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Abstract

In this paper we look for interest rate rules ensuring strong local equilibrium determinacy,
i.e. making sure that there is a unique equilibrium starting out in the neighbourhood of the
steady state and that this equilibrium remains constantly in that neighbourhood. We show
in a general framework that such interest rate rules exist and in the more specific framework
of the canonical New Keynesian model that they are necessarily forward-looking, that is to
say that they make the nominal interest rate conditional on the private agents’ expectations.
We also characterize the set of such interest rate rules implementing the optimal equilibrium
under discretion or under commitment (for a closed economy or a small open economy with
a flexible exchange rate) or the fixed exchange rate equilibrium (for a small open economy)
in this model.

Keywords: commitment, discretion, exchange rate regime, forward-looking, interest rate
rules, New Keynesian model, strong local equilibrium determinacy.
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Titre: Règles de taux d’intérêt assurant la détermination locale forte de l’équilibre

Résumé: Dans ce papier nous cherchons des règles de taux d’intérêt assurant la
détermination locale forte de l’équilibre, c’est-à-dire telles qu’il existe un unique équilibre
originaire du voisinage de l’état stationnaire et que cet équilibre reste constamment dans
ce voisinage. Nous montrons dans un cadre général que de telles règles de taux d’intérêt
existent et dans le cadre particulier du modèle nouveau-keynésien canonique qu’elles sont
nécessairement forward-looking, c’est-à-dire qu’elles expriment le taux d’intérêt nominal en
fonction des anticipations des agents privés. Nous caractérisons aussi l’ensemble de telles
règles de taux d’intérêt implémentant l’équilibre optimal discrétionnaire ou avec commit-
ment (pour une économie fermée ou une petite économie ouverte en change flexible) ou
l’équilibre de change fixe (pour une petite économie ouverte) dans ce modèle.
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Introduction

A great deal of attention has been paid these past few years to the design of interest rate
rules ensuring equilibrium determinacy, that is to say precluding multiple equilibria. This issue
is arguably of practical importance. For instance, Clarida, Gaĺı and Gertler (2000) explain the
relatively high American macroeconomic volatility during the pre-Volcker era by the fact that the
Fed was then following an interest rate rule compatible with multiple local equilibria, which made
way to endogenous fluctuations born from self-fulfilling expectations. Other authors point to the
fact that Japan may have fallen into the liquidity trap because the interest rate rule followed by
the Bank of Japan was compatible with multiple global equilibria.

Two research directions have been explored in order to design interest rate rules which reduce
as much as possible, and ideally completely remove, equilibrium indeterminacy.

The first research direction, followed notably by Bernanke and Woodford (1997), Clarida,
Gaĺı and Gertler (1999), Woodford (2003) and Giannoni and Woodford (2003a, 2003b), focuses
on what we call weak local equilibrium indeterminacy, that is to say on the possible existence of
several equilibria starting out in the neighbourhood of the steady state and constantly remaining
in this neighbourhood afterwards. This narrow focus enables these authors to use the log-linear
approximation of their model, which is valid only in the neighbourhood of the steady state. The
weak local determinacy requirement amounts to a condition à la Blanchard and Kahn (1980) and
typically imposes an inequality constraint on the coefficients of the interest rate rule considered,
as exemplified by the well-known “active Taylor rule”.

The second research direction, followed notably by Benhabib, Schmitt-Grohé and Uribe
(2001a, 2001b, 2002a, 2002b, 2003) and Christiano and Rostagno (2001), considers global equi-
librium indeterminacy and shows the possible existence of equilibria (converging towards a de-
terministic cycle, a chaotic cycle or the liquidity trap) which do not constantly remain in the
neighbourhood of the steady state. These authors use their original non-linear models to study
the global equilibrium dynamics. No interest rate rule has been found yet which satisfies the
global determinacy requirement. The only monetary policy known to reduce global indetermi-
nacy, advocated by Benhabib, Schmitt-Grohé and Uribe (2002a, 2002b, 2003) and Christiano
and Rostagno (2001) as well as by Clarida, Gaĺı and Gertler (1999), consists in switching from
an interest rate rule ensuring weak local determinacy to another rule such as a money growth
rate peg, should the endogenous variables go outside a specified range around their steady state
values. Such a two-tier monetary policy raises two problems however. First, as acknowledged by
Benhabib, Schmitt-Grohé and Uribe (2002a, 2002b, 2003) and Christiano and Rostagno (2001), it
does not completely remove global indeterminacy as equilibria converging towards a deterministic
cycle or chaotic cycle may still exist. Second, as emphasized by Christiano and Rostagno (2001),
a money growth rate peg may itself be an additional source of multiple equilibria.

