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With decreasing returns and first-best credit, the long-run interest rate and aggregate output
are uniquely determined, and wealth dispersion among individuals or firms is irrelevant. Intro-
ducing credit rationing into the Solow model modifies these conclusions. Multiple stationary inter-
est rates and wealth distributions can exist because higher initial rates can be self-reinforcing
through higher credit rationing and lower capital accumulation. The wealth accumulation process
is ergodic in every steady state, but wealth mobility is lower with higher steady-state interest rates.
Aggregate output is higher in steady states with lower interest rates because credit is better allo-
cated. Short-run interest rate or distribution shocks can be self-sustaining and can have long-run
effects on output through the induced dynamics of the wealth distribution and credit rationing.

1. INTRODUCTION

In Solow’s model of capital accumulation, the equilibrium interest rate is determined by
the marginal product of capital which is common across all agents. A consequence is the
irrelevance of the wealth distribution: long-run capital stock, output and interest rates are
all uniquely determined by savings behaviour independently of the initial wealth distribu-
tion. When credit markets are less than perfect, the situation may change: frictions in the
credit market may lead to credit-rationing and upset the simple relationship between
marginal product of capital and interest rates. The main aim of this paper is to explore a
consequence of this: that there may be some persistency in the dual dynamics of the
interest rate and the wealth distribution. It becomes possible that both high and low
interest rates are self-sustaining. Higher interest rates induce a higher steady-state fraction
of credit-constrained individuals, and therefore lower long-run capital accumulation. Our
investigation indicates that this steady-state multiplicity is likely to occur when credit
constraints become sufficiently tight at high interest rates that it takes a long time for
credit-constrained individuals to rebuild their capital.

To each stationary interest rate, there is associated a unique stationary wealth distribu-
tion. Each of these stationary distributions is shown to be ergodic, so a poor dynasty has
a positive probability of becoming rich in finite time and vice-versa: there is no inescapable
poverty trap. However, the degree of wealth and income mobility do vary across steady
states. Both upward and downward mobility are greater when the interest rate is lower,
so some steady states have more of a “poverty trap” than others. Steady states can also
be ranked in terms of aggregate output: higher steady-state interest rates are associated
with lower output and capital stock, because they involve a higher fraction of credit-
constrained individuals who invest and accumulate at inefficiently low levels. Evidently,
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there is a possible role for policy. A one-off lump sum manipulation of the wealth
distribution or the interest rate might lead the economy to a different steady-state than
would otherwise occur.

Galor and Zeira (1993) have already pointed out that persistency phenomena can
easily arise when there is credit rationing. However, their mechanism is different from
ours in that it relies entirely on a non-convex technology. They show that with a fixed-
size investment technology poverty traps can occur with an exogeneous interest rate. Poor
agents are unable to afford the fixed-size investment which would enable them to accumu-
late enough to pass the poverty trap threshold. So, initial poverty persists in the long run
in the sense that some dynasties never get rich.! This is in contrast to the ergodicity of
steady states in our model: our multiplicity is based upon the interaction between the
wealth distribution and the equilibrium interest rate and not upon threshold effects in
wealth accumulation.

Unlike Galor and Zeira, Aghion and Bolton (1997) introduce the interaction between-
the wealth distribution and the equilibrium interest rate, and our model is directly inspired
from theirs. Aghion and Bolton focus on finding conditions under which there is a non-
monotonic evolution of income inequality towards a unique steady state. So, their results
are very different from ours, and both papers should be viewed as complementary.

Banerjee and Newman (1993) have already recognized a source of multiplicity similar
‘to that studied in the present paper, but they study the dual dynamics of the wealth
distribution and wage rates with the rate of interest fixed exogenously.? In their model,
low wage rates slow down the accumulation of the poor and therefore preserves the high
initial supply of monitored labour, which in turn reinforces the low equilibrium wage
rates (and conversely for the high-wage-rate steady state). The intuition for our results is
essentially identical, with the capital market instead of the labour market and high (resp.
low) interest rates instead of low (resp. high) wage rates. This suggests the robustness of
this type of results: with wealth effects, both the long-run wage rate and the long-run
interest rate are likely to vary with the initial wealth distribution.

Our motivation for the formulation chosen in the present paper is that it is designed
to be as close as possible to the Solow model. The three papers mentioned above all
assume a fixed-size investment technology, whereas we assume a standard concave produc-
tion function f(k), which allows the effects of introducing credit market imperfections to
be separated out from ancillary assumptions such as the introduction of non-convex
technologies.

Section 2 sets the scene by analysing the model without credit rationing. Section 3
introduces credit-rationing and derives its static properties. The main results of the paper
are presented in Section 4 where the persistence phenomena described above are analysed.
Section 5 concludes. An appendix contains all omitted proofs.

2. DYNAMICS WITH FIRST-BEST CREDIT

This section presents the Solow-type capital accumulation model that will be used
throughout the paper, and summarizes the main properties of the dynamics of the

1. Note that any small “convexification” of Galor and Zerira’s dynamic income process (for example by
introducing & probabilities of moving back and forth the poverty trap threshold) would imply that the system
converges toward a unique stationary distribution, irrespective of the initial distribution.

2. In our Solow-type model, every agent is an entrepreneur and the “wage rate” is simply equal to
individual output minus interest payments. Banerjee and Newman (1993) obtain a richer occupational structure
and two independent market prices for capital and labour by assuming that effort incentives can be dealt with
either through financial contracts and the credit market (as in our paper) or by direct monitoring by an entrepren-
eur (monitored agents then become wage-earners and are priced on a market for monitored labour).
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wealth distribution and the interest rate implied by the assumption of first-best credit.’

We consider a closed economy with an infinite, discrete time horizon =0, 1,2, . ..
and a stationary population of infinitely-lived dynasties 7=[0, 1]. There are two goods,
one labour good and one physical good that can serve both as a consumption good and
a capital good. At each period ¢ the state of the economy is described by the current
distribution of wealth, represented by a distribution functions G,(w)(G.(w) is the fraction
of the population with current wealth below w). Aggregate wealth (which is also the
average wealth) W, is given by

W,= deG,(w).

