985(AER1986).pdf


 

• I.e. people become adult and start working at age A, work during N years, retire 
at age A+N, and die at age A+D: labor length = N, retirement length = D-N 

(say: A=20, A+N=60, A+D=70, i.e. N=40, D-N=10 : N/D = 40/50 = 80%, i.e. they spend 
80% of their adult life working and 20% in retirement) 

 
• Per capita (adult) national income Y = NYL/D 
  
• Preferences: full consumption smoothing 
          (say, U = ∑A<a<A+D U(Ca)/(1+θ)a, with θ=0) 
  
• Everybody fully smoothes consumption to C=NYL/D (= per capita output Y)  
• In order to achieve this they save during labor time and dissave during 

retirement time  
  
• Note Sa= savings (= YLa – C) 
  
• We have:          Sa = (1-N/D)YL >0   for all A<=a<=A+N  
                                 Sa = -NYL/D <0        for all A+N<=a<=A+D  
  
• I.e. agents save during their working life; during retirement, they consume their 

past saving and die with zero wealth 
 
 
 



 

• Note Wa= wealth at age a  
  
• We get the following wealth accumulation equation: 
  
Wa=(a-A)(1-N/D)YL            for A<a<A+N   
Wa= N(1-N/D)YL-(a-A-N)NYL/D    for A+N<a<A+D  
  
>>> “hump-shaped” (inverted-U) age-wealth profile,  
Maximum wealth at age a=A+N, with Wa=N(1-N/D)YL  
Then Wa back to 0 for a=A+D 
  
• Average wealth is given by (simple triangle area formula): 
    W = N/D x  N(1-N/D)YL/2 + (D-N)/D x N(1-N/D)YL/2 
 
• I.e. average W = (D-N)Y/2 
 

 
 



 

  
• Proposition: Aggregate wealth/income ratio W/Y = (D-N)/2 = 

half of retirement length = “Modigliani triangle formula” 
  
• E.g. if retirement length D-N = 10 years, then W/Y = 500% 
      (and if D-N = 20 years, then W/Y=1000%…) 
 
• Lessons from Modigliani triangle formula: 
(1) pure life-cycle motives (no bequest) can generate large and 

reasonable wealth/income ratios 
(2) aggregate wealth/income ratio is independant of income level 

and solely depends on demographics (previous authors had to 
introduce relative income concerns in order to avoid higher 
savings and accumulation in richer economies)  

 
Pb = one never observes so much licecycle wealth (pension funds 

= at most 100-150% Y) (public pensions, inconsistencies..) 
 
 
 



Note that in this stationary model, aggregate savings = 0: i.e. at every point 
in time positive savings of workers are exactly offset by negative savings 
of retirees; but this is simply a trivial consequence of stationnarity: with 
constant capital stock, no room for positive steady-state savings 

  
• Extension to population growth n>0 : then the savings rate s is >0: this is 

because younger cohorts (who save) are more numerous than the older 
cohorts (who dissave) 

 
• Check: with population growth at rate n>0, proportion of workers in the 

adult population = (1-exp(-nN))/(1-exp(-nD)) (> N/D for n>0) 
 

• I.e. s(n) = 1 - (N/D)/ [(1-exp(-nN))/(1-exp(-nD))] >0 
• Put numbers: in practice this generates savings rates that are not so 

small, e.g. for n=1% this gives s=4,5% for D-N=10yrs retirement, and 
s=8,8% for D-N=20yrs retirement (keeping N=40yrs) 

• Wealth accumulation:  W/Y = s/n = s(n)/n, i.e. wealth/income ratio = 
savings rate/population growth  

>> for n=0, W/Y = (D-N)/2; for n>0, W/Y < (D-N)/2; i.e. W/Y rises with 
retirement length D-N, but declines with population growth n 

 
 
 



 
• Put numbers into the formula: W/Y=452% instead of 

500% for N=40,D-N=10,n=1%.  
 