What we propose instead is a single interest rate rule ensuring what we call strong local
equilibrium determinacy, that is to say making sure that there is a unique equilibrium starting
out in the neighbourhood of the steady state and that this equilibrium remains constantly in that
neighbourhood. Our focus on strong local (in)determinacy is interesting for two reasons. First,
strong local indeterminacy includes all kinds of equilibria in the models of Benhabib, Schmitt-
Grohé and Uribe (2001a, 2001b, 2003), as equilibria converging towards the steady state, a
deterministic cycle, a chaotic cycle or the liquidity trap may indeed originate arbitrarily close
to the steady state. Second, as we shall argue strong local indeterminacy may arise in the form
of “boom and bust” equilibria in any model, as the “stabilizer of last resort” role of the central
bank (which abandons its interest rate rule to keep the variables within the neighbourhood of
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the steady state or to bring them back into this neighbourhood) raises a moral hazard problem.
Besides, this focus on strong local determinacy enables us to use the log-linearized reduced form
which is valid only in the neighbourhood of the steady state of the model considered.

We first consider a general framework to show that interest rate rules ensuring strong local
equilibrium determinacy do exist by providing examples of such interest rate rules. In order to
illustrate our point in a simple and pedagogical way, we then focus on the more specific framework
of the canonical New Keynesian model, which has received much attention in the past few years,
and following the existing literature we consider different cases within this framework: closed
economy under discretion and under commitment, small open economy with a flexible exchange
rate under discretion and under commitment, small open economy with a fixed exchange rate.

We show that interest rate rules ensuring strong local equilibrium determinacy are necessarily
forward-looking in this model, that is to say that they make the nominal interest rate conditional
on the private agents’ expectations. Loosely speaking, the intuition is the following. Strong local
equilibrium indeterminacy may arise in the form of “boom and bust” equilibria from the moment
that there exist several solutions (originating in the neighbourhood of the steady state) to the
log-linearized model in the absence of any terminal condition. Since the structural equations
of this log-linearized model make the current values of the variables depend on their expected
future values, the only way to remove strong local indeterminacy is for the interest rate rule to be
forward-looking so as to disconnect the current variables from the expected future variables. To
our knowledge, we thus provide a new theoretical justification for the existence of forward-looking
interest rate rules, as “forward-lookingness” is not a necessary condition for an interest rate rule
to ensure weak local equilibrium determinacy.

The remaining of the paper is organized as follows. Section 1 shows the existence of forward-
looking interest rate rules ensuring strong local equilibrium determinacy in a general framework.
Section 2 focuses on the canonical closed economy New Keynesian model, characterizing the
set of interest rate rules which implement the optimal equilibrium and ensure its strong local
determinacy. Section 3 focuses on the canonical small open economy New Keynesian model,
characterizing the set of interest rate rules which implement the optimal equilibrium (under a
flexible exchange rate regime) or the unique equilibrium (under a fixed exchange rate regime) and
ensure its strong local determinacy. We then conclude and provide a technical appendix.

1 Our point in a general framework

This section makes our point in a general framework. We first present the general reduced
form considered, we then discuss our strong local equilibrium determinacy requirement and we
finally show that this requirement can be fulfilled by some well-chosen interest rate rules.