At each period ¢, every dynasty iel endowed with one indivisible labour unit and an
initial wealth w;,, and earns income by supplying labour and capital; the resulting income
yu is divided at the end of the period between consumption c; and savings b;, which are
to constitute the dynasty’s initial wealth next period (i.e., Wi +1=>by).

Agents are assumed to be risk neutral: they maximize total expected income minus
the disutility of labour, i.e. U=y —e, where e=0 or 1 is labour supply (effort).* Following
Solow and the recent literature on distributional dynamics with credit-rationing, we assume
that a fixed fraction s of total income is being saved (b;=sy;): if we interpret each time
period as exactly one generation of each dynasty, one can think of each dynasty as maxim-
izing Cobb-Douglas preferences defined directly over consumption and bequest (say that
each generation is maximizing U= zc' ~*b* — e, with z=(1—15)°"'s™, so that indirect utility
for income is simply U=y —e, and c=(1—s)y, b=sy).

We also assume that wealth can be stored costlessly, but that capital investments are
sunk costs (i.e., a 100% depreciation rate).®

The technology F(K, L) exhibits constant-returns-to-scale with respect to aggregate
capital and labour inputs K and L; in the usual way, we can study production at the
individual level, viewing each agent as a prospective entrepreneur ; the production function
can be written f *(k) = F(K/L, 1) (with k= K/L) at the per capita level. The only difference
with the usual neo-classical production is that we allow it to be stochastic at the individual
level: f*(k) can take different values depending on purely idiosyncratic shocks (which
cancel out at the aggregate level since we have a continuum of agents). To fix ideas, we
assume that f*(k) can take two values:

f(d) with probability p

k)= {
0 with probability 1 —p if individual effect e=1

and

f(k) with probability g

* k — {
S 0 with probability 1 —¢g if individual effort e=0,

3. See Stiglitz (1969) for a more detailed analysis of the dynamics of the distribution of income and wealth
among individuals in the Solow framework with first-best credit.

4. Positive risk-aversion would not complicate the analysis providing no verifiability problem prevents
individuals from obtaining full insurance: this would just make individual incomes deterministic, which makes
global convergence even more extreme (see below). However when we introduce verifiability problems (as we
do in Sections 3 and 4 below), risk aversion would slightly obscure the analysis because credit-rationing issues
would be mixed up with partial-insurance issues. Assuming risk neutrality makes more transparent the role of
credit-rationing per se (see the working paper version (Piketty (1992)) for a more general analysis with risk-
aversion and partial insurance issues).

5. See, e.g., Banerjee and Newman (1993), Galor and Zeira (1993) and Aghion and Bolton (1997).

6. Minor notational changes in what follows would accommodate alternative assumptions.
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with 0<g<p<1 and standard properties for f(k): f(0)=0, f/>0, /<0, f'(0)= o0,
f'(0)=0.

The role of the shirking option (e =0) will become crucial when we introduce incentive
problems and credit rationing in subsequent sections, and so will the value of ¢. In this
section however, we consider thecase of first-best credit, which means that there is no
moral hazard problem, i.e. that lenders can make sure at no cost that borrowers don’t
shirk and do supply their unit of effort once the loan has been made. So in this section
all individuals always supply a high effort level e=1, providing obviously that this is
indeed the first-best optimum. For any r=0, we note k(r) (resp. ko(r)) and y(r) (resp.
yo(r)) the profit-maximizing capital input and the corresponding profit when the interest
rate is r and the entrepreneur takes effort e=1 (resp. e=0):

Vrz0,pf'(k(r))=1+r and y(r)=pf(k(r)) — (1 +r)k(r)
qf'(ko(r))=1+r and yo(r)=qf(ko(r)) — (1+r)ko(r).

We then assume that at least when the interest rate r=0 it is first-best efficient to supply
high effort and to make the corresponding high investment:

(A0) ¥(0) = 1>yo(0).

This ensures that high effort (e=1) is first-best efficient as long as the interest rate r is
lower than some value r*(g) >0 (i.e. y(r) — 1> yo(r) for r<r*(q)). To make sure that this
will always be the case in the (long-run of the) first-best economy, we then have to assume
that the saving rate is high enough (see Proposition 1 below).

The essential implication of first-best credit is that the allocation of productive capital
between agents and therefore the equilibrium interest rate are independent from the current
dispersion of wealth levels. In the absence of borrowing constraints, everybody will make
the optimum investment k(r) such that the current (gross) interest rate 1+r equals the
(expected) marginal product of capital pf’'(k(r)) (so as to maximize expected income
pf (k) — (1+r)k), irrespective of one’s initial wealth w. Rich agents will lend capital to
poor agents so as to equalize the marginal product of capital throughout the economy,
over all production units. Thus aggregate capital demand is k(r), and since aggregate
capital supply is equal to the average wealth W,, the equilibrium interest rate at period
tr, is given by

k(r)=Ww,
ie. l+r,=pf(W).

Thus, whatever the current wealth distribution G,(w), every agent will invest the average
wealth W,, so that individual (expected) income y;(w;) as a function of initial wealth w;
is given by

Yilwa)=pf(W,)—(1—=r)W,+(1 +r1)wi1-7
and aggregate income Y,(G,) is given by

Y(G)=pf(W).

7. The term (1+r,)w, is individual (gross) capital income, while the pf(W,)— (1 +r)W,, is individual
labour income; the latter does not depend on one’s wealth because of first-best credit; it can be regarded as the
equilibrium wage rate »,, which, as the equilibrium interest rate, depends only on the average wealth W,.
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Therefore with first-best credit, aggregate output depends only on aggregate wealth. This
implies that we can track down the evolution of aggregate wealth and aggregate output
without worrying about the way wealth and output are distributed: aggregate wealth at
period ¢+ 1W,,, is given by

We=sY,=spf(W). (1)

The concavity of f together with equation (1) then implies that aggregate wealth W, will
converge to a unique long-run aggregate wealth W%, irrespective of initial aggregate

wealth W, (and in particular irrespective of Go(w)) (see Figure 1); W% is given by
We=spf(W%). (2)

This implies that the equilibrium interest rate r, will converge globally to a unique long-
run interest rate rk s.t. 1+r% =pf (W%).

