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Abstract

This paper derives and tests a procedure to estimate a general class
of panel data models that display a regime switching structure, as
well as potential correlation between random e¤ects and explanatory
variables. An application to wages’ dynamics in the United-States
from 1968 to 2001 is presented. It is likely that a change of regime
has occurred for the earnings process, as documented by a vast body
of research on the rise of inequality. This model detects such a change
of regime in the early 80s for all cohorts of age on the labor market at
that date, and emphasizes that the rise in the return to education along
the life cycle has been shifted di¤erently across cohorts. Moreover, as
the model accounts for correlation between unobserved heterogeneity
and regressors, I quantify the bias in the return to schooling when it
is calculated in cross-section: it amounts to circa 30% of the college
premium after 1980, and is carried almost entirely by the two or three
postwar cohorts of individuals.

JEL Classi…cation: C11, C15, C23, C24, C34, J24, J31, O15.

1 Introduction

There has been a large body of research insisting on the rise of inequal-
ity in the United-States over the last two decades. Some correlated events
have been exhibited, such as the rise of the skill premium despite the aug-
mented supply of college graduates, the rise of unobserved determinants of
wages, the increase of women’s participation in the labor force, and the
growing inequality across occupational groups. These trends have been re-
cently surveyed in Eckstein and Nagypal (2004), and discussed in several

¤I thank Francis Kramarz and seminar participants at CREST (INSEE) for helpful
discussions.

yCREST (INSEE) and PSE (joint research unit CNRS-ENS-EHESS-ENPC), Paris.
E-mail: fabrice.murtin@ensae.fr.

1



others (Card-DiNardo (2002), Lemieux (2004), Autor-Katz-Kerney (2004)).
Indeed, the classical explanation based on skill-biased technological change
turns out to be challenged by some empirical problems (measurement prob-
lems in the CPS), puzzles (the slowdown of inequality in the 90s despite the
technological acceleration, the closing-gender gap), or challenging explana-
tions (composition e¤ects, minimum wage).

This paper shows that the rise of the college premium since the 80s has
been probably smaller than that often depicted in this litterature, and it
proposes new estimates of the college premium.

Indeed, most of the papers on this topic estimate a classical Mincerian
equation in each year t

ln Yi;t = Xi;t¯t + ui;t

where Yi;t is the real wage of individual i at time t; Xi;t a vector of individual
characteristics and ui;t a white noise. The modi…cation of some returns ¯t is
pointed out, especially for education. Nevertheless it is possible that the rise
of these coe¢cients may be associated to modi…cations of unobserved de-
terminants that are correlated with observed ones: the rise of the return to
education might be governed by endogenous e¤ects. Actually Taber (2001)
uses a dynamic programming selection model and …nds a strong role of un-
observed ability in the increase of the college premium. On the other hand,
Chay and Lee (2000) have shown that the rise in the return to unobserved
ability could explain at most 30-40% to the rise of the college premium.
They use the variations across groups and time of the within groups income
variance to derive this conclusion. This paper argues that a general way
to control for this potential problem is to account for correlated random-
e¤ects, i.e to estimate a Mincerian equation whose residuals are potentially
correlated to the regressors. Therefore the following equation is considered

lnYi;t = Xi;t¯ + bi + ui;t

where bi is a zero-mean random-variable that is potentially correlated to
some regressors such as education or race.

In addition, when the structure of the economy is deeply modi…ed through
technological revolutions or institutional evolutions, then the return to hu-
man capital, the importance of luck or unobserved heterogeneity might vary
consequently. Therefore a change of regime in the US wages’ dynamics is a
plausible hypothesis that one would like to account for within the framework
of a correlated random-coe¢cient model. All coe¢cients, as well as the vari-
ance of the residuals ui;t; are allowed to vary across time through di¤erent
regimes governed by an unobserved variable which follows an hidden Markov
Chain. Markov-Chain Monte-Carlo methods have recently been developed
for numerous models1, and are of particular interest when the likelihood

1see Chib (2001) for a review
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of the model is complicated and/or leads to numerical unfeasibility. They
constitute in this case a natural approach.