1.1 General reduced form

The general reduced form considered is composed of three equations on three endogenous
variables and two exogenous shocks. The endogenous variables are the inflation rate ∆p, the
output gap y and the short-term nominal interest rate r. The exogenous shocks are the cost-
push shock εpc and the demand shock εis. The equations are a Phillips curve, an IS equation
and an interest rate rule, which express the present endogenous variables as finite time-invariant
linear combinations of past, present and expected future endogenous variables as well as past and
present exogenous shocks. They are respectively written for t ≥ t0:
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and (di, fi) ∈ R2 for i ∈ {−N1, ..., 0}. We adopt the convention
∑v

i=u {.} = 0 if u > v and we
assume that ∃i ∈

{
0, ..., N is

2

}
such that cis

i 6= 0.
The notation xt represents the variable or the shock x considered at date t, while Et {.}

stands for the expectation operator conditionally on the information available at date t, which
includes the past and present variables and shocks, so that Et {xt−k} = xt−k for k ≥ 0 and
x ∈

{
∆p, y, r, εpc, εis

}
. The variables ∆pt0−k, yt0−k and rt0−k for k ≥ 1 are assumed to be

bounded. The shocks εpc and εis are assumed to follow centered stationary ARMA processes
whose white noises have a bounded distribution. Finally, the Phillips curve is assumed to be
“stationary-consistent” in the following sense: ∃N∗ ∈ N and ∃ (a∗i , b

∗
i ) ∈ R2 for i ∈ {−N∗, ..., 0}

such that the condition

∀t ≥ t0,

{
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2
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implies that whatever their (finite) initial values, Xt and Yt converge towards zero as t −→ +∞.
This final assumption ensures the existence of bounded sequences (∆pt)

+∞
t0

and (yt)
+∞
t0

satisfying
the Phillips curve at all dates t ≥ t0. Note that the Phillips curve is “stationary-consistent” when
∃i ∈ {−Npc

1 , ..., Npc
2 } such that bpc

i 6= 0 and all the roots of the polynomial ZNpc
1 +1

∑Npc
2

i=−Npc
1

bpc
i Zi

have their modulus strictly lower than one (as indeed N∗ = 0, a∗0 = 1 and b∗0 = 0 then fit the bill),
like for example in the popular canonical New Keynesian model considered in the next sections.

This reduced form is general enough to include as particular cases many reduced forms en-
countered in the existing literature. Concerning the Phillips curve and the IS equation, our
general specification includes notably the popular canonical New Keynesian model considered in
the next sections, whose non-zero coefficients are apc

1 , bpc
0 , ais

1 , bis
1 and cis

0 . Criticized for their
lack of empirical validity, the Phillips curve and the IS equation of this model have been extended
in many ways in order to match the lagged and inertial responses of the variables observed in
the data. For instance, Clarida, Gaĺı and Gertler (1999) introduce a lagged inflation rate into
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the Phillips curve and a lagged output gap into the IS equation, thus adding apc
−1 and bis

−1 to the
set of non-zero parameters. Alternatively, the consideration of habit formation in consumption
makes additional lags and expected leads of the output gap enter the Phillips curve and the IS
equation, thus adding bpc

−1, bpc
1 and bis

2 in Amato and Laubach (2004) and bpc
−1, bpc

1 , bis
−1, bis

2 in
Woodford (2003, chap. 5) to the set of non-zero parameters. All these extensions of the canonical
New Keynesian model are taken into account in our general framework.

Concerning the interest rate rule, our general specification includes most parametric families
of interest rate rules considered in the existing literature, which are usually low-dimensional with
the notable exception of the parametric family of interest rate rules considered by Giannoni and
Woodford (2003a, 2003b) and Woodford (2003, chap. 8). Note that we choose to focus on interest
rate rules expressing r as a finite linear combination of variables and shocks, as opposed to an
infinite linear combination of variables and shocks.

In the models whose reduced form falls into our general specification, the Phillips curve and
the IS equation are typically derived from the optimal behaviour of the private agents, which
depends on their own expectations about the future economic situation, while the interest rate
rule represents the reaction function of the central bank. As a result, all expectations featuring in
these three equations should be interpreted as the private agents’ expectations. We thus assume
that the central bank observes these expectations (as well as the past and present exogenous
shocks) when setting the nominal interest rate.