• Intuition: with larger young cohorts (who have wealth 

close to zero), aggregate wealth accumulation is 
smaller; mathematically, s(n) rises with n, but less than 
proportionally; of course things would be reversed if N 
was small as compared to D, i.e. if young cohorts were 
reaching their accumulation peak very quickly 

 
• Also, this result depends upon the structure of 

population growth: aging-based population growth 
generates a positive relationship between population 
growth and wealth/income ratio, unlike in the case of 
generational population growth 

 
 
 



  
• Extension to economic growth g>0 : then s>0 for the same reasons as the 

population growth: young cohorts are not more numerous, but they are richer 
(they have higher lifetime labor income), so they save more than the old dissave 

  
• Extension to positive capital return r>0 : other things equal, the young need to 

save less for their old days (thanks to the capital income YK=rW; i.e. now 
Y=YL+YK);  if n=g=0 but r>0, then one can easily see that aggregate consumption 
C is higher than aggregate labor income YL, i.e. aggregate savings are smaller 
than aggregate capital income, i.e. S<YK, i.e. savings rate s=S/Y < capital share α = 
YK/Y 

(s<α = typically what we observe in practice, at least in countries with n+g small) 
 

 
• Main limitations of the lifecycle model: it generates too much pension wealth 

and too little wealth inequality. I.e. in the lifecycle model, wealth distribution is 
simply the mirror image of income distribution - while in practice wealth 
distribution is always a lot more unequal than income distribution.  

  
• Obvious culprit: the existence of inherited wealth and of multiplicative, 

cumulated effects induced by wealth transmission over time and across 
generations. This can naturally generate much higher wealth concentration.  

 
 
 
 



The dynastic model 
 

• Pure dynastic model = individuals maximize dynastic utility functions, as if they 
were infinitely lived; death is irrelevant in their wealth trajectory, so that they 
die with positive wealth, unlike in the lifecycle model: 
 

• Dynastic utility function:     Ut = ∑t≥0 U(ct)/(1+θ)t          (U’(c)>0, U’’(c)<0) 
  
• Infinite-horizon, discrete-time economy with a continuum [0;1] of dynasties.  
  
• For simplicity, assume a two-point distribution of wealth.  

 
• Dynasties can be of one of two types: either they own a large capital stock kt

A, 
or they own a low capital stock kt

B            (with kt
A > kt

B).  
 

• The proportion of high-wealth dynasties is equal to λ (and the proportion of 
low-wealth dynasties is equal to 1-λ), so that the average capital stock in the 
economy kt is given by:  

                                                                             kt = λkt
A + (1-λ)kt

B  



  
• Output is given by a standard production function Yt = F(Kt,Lt)  
• Output per labor unit is given by yt=Yt /Lt= f(kt) (f’(k)>0, f’’(k)<0), where kt=Kt/Lt = 

average capital stock per capita of the economy at period t. Markets for labor and 
capital are assumed to be fully competitive, so that the interest rate rt and wage 
rate vt are always equal to the marginal products of capital and labor: 

                                            rt = f’(kt) and    vt = f(kt) - rtkt 
 
• Proposition: (1) In long-run steady-state, the rate of return r and the average 

capital stock k are uniquely determined by the utility function and the technology 
(irrespective of initial conditions): in steady-state, r is necessarily equal to θ, and k 
must be such that :   f’(k)=r=θ 

• (2) Any distribution of wealth (kA , kB) such as average wealth = k is a steady-state 
 
• The result comes directly from the first-order condition:  
• U’(ct)/ U’(ct+1) = (1+rt)/(1+θ) 
  
• I.e. if the interest rate rt is above the rate of time preference θ, then agents 

choose to accumulate capital and to postpone their consumption indefinitely 
(ct<ct+1<ct+2<…) and this cannot be a steady-state.  

• Conversely, if the interest rate rt is below the rate of time preference θ, agents 
choose to desaccumulate capital (i.e. to borrow) indefinitely and to consume 
more today (ct>ct+1>ct+2>…). This cannot be a steady-state either. 