In order to complete the characterization of the dynamics of the wealth distribution
and the interest rate with first-best credit, we must also say what long-run wealth distribu-
tion G (w) will prevail, given that the long-run interest rate has to be r¥% . If individual
income was deterministic (say, if p=1), all dynasties would converge to the average wealth
level W% . Since we assumed idiosyncratic shocks on individual investments, there will be
some positive inequality in the long-run, but this inequality will be independant of initial
inequality Go(w). This is so because r% does not depend on initial inequality, and because
for any given interest rate r the wealth process follows a linear Markov process that
converges globally toward a unique invariant distribution. One can see that by looking at
the transitional equations:®

Wirs 1(Wi) = {S[f(k(’)) +(1+r)(w—k(r))/p] with probability p

. o 3)
0 with probability 1 —p.

The concavity of the individual transition functions given by equation (3) implies that
there can be no trap, i.e. that one can communicate between (any neigbourhood of) any
two possible long-run wealth levels with positive probability in a finite time (see Figure
2). Thus the wealth process is globally ergodic, and the distribution G,(w) converges to
the unique invariant distribution G¥ associated with the interest rate r¥.

We summarize these properties with the following proposition:

Proposition 1. (A40) implies that there exists so=s50(q) such that, if s> s,, there exist
unique levels of long-run aggregate wealth W%, aggregate output Y%, the interest rate r¥,
and inequality G % (w) toward which W,, Y,, r,and G (w) converge as t goes to oo, irrespective
of the initial wealth distribution Go(w).

Note that Proposition 1 would also hold with a concave savings function S ( ).? The

8. Because of risk-neutrality, all agents are actually indifferent between all divisions of their total expected
income between the lucky and the unlucky states of nature. Assuming these particular transition functions is of
no consequence for the dynamics with first-best credit (the uniqueness of the long-run interest rate r% and
distribution G% would hold with any transition function belonging to the agents’ indifference curves). It does
however simplify substantially the analysis of the dynamics with credit-rationing because it allows us to compute
the stationary distributions (see Section 4 and the appendix).

9. See Stiglitz (1969). With convex savings however, long-run accumulation can depend on the initial
distribution (see Bourguignon (1981)). We assume this away so as to better isolate the effects of credit rationing

per se.
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FIGURE 1
Aggregate dynamics with first-best credit
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FIGURE 2
Individual transitions with first-best credit

uniqueness of the long-run interest rate, output and capital stock would also hold with
the assumption that dynasties maximize an intertemporal utility function of the form
U=3%,., U(Cy)/(1+6).'° ’

10. In that case, the unique long-run interest rate r% would be equal to the rate of time preference 6, and
the unique long-run capital stock W% would then be given by pf'(W¥)=0, irrespective of the initial wealth
distribution Gy(w). Note however that in the absence of idiosyncratic shocks the long-run distribution G %, could
then be any distribution such that the marginal product of the average wealth W¥ is equal to 6: only aggregate
variables are uniquely determined. We did not assume such dynastic preferences because they make the analysis
of equilibrium credit rationing completely intractable. This is why “dynastic” models with credit constraints
usually assume exogeneous non-negativity constraints for consumers and forget about credit-rationing in produc-
tion (see, e.g., Aiyagari (1995)). Moreover, whether or not dynastic preferences provide a better description of
actual savings behaviour is controversial (see, e.g., Solow (1994, p. 49)).
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3. CREDIT-RATIONING

We now introduce credit-rationing. There are many different microeconomic theories of
credit-rationing, mostly based upon the non-observability of labour input (moral
hazard)"', physical output,'? or individual ability (adverse selection)."* They all have the
implication that one can borrow more with a higher collateral, because of the commitment
value of initial wealth. Although the exact micro story does not really matter for our
purposes, we choose to model credit-rationing as arising from a moral-hazard problem,
following Aghion and Bolton (1997). The only point of departure from the Solow model
introduced in Section 2 is that we now assume that individual labour supply (e=0 or 1)
is no longer observable, so that lenders must check beforehand whether borrowers have
adequate incentives to supply their unit of effort. We first derive the static properties of
credit rationing in this model.

Assume that the current interest rate is >0, and consider an agent whose initial
wealth w is below the optimum investment k(r) associated to r."* Assume also that r>r*(gq),
so that it is indeed first-best optimal to supply high effort (e=1) and to make the high
investment k(r)."

Since lenders cannot directly observe the agent’s effort supply, they can provide proper
incentives only by offering a financial contract specifying repayments (dr, d;) depending
on whether the project fails (output=0) or succeeds (output=f(k)), in exchange for
investing k(r) —w. We assume perfect competition between lenders, so that whenever a
contract yielding non-negative expected profits does exist it will be offered, and only zero-
profit contracts will be traded in equilibrium.

Since we assumed investment to be sunk costs, repayment dr has to be 0 when the
investment fails, while d; will have to be whatever it takes to cover interest payments in
expected terms:

df=0
d;=(1+r)k(r)—w)/p
so that

pd;+ (1 —p)d=(1+r)(k(r)—w).

But incentives to take high effort are now distorted, and ex post (after the contract is
signed) the borrower will take high effort if and only if

pLf(k(r)) = di] = 1>q[ f(k(r)) —di], C))

where the RHS is the borrower’s expected net income obtained with e=1 minus the
effort cost and the LHS is the borrower’s expected net income with e=0. The incentive-
compatibility equation (4) shows that the more the agent has to borrow. (the higher
k(r) —w), the less the agent benefits from a high probability of success, and the higher the
incentive to shirk. If the incentive-compatibility condition is not satisfied (i.e. if k(r) —w
is too high), then lenders will anticipate that the agent will shirk and therefore will not

11. See, e.g., Aghion and Bolton (1997).

12. See, e.g., Banerjee and Newman (1993) and Galor and Zeira (1993).

13. See, e.g., Jaffee and Stiglitz (1990).

14, If w>k(r), then the agent does not need any credit market to make this investment).