1.2 Strong local determinacy

The reduced forms encountered in the existing literature which fall into our general specifica-
tion result usually from the log-linearization of a model around the steady state (∆p, y) = (0, 0)
and are valid only in the neighbourhood of this steady state. If the interest rate rule is arbitrarily
chosen, the model in question may typically allow for multiple equilibria which may originate in-
side or outside the neighbourhood of the steady state. An equilibrium is said to be strong-locally
determinate when two conditions are met: first, it is the only equilibrium starting out in the
neighbourhood of the steady state, and second, it remains constantly in the neighbourhood of
the steady state. Strong local determinacy is therefore less constraining than global determinacy,
which arises when there is only one equilibrium wherever its starting point, and more constraining
than weak local determinacy, which arises when there is only one equilibrium starting out in the
neighbourhood of the steady state and remaining constantly in this neighbourhood afterwards.

Like in the existing literature, for simplicity we interpret “trajectory or equilibrium in the
neighbourhood of the steady state” as “trajectory or equilibrium with bounded variables ∆p and
y”. This interpretation is not restrictive since the bound in question can be chosen arbitrarily
small. Because ∆pt0−k and yt0−k for k ≥ 1 are assumed to be bounded, we focus on trajectories
originating from the neighbourhood of the steady state in our framework. Weak local equilib-
rium indeterminacy will therefore arise from the moment that there exist several trajectories
{∆pt, yt, rt}+∞t0

satisfying (1), (2) and (3) at all dates t ≥ t0 and such that the corresponding
sequences (∆pt)

+∞
t0

and (yt)
+∞
t0

are bounded.
We argue that strong local equilibrium determinacy will be ensured if and only if two condi-

tions are met: first, there exists a unique trajectory {∆pt, yt, rt}+∞t0
satisfying (1), (2) and (3) at

all dates t ≥ t0 in the absence of any terminal condition, and second, the corresponding sequences
(∆pt)

+∞
t0

and (yt)
+∞
t0

are bounded, under the assumption that the central bank is concerned with
social welfare and cannot credibly commit itself to sticking to its interest rate rule whatever the
welfare costs entailed (such is the case under discretion of course, but also under commitment if
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the commitment technology comes from reputation effects so that the central bank still weighs
the pro and contra before deciding whether to stick to its interest rate rule).

Indeed, consider a trajectory {∆pt, yt, rt}+∞t0
satisfying (1), (2) and (3) at all dates t ≥ t0.

If this trajectory remains constantly in the neighbourhood of the steady state (i.e. if (∆pt)
+∞
t0

and (yt)
+∞
t0

are bounded), then it qualifies as an equilibrium since it is a local solution of the
locally log-linearized model. If this trajectory leaves the neighbourhood of the steady state (i.e.
if (∆pt)

+∞
t0

or (yt)
+∞
t0

is not bounded), then equilibria can be found whose initial development
coincides with the initial development of this trajectory. Indeed, this initial development will
trigger a reaction from the social-welfare-concerned central bank which will eventually abandon
its interest rate rule in order to keep the variables within the neighbourhood of the steady state,
so that the resulting path will end up being bounded and hence not violating the transversality
condition typically imposed by the model. This “stabilization of last resort” raises a moral hazard
problem, as private agents, rightly expecting the reaction of the central bank, can settle on an
initially diverging path even though this path would not be an equilibrium if the central bank
were compelled to stick to its interest rate rule.

Such “boom and bust” equilibria exist only under the assumption that the credible threat of
the central bank to act as a “stabilizer of last resort” in a finite time horizon is not dissuasive,
that is to say under the assumption that this threat is not enough to nip any initially diverging
equilibrium in the bud. The existing literature sometimes adopts the opposite assumption, like
Clarida, Gaĺı and Gertler (1999, p. 1701), but does not specify how this threat could work in a
dissuasive way. As will become clear in the next subsection, one way to make this threat dissuasive
could be to specify the “stabilization of last resort” as a switch to a well-defined interest rate rule
of the kind which ensures strong local equilibrium determinacy. But the central bank could then
just as well follow such an interest rate rule from the start.