The paper develops an estimating procedure for both uncensored and
censored data. It is tested and validated on di¤erent simulated datasets,
then is applied to wage dynamics in the United-States from 1968 to 2000,
using the PSID (SRC) database. The estimates conducted on 5-years cohorts
of age show that there has been a switch of regime in the early 80s, and none
since that date. The pro…le of the return to education has varied di¤erently
accross cohorts, following a downward shift for younger cohorts. I …nd that
for some particular cohorts unobserved ability is signi…catively correlated
with education, leading to a 30% upward bias in the annual rise of the
return to education.

2 The model

The following regime switching model is considered:

yi;t = xi;t¯st + zi;tbi;st + ¾stui;t; i · N; t · T (1)
bi;st Ã NL (0;Dst)
ui;t Ã N (0; 1)

where xi;t is a vector of observations of dimension 1xK, zi;t a vector of
observations of dimension 1xL, ui;t is a strictly exogenous iid white noise,
and st is a two-states Markov chain starting from its invariant distribution
with transition probabilities ¼ = (¼k;l)k;l 2f0;1g

P (st = l j st¡1 = k) = ¼k;l (2)

From a bayesian standpoint parameters ¯st; ¾st;Dst;¼ are assumed to be
random variables with independant prior distributions as it is detailed below.
The random variables bi;st are assumed to be iid, and given Dst; conditionally
independant from ui;t;¯st;¾st; ¼:

In a basic speci…cation which excludes regime switching, this kind of
structure is called “mixed models” in the statistical litterature. They di¤er
from the traditional random-coe¢cient model introduced by Swamy (1970)
or Hsiao (1974) because they do not assume orthogonality between explana-
tory variables and random variables (here the bi;st variables). These models
have been extensively used in many …elds, such as animal breeding in bio-
statistics2 .

Here all parameters are allowed to vary between the two regimes, includ-
ing the random-e¤ects bi;st . From an economic perspective each individual
i has two levels of unobserved heterogeneity, and the variances of those het-
erogeneity distributions di¤er as well. With L = 1 and zi;t = 1 for all i and

2see Wang (1994) for example.
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t; these are reduced to unobserved heterogeneity in the levels of the depen-
dant variable. A larger number of states can be considered, but given the
generally small panel length T; this could make estimation harder. At this
stage the model is not identi…able because of invariance by permutation of
the regimes, so that the additional identi…cation constraint ¾0 < ¾1 is set:

The density of observations is gaussian conditional on the regime and on
the corresponding parameters

f(yi;t j st = k;µk) Ã N ¡
xi;t¯k + zi;tbi;k;¾2

k
¢

(3)

where µk = (¯k; bi;k; ¾k; Dk;¼k): Bayesian estimation treats the parameters
of interest £ = (µ0; µ1) as random variables, and aims at inferring the pos-
terior distribution of parameters conditional on the data p (£; s1:::sT j Y ) :

Modelling the unconditional prior distribution of parameters is an impor-
tant step since improper priors generally lead to ill-de…ned posterior distri-
butions3. The following priors are natural because they enable closed-form
expressions of the posterior distribution:

¯k Ã NK
¡
¯0; B0

¢

bi;k j Dk Ã NL (0;Dk)

1=¾2
k Ã G

µ
º0
2

;
±0
2

¶

D¡1
k Ã WL (½0;R0) (4)

where G stands for a Gamma distribution, W for a Wishart distribution,
and (¯0; B0; º0; ±0; ½0;R0) are hyperparameters4.

Classical priors on the transition matrix specify the ith row of the tran-
sition matrix as a Dirichlet distribution

¼k = (¼k;0;¼k;1) Ã D(®k;0 ; ®k;1) (5)

The joint probability density function of (£; s1:::sT ; Y ) is

p (£; s1:::sT , Y ) = p (Y j £; s1:::sT )p (s1:::sT j £)p (£) (6)

/
NY

i=1
f(Yi j £; s1:::sT )

TY

t=2
¼st¡1;st g(s1)

1Y

k=0

p (¼k) p (µk)

where £ = (µ0; µ1) are the parameters of interest and g(:) is the invariant
distribution of the Markov Chain (the eigenvector associated to the eigen-
value 1).

3see Hobert and Casella (1996) for an exemple relevant to this paper.
4they could eventually be treated as random variables just as the parameters of interest

above.
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3 Gibbs sampling estimation

Gibbs sampler techniques have been widely used in Markov Chain Monte
Carlo methods. They consist in three steps:

1. Setting initial values for all parameters.

2. Drawing random sequences of the parameters of interest according to
the conditional posterior distribution. Parameters are generally drawn
sequentially and by group: for instance in the …rst regime, one will
draw random e¤ects bi;0 conditionally on subsequent realizations of
other parameters (¯0;¾0; D0; ¼0) and hidden variables (s1:::sT ).