15. If r>r*(q) then everybody prefers to make the low investment ko(r) and to supply low effort e=0,
and everybody can obtain sufficient credit, since borrowers cannot reduce their effort further.
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invest k(r) —w: the agent is credit-rationed and cannot make the optimal investment k(r).
Rewriting equation (4), this will arise if and only if

(1 +n)(k(r) =w) > [1+(p = q)f (k(r)]/[r(p—q)/P]

or
w<w(r)=k(r)—[pf(k(r)) —p/(p—]/(1 +1). (&)

Note also that if w<w(r) the incentive-compatibility equation (4) cannot be satisfied for
any investment level k, not even if k is lower than the first-best investment k(r). This is
because f(k) —r(k—w)/p, i.e. income net of repayment in case the project succeeds, is
maximal for the optimal investment k(r), so that incentives to take high effort are lower
for any suboptimal investment level. It follows that if an agent cannot obtain the required
credit for the first-best optimal investment then the only other option is to make the low
investment ko(r) and to supply minimal effort e =0. As was noted above, agents can always
obtain sufficient credit for this low investment.

The extent to which credit rationing is binding depends however on the current interest
rate r. In particular if we assume that

pf(k(0)) =k(0)>p/(p—9q),

which will hold if ¢ is sufficiently small (because of assumption (A0)), then w(r) <0 for r
sufficiently small. That is, credit rationing disappears if the interest rate is sufficiently low
because the net returns become sufficiently high to give proper incentives to agents with
no collateral. As r increases, w(r) increases, and we prove in the appendix that for any
q>0 there exists r(q) <r*(q) such that if the interest rate r is above r(g) then w(r) is
positive, i.e. credit rationing becomes binding for those agents whose initial wealth is
below some positive cutoff level w(r). Note that g must obviously be strictly positive,
otherwise there is no commitment issue and w(r) <0 for any r<r*(q): first-best credit
obtains.

We summarize these static properties of credit rationing in the following proposition:'®

Proposition 2. (A0) implies that there exists qo>0, qo<p, such that for any q such
that 0<q<gqq, there exists r(q)€ 0, r*(q)[ such that:

(i) If r=<r(q), there is no credit rationing: Nw;, dynasty i can obtain sufficient credit
to make the first-best optimum investment k(r).

(i) If r(q) <r<r*(q), there is some credit rationing: Iw(r) >0 such that if w;<w(r),
dynasty i is credit rationed and can only make the low investment ko(r); if wi2w(r),
dynasty i can obtain sufficient credit to make the optimum investment k(r). More-
over, w'(r)>0 and w(r)—0+ as r-r(q)+.

(iii) If r> r*(q), then everybody prefers to make the low investment ko(r) and can obtain
sufficient credit (as in the first-best case).

We can already note an important static consequence of credit-rationing with exogene-
ous interest rates. In the short-run higher interest rates are always bad for net borrowers
and good for net lenders, both with first-best credit and credit rationing. With first-best
credit however, the aggregate effect depends only the aggregate credit position: the GNP

16. In the continuous-effort version of this model (Piketty (1992)), credit rationing exhibits essentially the
same properties, except that the credit rationing curve k(w, r) is smoothly increasing in w instead of being
discontinuous (here we have k(w, r)=ko(r) for w<w(r) and k(w, r)=k(r) for w>w(r)). This simplifies the
analysis of the dynamics without changing qualitatively the results.
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of an open economy that is a net lender at the current world rate r,€ ]r(q), r*(q)[(W.> k(r))
would rise following a positive interest rate shock (dY,= (Wik(r,))dr,), and conversely.
With credit-rationing, this may not be so: the GNP of the same economy (and not only
its GDP) can fall since a higher rate brings the quality of credit allocation further away
from the first best: dY, = (W, —k(r,))dr.— Gi(w(r))w'(r)[ ¥(r,) = yo(r,)}dr., where the second
term measures the output drop due to the increased fraction of credit-constrained agents;
the aggregate effect can therefore be negative even if the country is a net lender. These
are however static effects, not taking into account the dynamic effects on capital accumula-
tion and future equilibrium interest rates, to which we now turn.

4. DYNAMICS WITH CREDIT RATIONING

We now study the dynamics of the economy with credit rationing. At each period ¢, given
an initial distribution G,(w) the equilibrium interest rate r,=r(G,) is given by the equality
of capital demand and capital supply, where capital demand is possibly constrained by
credit rationing. If aggregate wealth at period ¢, W,, is sufficiently high, then the equilib-
rium interest rate r, will be lower than r(¢q), nobody will be credit-constrained in equilibrium
and the equilibrium interest rate depends only on the aggregate wealth W, :

pf (W) <1+r(q), then 1+r(G)=pf' (W) (6)

However, if W, is lower so that pf’(W,) > 1+ r(q) then there has to be some credit rationing
in equilibrium,'” and the (unique) equilibrium interest rate r,=r,(G,) is determined by

If pf (W) > 1+r(q), then r,=r(G) s.t. G(w(r))ko(r) +[1 = G(w(r)k(r)=W, (7)

In that case the equilibrium interest rate is no longer determined by “the”” marginal
product of capital, simply because the latter varies across production units, depending on
whether they are credit-constrained or not. The entire distribution of wealth now matters,
and not only aggregate wealth. This makes the dynamics of the wealth distribution and
the interest rate substantially more complicated than in the no-credit-rationing case, where
we could first track down the non-linear evolution of aggregate wealth (a single-dimen-
sional state variable) without worrying about the distribution before coming back to the
issue of the long-run distribution once the unique possible long-run interest rate r¥ is
determined (these distributional dynamics then followed a linear Markov process).

Given the equilibrium interest rate at time ¢r,=r(G,) (given by equations (6) and (7))
individual transitions w; +(w;) are the same as in the first-best world (equations (3)) for
the fraction of the population which is not credit-constrained at time ¢ (i.e. those dynasties
iel s.t. w;,>w(r,)). The new individual transitions for those dynasties which are credit-
constrained (there will be none if r,<r(q)) are given by:'®

f(ko(r)) — r(ko(r)—w)/q with probability ¢

If wi <w(ry), wier1(wi) = ili 8
” (r)s Wi+ 1(Wie) {0 with probability 1 —gq. v

17. If W, is so low that qf'(W,)>1+r*(q), then everybody turns to the low-effort investment ko(r,), the
equilibrium interest rate is r,=qf(W,)—1 and there is no credit rationing. We do not consider this case since
we know from Proposition 1 that this can only be temporary under the assumption s> so.