 
• Note: if f(k) = kα (Cobb-Douglas), then long run β = k/y = α/r   
• Note: in steady-state, s=0 (zero growth, zero savings) 
 
• Average income: y = v + rk = f(k) = average consumption 
• High-wealth dynasties: income yA = v + rkA  (=consumption) 
• Low-wealth dynasties: income yB = v + rkB  (=consumption)  
>>> everybody works the same, but some dynasties are permanently 

richer and consume more 
 
• Dynastic model = completely different picture of wealth accumulation 

than lifecycle model 
• In the pure dynastic model, wealth accumulation = pure class war 
• In the pure lifecycle model, wealth accumulation = pure age war 
  
• In pure dynastic model, any wealth inequality is self-sustaining 
 (including slavery: assume huge dynastic debt kB =-v/r) (Graeber) 
 
• In pure lifecycle model, zero wealth inequality (if zero labor inequality)  

 



 
• Dynastic model with positive (exogenous) productivity 

growth g:  Yt = F(Kt,Ht) with Ht = (1+g)t Lt = human capital 
• Modified Golden rule: r = θ + σg 
With: 1/σ = IES (intertemporal elasticity of substitution) = 

constant coefficient if U(c) = c1-σ/(1-σ) 
     (σ = curvature of U(.) = risk aversion coefficient) 
• Typically σ >1, so r = θ + σg > g 
• But even if σ >1, r has to be > g in the dynastic, infinite-

horizon model: otherwise transversality condition is 
violated (present value of future incomes = infinite) 

• In steady-state, i.e. dynasties save a fraction g/r of their 
capital income (and consume the rest), so that their capital 
stock grows at rate g, i.e. at the same rate as labor 
productivity and output 

• Aggregate saving rate s = α g/r < α  
• Aggregate wealth-income ratio β = s/g = α/r 

 



 
• Where does the modified Golden rule come from? 
• This comes directly from the first-order condition:  
• U’(ct)/ U’(ct+1) = (1+rt)/(1+θ) 
• With U(c) = c1-σ/(1-σ), U’(c)= c-σ → ct+1/ct = [(1+rt)/(1+θ)]1/σ 

• Intuition: the desired consumption growth rate rate rises with rt 
(high rt = it is worth postponing consumption; low rt = it is worth 
consuming more now), and all the more so if the IES is high 

• In steady-state, consumption must grow at the same rate as the size 
of the economy: as t→∞, ct+1/ct→ 1+g 

• Therefore 1+rt → 1+r = (1+θ) (1+g)σ 

With θ, g small (or in continuous time models), this is equivalent to : 
                                      r ≈ θ + σg 
 In effect, if r > θ + σg, then agents want their consumption to rise 

faster than g  (→ too much k accumulation, so that rt↓);                
while if r < θ + σg, then agents want their consumption to rise less 
fast than g  (→ too much borrowing, so that rt↑)  

 



 
• Is it suprising that r > g for ever? 
 
• No: this is obvious with g=0 : r = θ > 0  
• This is also what standard economic models predict with 

positive growth g>0  
• And this is what we always observe in human history (at least in 

the absence of capital shocks, wars, taxation, etc., see below ) 
 
• Typically, during 19c: g = 1%, r = 5%, s = 8%,                                          

β = s/g = 800%, α = r β = 40% 
• Wealth holders simply need to save a fraction g/r = 20% of their 

capital income so that their wealth rises by 1% per year, i.e. as 
fast as national income 

 
• This is what wealth is here for: if you need to reinvest all your 

capital income in order to preserve your relative wealth 
position, then what’s the point of holding wealth? 



The random-shocks model 
 

• Pb with the dynastic model = any level of inequality can be self-
sustaining (zero mobility) 

(other pb = unclear whether r = θ in the real word; in fact, it is 
unclear whether real-word agents really have a θ : dynamic 
inconsistencies, hyperbolic discounting, see e.g. Giglio et al 2013) 

• In the real world, there is always positive weatlh mobility, 
because there are all sorts of random shocks: demographic 
(number of children, age at death, etc.), rates of return, bequest 
tastes, labor productivities, etc. 