3. Iterate the sampling of £ for M times. The resulting distribution
(£1;£1; :::£M) is a Markov chain that converges to the target distri-
bution under fairly general conditions (see Roberts and Smith (1994)
and Tierney (1994)). Generally a burn-in phase is implemented and
the corresponding values of £ are discarded from the …nal sample.

This procedure is a natural tool for identi…cation of models that allow
the correlation between unobserved heterogeneity and regressors to be non-
zero. Let us consider the simplest case where L = 1 and zi;t = 1 for all
i and t; the basic econometric results are the following: …rst, the usual
GLS estimator is no more consistent, as well as any estimator using the
Between variance of the observations. The Within estimator or First Dif-
ferencing methods provide consistent estimates because they eliminate the
source of bias, namely unobserved heterogeneity. Nevertheless, this comes
at the price that all explanatory variables must be time-varying in order to
ful…ll the standard rank condition, i.e. inversibility of the matrix E ~x0i;t~xi;t
where ~xi;t stands for the transformed explanatory variables. As soon as race
or education are included into the set of regressors, this procedure does not
guaranty anymore the identi…cation of the model. Instrumental variables
have been proposed in case some regressors are exogenous (e.g. Amemiya
and MaCurdy (1986)), whereas the Chamberlain approach5 extracts infor-
mation from the moments of the variables implied by the model to identify
the parameters of interest.

In a Gibbs sampling framework identi…cation of ¯st follows from orthogo-
nality between residuals ui;t and regressors xi;t conditionally on unobserved
heterogeneity bi;st and variance ¾st; identi…cation of bi;st follows from or-
thogonality between residuals and regressors zi;t conditionally on ¯st, ¾st;
Dst ; and so on for all other parameters of interest (see the algorithm below):
Thus the blocking scheme of the Gibbs sampling, basically an iterative esti-
mation of groups of parameters, exploits the exogeneity conditions without

5see Chamberlain (1982) and Chamberlain (1984).
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assuming anything on the joint distribution of explanatory variables and
unobserved heterogeneity.

A di¢culty arises from the missing data, namely the unknown regime
states. Di¤erent approaches and re…nements have been proposed , see for
instance Billio, Monfort and Robert (1999) or Chopin (2002). As the tar-
get distribution is p(£; s1:::sT j Y ) one extracts information on the states
(s1:::sT ) by inferring the conditional distribution p (s1:::sT j £;Y ) : The pro-
cedure begins with a data augmentation step, which consists in simulating
the unobserved states ŝt from the former distribution: Following Chib(1996),
this is achieved with a forward pass through the data during which one stores
the probability distributions p(st j Y; £) for all t · T; and with a backward
pass where the states ŝt are simulated from the above distributions. Then
parameters are drawn from the conditional distribution p(£ j Y; ŝ1:::ŝT ) up-
dated via Bayes’ rule

p (£ j Y; ŝ1:::ŝT ) =
Y

k=0;1
p (¼k j ŝ1:::ŝT )

Y

t2Tk=ft=st=kg
p(µk j ŝt = k;Yt)(7)

/
Y

k=0;1
p (¼k j ŝ1:::ŝT ) p(µk)

Y

t2Tk
p(Yt j ŝt = k;µk)

=
Y

k=0;1
p (¼k j ŝ1:::ŝT ) p(µk)

Y

t2Tk

Y

i
f(yi;tjŝt = k; µk)

In practice the algorithm is the following:

Algorithm

1. Step 1 (Forward pass): Set p(s1 j Y0; £) to be the stationary distribu-
tion of ¼; which is drawn from its unconditional distribution. Compute
recursively for t = f1; 2:::Tg

p (st = k j Yt; £)=
p (st = k j Yt¡1;£) f (yt j Yt¡1; µk; ¼k)P
l=0;1

p (st = l j Yt¡1; £) f (yt j Yt¡1; µl;¼l)

where

p (st = k j Yt¡1; £)=
X

l=0;1
p (st = k j st¡1 = l;£) p(st¡1 = l j Yt¡1; £)