18. As in the first-best case, risk neutrality implies that agents are indifferent between all possible ways to
divide total income between the lucky and the unlucky states, and we pick these particular transition functions
for simplicity (see note 8). Note that with non-verifiable this “indeterminacy* exists only for credit-constrained
agents investing ko(r) and supplying low effort anyway: unconstrained borrowers making the high investment
need to bear “risk” to have adequate incentives, so that the individual transitions given by equation (4) are now
the only possible ones for w;,>w(r).
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FIGURE 3
Individual transitions with credit-rationing (r(q) <r*)

We represent these transition functions on Figure 3 for an equilibrium interest rate r, for
which there is some credit-rationing (r(q) <r,<r*(q)).

The equilibrium interest-rate schedule given by equations (6) and (7) and the indi-
vidual transitions given in equations (3) and (8) define a non-linear aggregate transition
function G, (G,). If the economy starts with some initial distribution of wealth Gy, this
defines an infinite sequence of wealth distributions and equilibrium interest rates
(G4, r)iz0. We are interested in the long-run steady-states of this dynamic system, i.e. in
the set of (G, F) such that G,+1(G,) =G and r,=r(Gy). In the same way as in the
first-best case, for any possible long-run interest rate r,, individual transition functions
define a linear, globally ergodic Markov process converging toward a unique stationary
distribution G, (w). It follows that an interest rate r,, can be self-sustaining (i.e. can be
a long-run steady-state interest rate) iff r is equal to the equilibrium interest rate r(G,o)
associated to its stationary distribution G, .

Proposition 3. Assume (A0) and 0<q<qo. To each possible stationary interest-rate
ro€[0; r*(q)] corresponds a unique stationary, ergodic distribution G,.,(w). Then r,, is a
long-run steady-state interest rate of the dynamic system (G,+1(G,), r,=r(G,)) defined above
if and only if 1, =r(G,x)-

If the long-run interest rate r% associated with unconstrained accumulation (equations
(1) and (2)) is sufficiently low that no credit constraint ever appears (i.e. ry <r(g)), then
high aggregate wealth, low equilibrium interest rates and no credit rationing will be self-
sustaining, so that the no-credit-rationing steady state (G %, r%) analyzed in Section 2 will
also be a steady-state of the second-best economy. This will be so if the saving rate s is
high enough.

However this is not in general the only possible long-run outcome of the economy.
Along with this no-credit-rationing steady state and for the same parameter values there
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can co-exist another possible long-run steady state associated with a higher interest rate
ri¥>r(q)>r¥%, and another stationary distribution G%*(w) with a positive steady-state
fraction G %)) (w(r%*)) of credit-constrained agents. For this to be true, two key conditions
must hold.

First, it must be the case that the steady-state fraction of credit-constrained borrowers
G,(w(r)) increases sufficiently as the interest rate r goes up. In general, a higher interest
rate has the effect of making both upward mobility and downward mobility less likely: it
is more difficult to escape the credit-rationing interval [0, w(r)] both the cutoff w(r) is
higher and because credit-constrained agents are net borrowers'®), and at the same time
it is more difficult to fall into this interval (because the wealthy have high interest incomes
even if their investment project fails). The net effect on G,(w(r)) will be positive if the
first effect dominates, i.e. if the “credit-constraint effect’” dominates the ““interest-income
effect”.

Wirs

]
|
|
I
|
|
sy(r')/q W - )
|

45°

W(r')
FIGURE 4
Individual transitions with credit-rationing [r(q) <r <r’'<r*(q))]

Because of risk neutrality and the way we modelled individual transitions, the second
effect does not operate: wealthy agents always have a fixed probability p of going bankrupt,
and this does not depend on the current interest rate. It follows that G,(w(r)) increases
with r because of the credit-constraints effect. In Figure 4 we represent the same transitions
as in Figure 3 but for a higher rate r'>r: two consecutive successful investment periods
to escape from credit rationing in Figure 3, whereas it takes much more time in Figure 4,
implying a higher steady-state fraction of credit-constrained individuals. Given the way

19. We show in the appendix that ko(r) > w(r) (at least for g sufficiently small), so that credit-constrained
agents are net borrowers (if w;<w(r) then w;<ko(r)). If credit-constrained agents were not net borrowers, then
they could benefit from a higher interest rate and their steady-state fraction G,(w(r)) may not increase with r,
in which case the no-credit-rationing steady-state would be the unique steady-state under assumption (A1)
(below). In any case, this property would be entirely driven by the 0-1 effort decision, and more generally it
would obtain in models with non-convexities and fixed investments where credit-constrained individuals can
make no investment and lend their low wealth (as in the recent literature referred to in Section 1). In contrast,
credit-constrained agents are always net borrowers in the continuous-effort version of our model (Piketty (1992)):
this is the natural implication of a decreasing-returns technology.
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we modelled credit rationing, this effect will be particularly strong if ¢ is small: as g tends
to zero credit-constrained dynasties can make only arbitrarily small investments until they
reach the threshold w(r) so that the steady-state fraction of credit-constrained individuals
G.(w(r)) goes to 1.%°

Next, it must be the case that the existence of a higher fraction of credit-constrainted
dynasties tends to push the equilibrium interest rate up. This, together with the first
condition above, will make high interest rates self-sustaining, providing that the saving
rate is not too high (but higher than the minimum saving rate making low interest rates
and no credit-rationing self-sustaining). Credit-constrained agents supply less capital than
other agents: for a given rate r, they accumulate sqf(ko(r) while others accumulate
spf(k(r)). But they also demand less capital: ko(r) <k(r). A higher fraction of credit-
constrained agents will tend to push the equilibrium rate up if the first effect dominates,
which requires the average product of capital of unconstrained agents pf(k(r))/k(r) be
higher than the average product of capital of credit-constrained agents qf(ko(r))/ko(7).
Given the way we modelled credit-rationing, it is sufficient to assume that:

(A1) k—f(k)/kf"(k) increases with k.

Under these conditions one can prove that there will exist at least one interest rate
r¥* > r(q) such that r%* and its associated stationary distribution G%* constitute a steady-
state.

Proposition 4. Assume (AO0) and (Al). Then there exists s1(q), s.(q) such that
0<s0(q) <s1(q) <s52(q), q1 such that 0<q,<p, such that if s/(q) <s<sx(q) and 0<q<gq,
there exists at least two steady (states r%, G%) and (r¥*, G%¥) of the dynamic system
(Gi+1(G)), ri=r1(G))), with r§<r*(q)<r§*.