• Models with « ergodic » shocks = there’s always a positive 
probability to move from any two wealth levels wti and wt+1i  

• Consequently there always exists a unique long-run, steady-state 
distribution of wealth φ(w); but for given shocks the inequality of 
this steady-state distribution is an increasing function of r – g  

       (where r = net-of-tax rate of return, g = growth rate)  

http://piketty.pse.ens.fr/files/Giglioetal2013.pdf


• Finite-horizon, bequest-in-the-utility-function model = middle ground with 
pure lifecycle model and infinite-horizon dynastic model = more flexible 
and suitable model to study wealth dynamics 

• Simplified version of the wealth-in-the-utility, finite-horizon model, with 
random shocks on saving tastes: 

- each generation lives exactly one period  
- each individual i in generation t receives labor income yLt + capitalized 

inherited wealth (1+r)wti , and maximizes Vti(c,w)=(1-sti)log(c)+stilog(w) (or 
equivalently Vi(c,w)=cstiw1-sti) in order to allocate his total ressources 
between consumption cti and end-of-life wealth wt+1i 
 

→ Individual-level transition equation for wealth: wt+1i  = sti [yLt + (1+r) wti ] 
with: sti = saving taste=randomly drawn from a distribution with mean s=E(sti) 
 
• Aggregate transition equation: wt+1  = s [yLt + (1+r) wt] = s [yt + wt] 
with yt = f(kt) + r (wt - kt) = national income ≈ (1+g)t y0 in the long run 
→ βt=wt/yt → β = s/(g+1-s) = s’/g  (with s’=s(1+β)-β ) 
 
Q.: Where does the wealth distribution φ(w) converge to? 
A.: φ → Pareto distribution with exponent ↑ as var(sti) and r-g ↑ 
 

 



• Define zti=wti/wt = normalized wealth and ω=s(1+r)/(1+g)<1 
• The transition equation can be rewritten: 
 zt+1i  = sti/s [ (1-ω) + ω zti ] 
 
• Assume binomial random tastes: 
• sti=s*>0 with proba p>0 ("wealth-lovers") 
• sti=0 with proba 1-p ("consumption-lovers") 
• s=E(sti)=ps*  

 
• If sti=0 , then zt+1i=0  → children with consumption-loving parents receive no 

bequest 
 

• If sti=s*, then zt+1i = s*/s [(1-ω) + ω zti ]  → children with wealth-loving parents 
receive positive bequests growing at rate ω/p across generations 

→ after many successive generations with wealth-loving parents (or more 
generally with high demographic or returns shocks), inherited wealth can be 
very large 
 

• Non-explosive aggregate path: ω <1 
 

• Non-explosive aggregate path with unbounded distribution of normalized 
inheritance: ω <1<ω*=ω/p 
 



 
 

• Therefore the steady-state distribution φ(z) looks as follows: 
• z=z0=0 with proba 1-p (children with zero-wealth-taste parents) 

 
• z=z1=(1-ω )/p with proba (1-p)p (children with wealth-loving parents but 

zero-wealth-taste grand-parents) 
• ... 
• z=zk+1=(1-ω)/p + (ω/p)zk > zk with proba (1-p)pk+1 (children with wealth-

loving ancesters during the past k+1 generations) 
• We have:  
• zk = [(1-ω)/(ω -p)] [ (ω/p)k - 1 ] ≈ [(1-ω)/(ω-p)] (ω/p)k  as k→+∞ 

 
• 1-Φ(zk) = proba(z≥zk) = ∑k'>k (1-p)pk' = pk 

 
• That is, as z→+∞, log[1-Φ(z)] ≈ a( log[z0] - log[z] ), i.e. 1-Φ(z) ≈ (z0/z)a  

 
• With Pareto coefficient a = log[1/p]/log[ω/p] >1  
              and inverted Pareto coefficient b=a/(1-a) >1 
 

 



 
• For given p:  
• As ω →1 , a =log[1/p]/log[ω/p] →1 and b→+∞ (infinite inequality)  
• I.e. an increase in ω =s(1+r)/(1+g) means a larger wealth reproduction rate ω* 

for wealth-lovers, i.e. a stronger amplification of inequality 
(conversely, as ω →p , a→+∞ and b→1 (zero inequality)  