2. Step 2 (Backward pass): Simulate from p(sT j Y;£) ; and compute
recursively for t = fT ¡ 1;T ¡ 2:::1g

p(st = k j Yt;£; ŝt+1)=
p (st = k j Yt;£) p (ŝt+1 j st = k; ¼)P
l=0;1

p (st = l j Yt; £) p (ŝt+1 j st = l; ¼)

where p (ŝt+1 j st; ¼) is the …rst column of ¼ when ŝt+1 = 0; the second
otherwise. Then ŝt can be drawn from the above distribution.
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3. Step 3 (Parameters sampling): Given (ŝ1:::ŝT ); simulate µk from its
posterior conditional distribution

p(µk)
Y

t 2Tk=ft=st=kg

Y

i
f(yi;tjŝt= k; µk)

With the subsequent priors and independance assumptions, the pos-
terior distributions admit closed-forms given by:

² ¯kÃNK
Ã

Bk(B¡1
0 ¯0+ 1

¾2k

NP
i=1;t 2Tk

x0i;t (yi;t ¡ zi;tbi;k) ); Bk= (B¡1
0 ¯0+ 1

¾2k

NP
i=1

x0i;txi;t)
¡1

!

² bi;kÃN
Ã

Di 1
¾2k

NP
t 2Tk

z0i;t(yi;t ¡xi;t¯k);Di = (D¡1
k + 1

¾2k

NP
t 2Tk

z 0i;tzi;t)¡1
!

:

² D¡1
k ÃWL

µ
½0 +N; (R¡1

0 +
NP
i=1

bi;kb
0
i;k)¡1

¶

² 1
¾21

ÃG
Ã
º0+N . card (T1)

2 ; ±02 + 1
2

NP
i=1;t 2T1

v2i;t

!

where vi;t = yi;t ¡ xi;t¯1 ¡ zi;tbi;1; t 2 T1

² 1
¾20

Ã T G [ 1
¾21
;+1)

Ã
º0+N . card (T0)

2 ; ±02 + 1
2

NP
i=1;t 2T0

v2i;t

!

where vi;t = yi;t¡xi;t¯0¡zi;tbi;0; t 2 T0 and T GA represents a truncated
Gamma distribution on the interval A:

² ¼iÃD (®k;0 + nk;0 ; ®k;1 +nk;1)

where nk;0 (resp. nk;1) is the number of transitions from state k to state
0 (resp. 1): this updates the transition matrix given (ŝ1:::ŝT ):

Treating the sampling of bi in one block independently from the slopes
¯ can be somewhat tricky because of mixing problem of the Gibbs algo-
rithm. In practice one should use a large number of iterations6 and choose
reasonable hyperparameters.

When independance between unobserved heterogeneity and explanatory
variables is imposed, the algorithm can be adapted. Chib and Carlin (1999)
propose interesting blocking schemes, a simple one consisting in sampling ¯
marginalized over bi and then sampling bi conditionally on ¯: In practice this

6in what follows M = 100000 for the real data case.
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scheme is very simple because the density of the observations marginalized
over bi is gaussian as well

f(yi;t j st = k;¯k; ¾k; Dk) Ã N (xi;t¯k;Vi;t;k) ; with Vi;t;k = ¾2
k + zi;tDkz

0
i;t

(8)
The sampling of ¯k in the former algorithm is modi…ed by taking bi;k = 0
and adapting the scheme to the new covariance matrix.

4 Test of the procedure

In order to test the estimator, four datasets are simulated with the following
structure

yi;t = xi;t¯st + zi;tbi;st +¾stui;t
xi;t = Ài+ "i;t "i;t?ui;t; "i;t?bi;st

(bi;0 bi;1 Ài) Ã N (0;V )

V =

2
4

D0 ¡0;1 ¡0;À
D1 ¡1;À

¾2
À

3
5

Random e¤ects and a time-constant component of explanatory variables
have a joint normal distribution with non-trivial covariance matrix. It allows
for correlation of random e¤ects between regimes as well as with regressors.
For a large number of iterations, the choice of prior parameters does not alter
convergence. In practice I take ½0 = º0 = 12 while R0 and d0 vary with
priors on the mean variances ¾2

k and Dk: Then 8 i; j ®i;j = 1 so that the
prior transition probabilities are uniform on [0,1]: Each estimation consists
in 10000 iterations, and the …rst …ve hundred ones are discarded from the
…nal sample. Table I compares the estimated values with the true ones.