One can summarize the intuition for this multiplicity in the following way. Starting
from the high-accumulation, low-interest-rate steady state (r%, G%), a positive shock on
the interest rate can be self-sustaining if it pushes sufficiently many agents in the credit-
rationing region for a sufficiently long time, so that capital accumulation is sufficiently
depressed to make high interest rates self-sustaining. The key conditions for this to happen
is that credit rationing has large negative consequences for capital accumulation, which
in our model is captured by a very low ¢.”'

Moreover these multiple steady states can always be ranked in aggregate terms: steady
states associated to higher interest rates have lower aggregate capital stock and aggregate
output. This is simply because under (Al) steady-state multiplicity requires the steady-
state fraction G(w(r)) of credit-constrained individuals to be increasing with r.

Proposition 5. Assume (A0) and (Al). Then if there exist multiple steady states
(Gowi(W), rooi) for 1 Sisn, withro1 <- - - <ren, then aggregate capital stock W,; and output
levels Y .; associated to these steady-states are inversely related to the interest rate:

Wool>' ">WoonandYool>' © > Yeon

20. This provides the main justification for modelling credit rationing the way we did: g measures the
outside option of credit-constrained people, providing us with a simple, intuitive indicator of the toughness of
credit rationing.

21. Note that it is crucial that these dramatic effects of the imperfect credit market appear only for high
interest rates. For example if there was no credit market at all and therefore no equilibrium interest rate,
then individual transitions would not depend on the current distribution and there would be no steady-state
multiplicity.



PIKETTY DYNAMICS OF THE WEALTH DISTRIBUTION 185

On the other hand, if the net effect of credit-constrained individuals on the interest
rate is negative (i.e. if their lower capital demand ko(r) <k(r) outweighs their lower capital
accumulation spf(ko(r)) <spf(k(r))), which in the particular context of our model means
that (A1) does not hold, then opposite phenomena could in general happen. The existence
of multiple steady-state interest rates would then require the steady-state fraction of credit-
constrained agents G,(w(r)) to be sufficiently decreasing with r. As noted above, this could
arise if credit-constrained agents are net lenders (ko(r) >w(r)) or if the “interest income
effect” is stronger than the “credit-constraint effect”, so that higher interest rates make
credit rationing a more transitory state in individual trajectories. One could then obtain
high steady-state interest rates associated to high output and high wealth. We chose to
focus on the opposite situation because it seems both more natural and interesting.

5. CONCLUDING COMMENTS

There is no room for long-run growth in our constant-returns accumulation model. How-
ever, our long-run level effects of short-run shocks could easily become long-run growth
effects if one adds some rationale for self-sustained growth to our framework. For example
if long-run growth is positively related to aggregate investment through some economy-
wide externality (as in Romer(1986)), then the low-interest-rate, high-wealth-mobility ste-
ady state would exhibit faster growth than the high-interest-rate, low-wealth-mobility
steady state.”” Since stationary distributions associated to higher rates are typically more
unequal (there are more credit-constrained poor and the very rich accumulate more),
countries with more unequal wealth distribution would grow less, assuming that national
credit markets are imperfectly integrated (so that different countries can be in different
steady-states).

Our results can also contribute to the recent debate about credit cycles and the credit
crunch. This literature typically treats the supply of funds as exogeneous, and shows how
the (given) current availability of credit and wealth distribution determine the current
allocation of capital.”® We show how capital accumulation itself is determined by the
pattern of credit allocation of the previous period, and that this interaction between credit
constraints and capital accumulation can give rise to multiple equilibrium paths even with a
perfectly convex, Solow-type technology. Therefore credit rationing is not only a powerful
transmission mechanism (as emphasized by this literature), but can also have long-run
consequences: policy shocks reducing real rates temporarily from r%* to r can be self-
sustaining through the induced effects on accumulation and the distribution of new worth
and credit (and conversely). :

APPENDIX

Proof of Proposition 1. We note y(r)=pf(k(r)) — (1+r)k(r), yo(r)=qf(ko(r))—(1+r)ko(r). We have
Y (ry=—k(r), yo(r)=—ko(r); thus y'(r)—yo(r)<0, and since y(0)—yo(0)>1 by assumption (A0) and y(r),
Yo(r)—0 as r— oo, there exists r*(g) >0 such that

) =1>y(r) forr<r*(q)

22. To ensure that credit constraints will persist with long-run growth, one must assume that the effort
cost e=1 agents have to pay to get the high success probability (p) grows at the same rate as the economy.
Otherwise incentive constraints would disappear in the long-run.

23. For example, Bernanke and Gertler (1989, 1993) document how credit constaints and actual investment
depend on firms’s net worth and how it varies across different types of firms. Theoretical models also take capital
supply as given and focus upon the allocation of credit across productive units (see, e.g., Kyotaki and Moore
(1993) and Holmstrom and Tirole (1993)).
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and

y(r)—1<yo(r) forr>r*(q).

Next, dr¥ /ds <0 (by concavity of f, see Figure 2), r¥ — oo as s—0 (since f"(c0)=0) and r%—0 as s—»>oo (since
f'(00)=0); thus there exists so1(q) =k(r*(q))/pf (k(r*(g)) such that if s> s0,(q)r% <r*(q). This ensures that if
r,<r*(q) initially it will remain so, so that r¥ is indeed a steady-state interest rate of the first-best economy. To
ensure this is the only one, s must be high enough so that if r,>r*(g) initially it will eventually pass above r(q).
In the same way as above, this will hold if s<s02(q) =ko(r*(¢))/qf(k(r*(g)). Thus if s<s0(q) =Max (s01(g),
s02(q)), dynasties of the first-best economy always use high effort and high investment in the long-run, and
W?¥ and s% are the unique long-run values (we shall see below that Max (soi , So2) = So> under assumption (A1)).