 
• For given ω : as p→0 , a→1 and b→+∞ (infinite inequality) (a vanishingly small 

fraction of the population gets an infinitely large shock) 
(conversely, as p→ ω, a→+∞ and b→1 (zero inequality)  
  
• Proposition: The inequality of inheritance is an increasing function of r-g 
 
• Note. What matters in the formula is the net-of-tax rate of return: bequest taxes - 

and more generally capital taxes - reduce the rate of wealth reproduction, and 
therefore reduce steady-state wealth concentration. 
 

Key finding: small changes in r – g can have huge impact on long-run inequality 
 
 (see Piketty-Zucman “Wealth and Inheritance in the Long-Run”, 2014, section 5.4 

for mathematical details and simple empirical calibration) 

http://piketty.pse.ens.fr/files/PikettyZucman2014HID.pdf
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Note 3. The same ideas and formulas for Pareto coefficients work for different kinds 
of shocks. 

 Primogeniture: shock = rank at birth; the richest individuals are the first born sons of 
first born sons of first born sons etc.; see Stiglitz Econometrica 1969  

Family size: shock = number of siblings; the richest individuals are the single children 
of single children of single children etc.; see Cowell 1998 (more complicated 
formula  

Rates of return: shock = rti instead of sti = exactly the same mutiplicative wealth 
process as with taste shocks → Pareto upper tails in the limit, see e.g. Benhabib-
Bisin-Zhu 2011, 2013, Nirei 2009 
 

Note 4. With primogeniture (binomial shock), the formula is exactly the same.  
See e.g. Atkinson-Harrison 1978 p.213 (referred to in Atkinson-Piketty-Saez 2011 

p.58), who generalize the Stiglitz 1969 formula and get: a = log(1+n)/log(1+sr) 
 
 This is the same formula as a = log[1/p]/log[ω*]: 1+n = population growth, so 

probability that a good shock occurs - i.e. being the eldest son = 1/(1+n) = p;  
    1+sr = net-of-tax reproduction rate in case a good shock occurs = ω*.  
 

 

http://piketty.pse.ens.fr/fichiers/Stiglitz1969.pdf
http://piketty.pse.ens.fr/fichiers/Cowell1998.pdf
http://piketty.pse.ens.fr/files/BenhabibBisinZhu2011.pdf
http://piketty.pse.ens.fr/files/BenhabibBisinZhu2011.pdf
http://piketty.pse.ens.fr/files/BenhabibBisinZhu2013.pdf
http://piketty.pse.ens.fr/files/Nirei2009.pdf
http://piketty.pse.ens.fr/fichiers/AtkinsonPikettySaez2011
http://piketty.pse.ens.fr/fichiers/Stiglitz1969.pdf


 
 

Note 5. The Cowell 1998 result is more complicated because families with 
many children do not return to zero (unless infinite number of children), so 
there is no closed form formula for the Pareto coefficient a, which must 
solve the following equation: ∑ (pkk/2) (2ω/k)a= 1, where pk= fraction of 
parents who have k children, with k=1,2,3,etc., and ω = average 
generational rate of wealth reproduction.  

 
 

Note 6. More generally, one can show that for any random multiplicative 
process zt+1i= ωtizti+εti , where µti= i.i.d. multiplicative shock with mean 
ω=E(ωti)<1, εti=additive shock (possibly random), then the steady-state 
distribution has a Pareto upper tail with coefficient a, which must solve the 
following equation: E(ωti

a)=1 (see Nirei 2009, p.9 and Nirei-Aoki 2014) 
Special case: p (ω/p)a=1, i.e. a=log(1/p)/log(ω/p).  
More generally, as long as ωti>1 with some positive probability, there exists a 

unique a>1 s.t. E(ωti
α)=1.  