The …rst model considers the univariate case without unobserved het-
erogeneity. Gibbs sampling perfectly estimates the underlying parameters,
as well as it detects the hidden states though one transition probability is
imprecisely estimated (T=30 is somewhat small). Other priors on transition
probabilities could maybe improve the latter estimate. The second model
introduces unobserved heterogeneity, while the third model examines the
multivariate case. All estimates …t the true values, with few exceptions
for the transition probabilities. Last model is a matter of concern since it
introduces some correlation between explanatory variables and unobserved
heterogeneity. With traditional methods, this correlation would have ren-
dered the estimates largely biased, especially in the …rst regime since the
correlation amounts 0.6. In the current framework, all underlying parame-
ters are consistently estimated, as well as most of parameters of secondary
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interest such as the correlations. Figures 1 and 2 depict the convergence of
estimates in the third and fourth models during the …rst thousand iterates.

5 Accounting for censored data

Due to con…dentiality constraints or economic realities many economic in-
dividual …les are censored, which can lead to serious bias in the estimates
if censoring is too important. As a goal is to apply the estimator to wage
dynamics over thirty years, this problem is likely to appear because of un-
employment or exit from the labor force. A basic view is that individuals
do not work if the wage they might earn falls below a certain level, called
the reservation wage. Thus the wage distribution is left-censored, and the
knowledge or the estimate of reservation wages across years can potentially
account for this problem. A simple way to correct the former model is use a
latent variable model, following Chib (1992). Equations 1 are modi…ed the
following way

y¤i;t = xi;t¯st + zi;tbi;st + ¾stui;t i · N; t · T
yi;t = y¤i;t 1y¤i;t>¿ t

bi;st Ã N (0; Dst)
ui;t Ã N (0; 1) (9)

Although the level of censoring might di¤er across individuals, it is only
assumed to vary across time. Interestingly, the algorithm is only marginally
modi…ed. The posterior distribution becomes

p (£ j Y ¤; ŝ1:::ŝT ) /
Y

k=0;1

p (¼k j ŝ1:::ŝT ) p (µk)
Y

i; t2Tk=ft=st=kg
f(y¤i;tjŝt = k;µk)

=
Y

k=0;1

p (¼k j ŝ1:::ŝT ) p (µk) x

Y

i; t2Tk
f(yi;tjŝt = k;µk; yi;t > 0)

Y

i; t2Tk
f(y¤i;tjŝt = k;µk; yi;t = 0) (10)

Then Bayes rule provides

f(y¤i;tjŝt = k;µk; yi;t = 0) / f(y¤i;tjŝt = k; µk)f(yi;t = 0jŝt = k; µk; y¤i;t)(11)
= f(y¤i;tjŝt = k;µk) 1y¤i;t·¿ t

Given the gaussian speci…cation of f; the unobserved values of y¤i;t are thus
drawn from a truncated normal T N (¡1;¿t]

¡
xi;t¯k + zi;tbi;k; ¾2

k
¢
:

A correction of the above algorithm immediately follows from including
the unobserved values of y¤i;t into the sampling. The former algorithm is
unchanged except that it …nishes by a data augmentation step to correct
censored observations:
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Algorithm for censored data

1. Steps 1 to 4 are the same as before provided that yi;t is remplaced by
y¤i;t in the sampling of parameters.

2. Step 5 (Censoring correction): Sample y¤i;t Ã T N (¡1;¿t ]
¡
xi;t¯k + zi;tbi;k;¾2

k
¢

for any censored observation and construct y¤i;t:

In practice I test this model with three di¤erent datasets while ¿ t corre-
sponds to the 10% quantile of the Y distribution - thus is constant over time.
As before, the sampling consists in 10000 Gibbs iterations. Table 2 depicts
the results for multivariate cases with (model III) and without (models I and
II) correlation between explanatory variables and unobserved heterogeneity.
Estimates converge fairly well towards the right values for all the models. A
look at Figure 3 shows how the censored data is simulated at …nal iteration.