Finally we have to prove that G,(w) converges toward a unique G % (w) as t— 0. Since r,—r% and individual
transition functions vary continuously with r, we just have to look at the transitions associated to r¥ . These
transitions are linear Markovian, there exists a maximum long-run wealth level w,,,(r%) as long as p is sufficiently
close to 1 (see Figure 3; this follows from s(1+r%)=sf"(W¥%)<1; see Figure 2), they are monotonic (i.e.
Wi+ 1(w;;) dominates w; . (w},) in the first-order stochastic sense if w;, > wj,), and they verify the following *“concav-
ity property”: one can find a point we[0; w,,(r%)] (say, w=k(rk%)) such that there exists N> 1 and £>0 such
that proba(w;,+ y>w|w;;=0)> & and proba(w; .+ y < W|w;, = w,,(r%)) > £. We can then apply Theorem 2 of Hopen-
hayn and Prescott (1992, p. 1397) to derive the existence of a unique stationary distribution G%(w) toward
which G,(w) converges as t— o0, irrespective of the initial distribution Go(w).

Given the simple transitions functions of equation (3) however, we can also prove global covergence by
computing directly the unique stationary distribution, including in the case where p is not sufficiently close to 1
(so that s(1+r%)/p>1 although (s(1+r%)<1) and where there exists no maximum long-run wealth w,,(r%).
Define wo=0 and wr., =s( f(k(r¥)) + (1 +rE)(wr—k(r%))/p); this defines an infinite sequence (wr)rs0 converg-
ing to w,,(r¥) if s(1+r%)/p<1 and to +oo otherwise (see Figure 2). Note H(w)=G(w+)—G(w—) for any
distribution G(w). VGo(w), equation (3) implies that G,(0)=1—p, and then that H>(w,)=p(1—p), and more
generally that H,(wr)=p"(1 —p) for any t>0 and T<t. This implies that G, converges toward G%, defined by
H%(wr)=p"(1-p)¥T20. |

Proof of Proposition 2. We have w(r)=k(r)—[pf(k(r))—p/(p—¢)]/(1 +r). This gives

W) =[pf k(M) —p/(p— D)/ (1 +1)?

Moreover [pf(k(r)) — (1 +r)k(r)]—[gf (k(r)) — (1+r)k(r)] > y(r) = yo(r), and y(r)=yo(r)>1 for r<r*(g). Thus
pf (k(r))—p/(p—q)>0 for r<r*(q), and therefore w'(r)>0 for r<r*(q). Define go s.t. pf(k(0))—k(0)=
p/(p—qo). By assumption (A0), go; >0. If > go, then w(0) <0. Moreover g—w(r*(g)) is continuous, w(r*(0))=
0, and
aw(r*())/dg=w (r*(@)r*(q) +p/[(p—9)*(1 - r*(9)].
Since r*(q) =—f(ko(r*(q)))/[k(r*(q)) —ko(r*(¢))] and ko=0 for g=0, it follows that
dw(r*(g))/dql,=0=1/p(1+r*(0))>0.

It follows that there exists go,>0 s.t. for g <gew(r*(¢g)) >0. By continuity of r—w(r) it follows that for ¢ <qo,
there exists r(g) <r*(q) s.t. w(r(g))=0 and w(r)>0 for re Jr(q); r*(¢)]. Finally, if we take go=Min(qo, go2), (i)
and (ii) of Proposition 2 hold for 0<g<g(i.e. r(g)>0). |

Proof of Proposition 3. We apply the same direct-computation method as in Proposition 1 to prove global
convergence to a unique stationary distribution G,.(w) for any given possible long-run interest rate r, . If
ro, <r(q), the transitions functions are the same as with first-best credit (and also if r.>r*(g)). If
r(q)<r.<r*(q), define wo=0, wr.=s(f(ko(r))+(1—ru)(ko(r)—wr)/q) if wr<w(ry) and wr,, =
S(fk(re)) + (1 +r)(wr—k(r..))/p) if wr>w(r). Define T* >0 s.t. wr= <w(r..) and wy=,>w(ry). G,o(w) must
be such that

Groe(W(r)) = (1= )G, (W(r)) + (1= p)(1 = G, (W(r)))
+- 4" (1=p)(1 =G, (W(r)))
that is:

Gru(W(r))=(1=p)/I(1=9)/(1 =" )= (p—9)]
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and

G,(0)=(1=¢)Gro(W(re)) + (1 = p)(1 = G (W(r0)))
H,o(wr)=q"G,(0) for T<T*
H,oo(wr)=(g" +pT " 7")G,o(0) for T>T*

(as in the proof of Proposition 1, H(w)=G(w+)— G(w—) for any distribution G).

This defines a unique stationary distribution G, (w). In the same way as in Proposition 1, one can prove
that G, converges toward G, , VGy.

The second part of the proposition follows directly from the definitions given above. ||

Proof of Proposition 4. In the same way as in the proof of Proposition 1,
r¥ <r(q) if s> s10(q) =k(r(q))/pf(k(r(g))). Thus r¥ =r(G%) if s>s10(q) and g <go. Moreover (A1) implies that
h:q—ko(r, q)/qf (ko(r, q)) is a decreasing function, since by definition gqf(ko(r,q))=rVq, so that h(q)=
kof"(ko)/rf(ko), implying that A'(¢q) <O since dko/dg>0 and k—kf"/f decreasing by assumption. It follows that
ko(r(9))/qf (ko(r(9))) > k(r(q)) /pf (k(r(g))) =5s10(q).  Define  s2(q) =ko(r(9))/qf(ko(r(g))), and su(g)=
ko(r*(9))/qf(ko(r*(g))). We just saw that s,(q)>si0(q). Moreover, sx(g)>si(g) since r*(q)>r(g) and
r—ko(r)/qf(ko(r)) is a decreasing function of r. If we define s,(¢) = Max(s10(9), 510(q)), if follows that 5,(¢q) <s2(q),
and that if se 1s1(g); s2(g)[ then (i) r=r(G.), and (ii) 3r,e Ir(q); r*(g)[s.t. sqfUko(r,)) =ko(r,).

(a) We will first prove that there exists g, >0 s.t. if 0<g<g, there exists re ]r(q); r*(q)[s-t.
S(r)<o0
where S(r) is the “‘excess supply function” (see below) defined by

S(r)=8(g, ) =[1=G(w(r)]lspf (k(r)) — k(r)] + G(w(r))[sq/(ko(r)) —ko(r)]

(G, (w) is the stationary distribution associated to interest rate r; we know that it is unique from Proposition
3)
Pick up some sequence r[g]€ ]r(q); r,[ for g small such that r,—r[g] converges monotonically toward 0.
First note that g—G,(w(r)) tends to 1 as g—0+ for any relr(q); r(g); r,[. This is because

G(w(r)) Z2(1-q)G,(w(r)) + (1 =p)(1 = G,(w(r))
that is:

G, (w(r))>(1-p)/(1-p+q)>1-q/(1—p).