One can easily see that for a given average ω=E(ωti)<1, a→1 if the variance of 
shocks goes to infinity (and a→∞ if the variance goes to zero).   

http://piketty.pse.ens.fr/fichiers/Cowell1998.pdf
http://piketty.pse.ens.fr/files/Nirei2009.pdf
http://piketty.pse.ens.fr/files/NireiAoki2014.pdf


Explaining the long run evolution of 
inheritance 

• The multiplicative r-g process is already powerful with fine 
horizon; but it is even more powerful with inheritance; otherwise 
the process starts over again at each generation (wealth 
inequality can still be very unequal if large multiplicative shocks 
and long life span) 

 
• What evidence do we have? French data is particularly good and 

allows to compute the inheritance flow in two independant 
ways: fiscal flow vs economic flow (for full details, see « On the 
long-run evolution of inheritance: France 1820-2050 » QJE 2011)  

 
• The economic flow of inheritance can be computed by using the 

following formula: by = µ m β  
     

http://piketty.pse.ens.fr/fichiers/Piketty2011QJE.pdf


• The economic flow of inheritance can be computed by using the 
following formula: by = µ  m  β  

    with by = B/Y, B = aggregate annual flow of inheritance (bequest + 
inter vivos gifts), Y = national income 

β = W/Y = aggregate wealth-income ratio 
m = mortality rate (if people never die, there’s no inheritance..) 
µ = ratio between average wealth at death and average wealth of 

the living (if pure lifecycle mode, people die with no wealth: µ=0) 
 
• If β = 600%, m=1,5%, µ=100%, then by = 9% 
• If β = 600%, m=1,5%, µ=200%, then by = 18%  
 
• We have analyzed the evolution of β in lectures 2-4 
• The long run evolution of m is pretty clear: as life expectancy 

goes from 60 to 80 year-old, adult mortality rates go from 
m=1/40=2,5% to m=1/60=1,7% (for constant population) 

• What about the evolution of µ ? 















• How is steady-state µ determined? 
• One can show that for given saving behavior, µ is an 

increasing function of r – g 
• Intuition: higher r – g makes inheritance more important; 

young workers are relatively poor until they inherit; in 
aging societies, wealth also tends to get older and older, 
so that the rise of µ tends to compensate the decline in m 

• As g→0, µ →(D-A)/H, so that µ x m → 1/H 
(with D = age at death, A = age at adulthood, H = generation 

length ≈ 30 years: by = µ  m  β → β/H ≈ 20% if β ≈ 600ù) 
• Simple simulations: by assuming constant average saving 

rates by age group, one can replicate relatively well the 
1810-2010 evolution of the aggregate inheritance flow in 
France; the future depends very much on r - g 





• In order to go from the annual flow of inheritance by=B/Y 
to the share of the cumulated stock of inheritance in 
aggregate wealth φ=WB/W, one needs dynamic, 
individual-level data 

• Simplified definition of φ : compare inheritance flow 
by=B/Y with saving rate s=S/Y;  

• If s≈10% and by≈5%, then self-made wealth dominates 
inherited wealth (=mid 20c period) 

• But if s≈10% and by≈20%, then inherited wealth 
dominates self-made wealth (19c and 21c) 

• T. Piketty, G. Zucman, “Wealth and Inheritance in the 
Long-Run”, Handbook of Income Distribution, 2014 
 

http://piketty.pse.ens.fr/files/PikettyZucman2014HID.pdf
http://piketty.pse.ens.fr/files/PikettyZucman2014HID.pdf




• Aggregate inheritance is (almost) back to 19c levels 
• But the concentration of inheritance is not back to 

19c levels: the bottom 50% is as poor as before, 
but the middle 40% now owns 20-30% of W 

• Today, there are fewer very large inheritors than in 
19c; and there are more large and middle-large 
inheritors 

• This is a class model that is less unequal in some 
ways and more unequal in others; it is novel form 
of inequality, more merit-based in some ways, and 
more violent for loosers in others 











• Existing international evidence (Germany, UK, 
Sweden,…) suggests that France is relatively 
representative of what might be happening in 
other countries; and possibly in the entire world 
in the very long run if g decline everywhere 
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