6 Application to US wages dynamics from 1968 to
2001

I use the PSID (SRC part) from 1968 to 2001 and study ten di¤erent co-
horts. The range of age spans from 51-55 years old in 1968 to 26-30 years old
in 1988. The dynamics of hourly earnings are modeled for cohort through
a Mincerian equation with regime-varying coe¢cients. This model also ac-
counts for censored data, and potentially endogenous regressors. Its general
form is

y¤i;t = a0;st + a1;stEi +(a3;st + a4;stEi) Ait +(a5;st + a6;stEi) A2
it + a7;stDi + vi;t

vi;t = bi;st +¾stui;t
yi;t = y¤i;t 1y¤i;t>¿ t

bji;st Ã N (0;Dst) ; j = 0; 1;2

ui;t Ã N (0;1) (12)

where covariates are age (Ait), squared age (A2
it), education as the number

of years of schooling (Eit), as well as a Black dummy (Di;:), and interac-
tion of age and squared age with education. A potential model for earnings
dynamics allows for unobserved heterogeneity interacted with a time trend.
As discussed in Meghir and Pistaferri (2004) who use the PSID as well, this
would imply long-term autocorrelations of the …rst-di¤erenced residuals that
cannot be empirically detected. This motivates the choice of a sole dimen-
sion for unobserved heterogeneity in the model above. On the other hand
the latter authors decompose those residuals into a transitory MA noise and
a random walk that represents the dynamics of the permanent income - in-
deed they show that allowing for shocks on permanent income is empirically
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motivated. Interestingly, they graph the variance of the permanent shocks
that bursts in the beginning of the 80s and is diminished afterwards. The
model considered here is somewhat compatible with those empirical evidence
since it accounts for permanent shocks through the switching structure7.

In what extent can this framework measure the importance of unob-
served skills in determining the college premium? This model enables us to
calculate a return to education at a given age for each cohort, as well as an
unobserved ability for each individual of that cohort. It shows whether a
structural break has a¤ected each cohort, and how the return to education
across time has been modi…ed. In a second step, I can aggregate all indi-
viduals aged between 26 and 64 and compute the college premium year by
year. Whether I introduce or not the individual unobserved ability variables
in those cross-sections equations, the estimated return to education will ac-
count or not for unobserved ability. The di¤erence between both estimates
will indicate how much of the college premium is explained by unobserved
ability.

In the data, some observations are missing and others are outliers with
high probability, typically when income falls at very low standards. I censore
all observations below a certain threshold, namely a log-hourly income of 0
in real terms (1968 prices), which is equal to 4.3$ per hour in 2001 prices.
With this assumption, the percentage of censored data is typically around
10%, and never exceeds 15%.

Table 3 provides some elementary descriptive statistics. The increase
of the mean educational level is a well-known tendency. The slowdown of
higher education in the beginning of the 80s is also much debatted as a
potential explanation for the increase of the college premium at that period.

The global impact of the regime transition on the return to education
is adressed by Figures 4 to 13: for old cohorts in 1968 and young cohorts
after 1980, the model detects only one regime. For other cohorts, the model
detects a change in the regime occuring in the beginning of the 80s. The
second and current regime is characterized by higher variance of residuals
and unobserved heterogeneity, and di¤erent pro…les of the return to educa-
tion across age: for the cohorts experiencing a switch of regime, the shift of
the return to education’s pro…le is directed towards depreciation for most of
them. Two cohorts, those aged 26-30 in 1973 and 1978, display signi…cant
levels of correlation between education and unobserved heterogeneity in the
second regime. Table 4 indicates the level of correlation and the size of the
ability premium, i.e. the mean of unobserved ability conditional on holding
a College degree.

Once each worker is attributed her level of unobserved heterogeneity
in each year, it is possible to compare the coe¢cient of a College dummy

7the variance of the permanent shock will be distributed as a Dirac centered on the
date of regimes change.
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in a Mincerian regression run in cross-section, including or excluding the
variable unobserved heterogeneity. Last picture shows the result: the true
return to college is approximatively 30% lower than that usually calculated.
This conclusion is quite similar to that of Chay and Lee (2000) who used
inter-groups variations of the within-group earnings variances to identify the
ability premium.
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7 Conclusion

This paper presents a general class of panel models that encompasses cor-
related random coe¢cients models, regime switching models, as well as
individual-speci…c slopes models (“mixed models”). It proposes a Gibbs
sampling procedure to estimate this kind of models, tests and validates it
for both censored and uncensored data. Then I run an application to the
US wages’ dynamics, which consists in computing the return to schooling
with and without accounting for the correlation between schooling and un-
observed skills. It is shown that the ability premium represents circa 30% of
the college premium and is carried by two particular cohorts. An more care-
ful analysis of the determinants of unobserved ability for these two cohorts,
including parental and spatial determinants, is currently performed.
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Table 1 - Test on 4 datasets
¯0 ¯1 ¾2