Next note that spf(k(r)) —k(r) < M =spf(k(r*(0))) — k(r*(0)) Vr r*(0).

Define Z(g, r)=sqf(ko(r, q)) —ko(r, g). Since re Jr(q); r,[, Z(g) <O0Vq. Moreover r[g]-r,—0 as g—0 (since
r(q), r*(q)—r*(0) as g—0), and (ii) above then implies that Z(g, r[q])—>0— as g—0+.

We now have: S(q, r[q]) <[g/(1—p)IM+(1—gq/(1—p)1Z(q, r[g]). Both terms tend to 0 to g—0 but they
are opposite sign: intuitively, the negative second term will will if r[¢] tends sufficiently slowly to r, as g—0.

To prove that this will always be so, pick a s.t. 0<a<(1—p)/M. Assume first that Z(q, r[g]) <—gq/a.
Then:

S(g, rig)) <q(M/(1—p)—1/a)+[a/(1-p)lg" for g small.

Since M /(1—p)—1/a<0 by a assumption, S(g, r[g]) <O for g small. That is, there exists g;>0 such that if
g<qi and Z(g, r{g]) <—q/a, then S(q, r[g]) <0.

Assume now that Z(q, rlq]) > —q/a, i.e. —aZ(q,r[q]) <q. Since g—Z(q, r) increases with g, it follows that
Z(—aZ(q, rlq)), rlq]) <Z(q, rlq]). This implies that

S(—aZ(q, rlqD), <[—aZ(q, rlg))/(1—p)IM+ (1 +Z(q, rlq])/(1 =p))Z(rlg] for r[g])q small.

Since 1—aM /(1—p)>0, if follows that S(—aZ(q, r[q]), r[q]) <O for g small. That is, there exists g >0 such
that if g <gq} and Z(q, rlq]) > —q/a, then S(—aZ(q, r[q]), r[q]) <O0. Finally, let ¢, =min(q}, —aZ(q?, r*[4}]). Then
if g<q,, there exists re Ir(q); r(q)[s.t. S(r) <0 (take r=r[q] in case Z(q, r[q]) <—g/a, and take r=r[q'] with ¢’
s.t.—aZ(q', r[g’))=q in case Z(q, r[q]) > —q/a). Thus we have proved the desired property.

(b) Now consider the mapping r—S(r). If r—G,(w(r)) was continuous, then this mapping would be
continuous, and since S(r[g])<0 and S(r,)>0 this would prove the existence of ri‘e]rlgl;r,[ such that
S(r¥*y=0. This would establish that rX*=r(G%*), since S(r) is the long-run
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excess supply for capital:
S(r)=W,—=[(1 = G(w(r))k(r) + G (w(r))ko(r)]
with
W, =(1=G,(w(r)))spf(k(r)) + G(w(r))spf (ko(r))-

However r—G,(w(r)) is discontinuous. Fortunately one can show that it is lower semi-continuous, thereby
establishing it must cross the horizontal axis. To prove that consider the number of lucky periods T*(r) it takes
to pass over w(r) as a function of the candidate long-run interest rate r (T* is defined in the proof of Proposition
3). For TS T*(r) we have wr. =s(f(ko(r)) — (1= r)(ko(r) —wr)/q), i.€. wrs1+w*(r)=[s(1 +7r)/g)(wr+w* ()],
with w*(r) = [sf (ko(r)) — s(1 + r)ko(r)/q]/[s(1 + r) /q— 1]. For q small enough w*(r) >0, and w*'(r) <0. Since w=
w*(O[(s(1+r)/q)T—1], it follows that

T*(r)=Int [log (1+w(r)/w*(r))/log (s(1+1)/q].

To ensure that T*(r) is increasing with r, it is sufficient to make sure that credit-constrained individuals are net
borrowers: if w(r) <ko(r) then dwy/dr<0 for TS T¥*, so that T*(r) increases with r (since the threshold w(r)
increases as r increases; see Proposition 2). This, in turn, will be the case in particular if g is small enough:
for re]r(q); r [, both ko(r) and w(r) tend to 0 as g—0; but dko/dg=—f"(ko)/qf" (ko)—+oo as g—0, whereas
dw(r)/dg—1/p as g—0 (see the proof of Proposition 2); it follows that ko(r) > w(r), at least for g small enough.

Thus for ¢ small enough T*(r) is an increasing and therefore upper semi-continuous function of r, and
so is G,(w(r)) (see the proof of Proposition 3 for G,(w(r)) as a function of T*). Since r—S(r) is increasing for
a fixed fraction G,(w(r)) of credit-constrained agents but decreases as G.(w(r)) “jumps” to a higher value, it
follows that r—S(r) is lower semi-continuous. Thus for ¢<g,, Irk*e Jr[q]; r,[s.t. S(%*)=0. |

Proof of Proposition 5. Step (b) of the proof of Proposition 4 established that G,(w(r)) was increasing
with r for r in the credit-rationing interval, i.e. re ]r(q); r*(q)[, for g small enough. This is also true for r<r(q)
and r>r*(q) (for r<r(q) there is no credit rationing so G,(w(r)) =0, and for r>r*(q) everybody invests ko(r)
so G,(w(r))=1). If (r, G,) constitute a steady state of (G,.(G,), r,=r(G,)), then steady-state aggregate output
Y, and wealth W, are given by

Y, =G, (w(r)qf (ko(r)) + (1= G,(w(r)))pf (k(r))
W, =5Y,= G, (w(r))ko(r) + (1 = G(w(r)))k(r).

Since ko(r) <k(r) and both decrease as r increases, it follows that Y, and W, are decreasing functions of r.
Moreover assumption (Al) alone implies that G,(w(r)) must be increasing for multiple steady-states to exist:
we saw in the proof of Proposition 4 that the “long-run excess supply function S(r) increases with r if G.(w(r))
is kept fixed and that it decreases if G,(w(r)) rises; so even outside the case analysed in Proposition 4 (i.e. ¢
small enough), steady-state multiplicity implies “steady-state aggregate ranking” if (A1) holds. ||
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