0 ¾2
1 D0 D1 ½b0;b1 ½X;b0

½X;b1
¼00 ¼11

¡N
T

¢

b0 1 1.2 0.3 0.5 0 0 - - - 0.7 0.5
I

¡500
30

¢

b̂ 1:01
(0:01)

1:17
(0:01)

0:30
(0:01)

0:49
(0:02)

0:01
(0:00)

0:01
(0:00)

- - - 0:70
(0:09)

0:36
(0:14)

b0 1 1.2 0.3 0.5 0.3 0.5 - - - 0.8 0.5
II

¡200
30

¢

b̂ 0:98
(0:04)

1:23
(0:05)

0:30
(0:01)

0:50
(0:02)

0:35
(0:04)

0:54
(0:07)

- - - 0:73
(0:10)

0:58
(0:13)

b0 [0.8 1.0 1.2] [0.6 1.0 1.4] 0.2 0.4
·

0:25 0:18
0:5

¸1 ·
0:5 0:10

0:5

¸2

- - - 0.8 0.5

III
¡200
100

¢

b̂ [0:78
(0:02)

1:01
(0:04)

1:19
(0:05)

] [ 0:53
(0:04)

1:03
(0:06)

1:39
(0:06)

] 0:22
(0:02)

0:42
(0:02)

2
4

0:27
(0:03)

0:20
(0:03)

0:48
(0:05)

3
5

2
4

0:47
(0:06)

0:07
(0:05)

0:42
(0:06)

3
5 - - - 0:67

(0:09)
0:37
(0:15)

b0 [0.8 1.0 1.2] [0.6 1.0 1.4] 0.2 0.4
·

0:25 0:18
0:5

¸3 ·
0:5 0:10

0:5

¸3

0.5 0.6 0.3 0.8 0.5

IV
¡200

30

¢

b̂ [0:79
(0:01)

0:98
(0:03)

1:18
(0:05)

] [ 0:62
(0:03)

0:96
(0:05)

1:37
(0:04)

] 0:22
(0:01)

0:40
(0:02)

2
4

0:20
(0:02)

0:15
(0:03)

0:48
(0:05)

3
5

2
4

0:46
(0:07)

0:09
(0:05)

0:43
(0:07)

3
5 0:39

(0:03)
0:62
(0:01)

0:26
(0:03)

0:66
(0:10)

0:38
(0:14)

1random coe¢cients correspond to the second and third regressor.
The correlation between random-e¤ects is equal to 0.5.
2random coe¢cients correspond to the second and third regressor.
The correlation between random-e¤ects is equal to 0.2.
3random coe¢cients correspond to the second and third regressor; they dis-

play some correlation across regimes as well as with regressors.



Table 2 - Test on 3 censored datasets
¯ 0 ¯1 ¾2

0 ¾ 2
1 D1 D2 ½b0;b1

½X;b0 ½X;b1
¼00 ¼11

¡N
T

¢

b0 [0.8 1.0 1.2] [0.6 1.0 1.4] 0.2 0.4
·

0:25 0:18
0:5

¸2 ·
0:5 0:10

0:5

¸3

- - - 0.8 0.5

I
¡200

30

¢

b̂ [ 0:78
(0:01)

1:00
(0:04)

1:19
(0:05)

] [ 0:62
(0:02)

0:98
(0:06)

1:29
(0:06)

] 0:19
(0:01)

0:39
(0:06)

2
4

0:28
(0:03)

0:19
(0:03)
0:48
(0:05)

3
5

2
4

0:46
(0:07)

0:13
(0:05)
0:51
(0:07)

3
5 - - - 0:69

(0:10)
0:52
(0:14)

b0 [10.0 0.025 0.3 0.1] [10.1 0.05 0.5 0.2] 0.2 0.4
·

0:25 0:11
0:20

¸2 ·
0:50 0:36

0:40

¸4

- - - 0.8 0.6

II1
¡200

30

¢

b̂ [10:06
(0:02)

0:023
(0:001)

0:28
(0:04)

0:08
(0:03)

] [10:13
(0:03)

0:048
(0:001)

0:42
(0:05)

0:18
(0:05)

] 0:20
(0:02)

0:38
(0:01)

2
4

0:21
(0:02)

0:12
(0:02)
0:18
(0:02)

3
5

2
4

0:53
(0:06)

0:41
(0:05)
0:50
(0:06)

3
5 - - - 0:62

(0:12)
0:66
(0:11)

b0 [0.8 1.0 1.2] [0.6 1.0 1.4] 0.2 0.4
·

0:25 0:18
0:5

¸2 ·
0:5 0:10

0:5

¸3

0.5 0.6 0.3 0.8 0.6

III
¡200

30

¢

b̂ [ 0:78
(0:01)

0:97
(0:04)

1:17
(0:06)

] [ 0:56
(0:03)

0:93
(0:05)

1:26
(0:05)

] 0:19
(0:01)

0:36
(0:01)

2
4

0:28
(0:03)

0:22
(0:03)

0:56
(0:06)

3
5

2
4

0:41
(0:03)

0:17
(0:03)

0:51
(0:06)

3
5 0:58

(0:03)
0:60
(0:01)

0:42
(0:02)

0:75
(0:10)

0:63
(0:13)

1the …rst regressor is a constant and the second a linear trend.
2random coe¢cients correspond to the third and fourth regressors. The

correlation between random-e¤ects is equal to 0.5.
3random coe¢cients correspond to the third and fourth regressors. The

correlation between random-e¤ects is equal to 0.2.
4random coe¢cients correspond to the third and fourth regressors. The

correlation between random-e¤ects is equal to 0.8.



Table 3- Descriptive statistics
Born in ¡! 1913-1917 1918-1922 1923-1927 1928-1932 1933-1937 1938-1942 1943-1947 1948-1952 1953-1957 1958-1962

% of
C ensoring

11.4 9.4 7.1 6.8 14.4 13.2 9.8 8.0 9.9 8.3

% of HSD 48.1 38.3 32.5 25.2 23.7 13.4 12.8 4.8 6.3 5.4

% of HSG 29.9 28.2 29.9 36.8 34.5 35.7 28.6 28.7 38.8 39.0

% of SC 10.7 15.2 12.4 14.3 16.1 23.0 21.3 23.7 24.0 21.9

% of CG 4.9 12.1 15.6 10.6 15.3 17.5 25.3 24.0 18.1 23.1

% of PG 6.3 6.2 9.6 13.1 10.5 10.3 12.0 18.7 12.8 10.5

N 125 145 143 154 128 115 206 301 339 333
HSD=high-school dropouts, HSG=high-school graduates, SC=some college,

CG=college graduates, PG=post-graduates



Table 4 - The Bias of the College Premium
Regime 1 Regime 2 Correlation of

unobserved heterogeneity
Years ½ (Ei; bi;s0) E (bi;s0 j Ei¸ 16) Years ½ (Ei ; bi;s1) E (bi;s1 j Ei¸ 16) between regimes

¡E (bi;s0 j Ei< 16) ¡E (bi;s1 j Ei< 16)
51-55 in 1968 - - - 1968-1976 0:01

(0:10)
0:19
(0:11)

-

46-50 in 1968 - - - 1968-1981 0:01
(0:08)

0:06
(0:06)

-

41-45 in 1968 - - - 1968-1986 ¡0:01
(0:09)

0:02
(0:06)

-

36–40 in 1968 1968-1981 ¡0:01
(0:09)

0:02
(0:07)

1982-1991 0:01
(0:08)

0:06
(0:09)

0:55
(0:03)

31-35 in 1968 1968-1981 0:03
(0:09)

0:02
(0:06)

1982-1996 0:05
(0:09)

0:09
(0:09)

0:55
(0:03)

26-30 in 1968 1968-1979 0:00
(0:10)

0:01
(0:05)

1980-2001 0:11
(0:08)

0:08
(0:08)

0:54
(0:03)

26-30 in 1973 1968-1980 0:02
(0:07)

¡0:03
(0:04)

1981-2001 0:17
(0:05)

0:14
(0:04)

0:52
(0:03)

26-30 in 1978 1968-1982 ¡0:01
(0:06)

¡0:04
(0:04)

1983-2001 0:23
(0:04)

0:17
(0:04)

0:57
(0:02)

26-30 in 1983 - - - 1983-2001 0:09
(0:04)

0:08
(0:04)

-

26-30 in 1988 - - - 1988-2001 ¡0:02
(0:05)

0:06
(0:04)

-
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