1.3 Interest rate rules

Appendix A shows that interest rate rules ensuring strong local equilibrium determinacy do
exist by providing examples of such interest rate rules. For instance, appendix A shows that
if cis

i = 0 for i ∈
{
1, ..., N is

2

}
and if ∃i ∈ {1, ..., Npc

2 } such that (apc
i , bpc

i ) 6= (0, 0), so that we
can define H ≡ max [i ∈ {1, ..., Npc

2 } such that (apc
i , bpc

i ) 6= (0, 0)], then there exist N ∈ N with
N ≥ H and (Ai, Bi) ∈ R2 for i ∈ {−N, ...,−H} such that the interest rate rule

rt =
1
cis
0

[
yt −

∑Nis
2

i=1
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i Et {∆pt+i} −
∑Nis

2

i=1
bis
i Et {yt+i}−∑0

i=−Nis
1

ais
i ∆pt+i −

∑−1

i=−Nis
1

bis
i yt+i −

∑−1

i=−Nis
1

cis
i rt+i

]
+[

∆pt−H −
∑0

i=1−H
apc

H+i∆pt+i −
∑0

i=1−H
bpc
H+iyt+i−∑−H

i=−N
Ai∆pt+i −

∑−H

i=−N
Biyt+i

]
+

∑0

i=−N
diε

pc
t+i +

∑0

i=−N
fiε

is
t+i

ensures strong local equilibrium determinacy. As explained in appendix A, the forward-looking
part of this interest rate rule is carefully chosen so as to insulate the current variables from the
forward-looking part of the IS equation, while its backward-looking part is designed to insulate
(in the future) the current variables from the forward-looking part of the Phillips curve. As a
consequence, this interest rate rule in effect disconnects the current situation from the expectations
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about the future situation, thus making sure that there exists a unique trajectory {∆pt, yt, rt}+∞t0

satisfying (1), (2) and (3) at all dates t ≥ t0 in the absence of any terminal condition. By contrast,
if the interest rate rule were arbitrarily chosen, then strong local equilibrium indeterminacy would
typically arise because the current values of the variables would depend in a non-controlled way
on their expected future values in the absence of any terminal condition.

Note that for certain specifications of the forward-looking part of the IS equation, the interest
rate rules ensuring strong local equilibrium determinacy given in appendix A are forward-
looking, that is to say that they make the nominal interest rate conditional on the private agents’
expectations. Interestingly, there exist specifications of the Phillips curve and the IS equation
such that all interest rate rules ensuring strong local equilibrium determinacy are forward-looking.
Such is the case, as will be shown, of the canonical New Keynesian model considered in the
next sections. This result provides what is to our knowledge a new theoretical justification
for the adoption of forward-looking interest rate rules. Indeed, the existing literature focuses on
interest rate rules ensuring weak local equilibrium determinacy, and as acknowledged by Woodford
(2003) and Giannoni and Woodford (2003a, 2003b) for instance, “forward-lookingness” is not a
necessary condition for an interest rate rule to ensure weak local equilibrium determinacy, at least
under the rational expectations assumption. Under the assumption that the private agents follow
adaptative learning rules instead of having rational expectations, Evans and Honkapohja (2002,
2003) show that some forward-looking interest rate rules do ensure the weak local determinacy and
the stability of the equilibrium under discretion and under commitment, contrary to some non-
forward-looking interest rate rules, but they do not show that “forward-lookingness” is a necessary
condition for an interest rate rule to ensure the weak local determinacy and the stability of the
equilibrium, so that whether adaptative learning provides a theoretical justification for basing
the interest rate rule on the private agents’ expectations is still open to question.

2 Application to a closed economy model

This section applies our point to the canonical New Keynesian model of a closed economy.
We first present the reduced form of this model, we then determine analytically the optimal
equilibrium under discretion and under commitment, and we finally characterize the set of the
interest rate rules implementing this equilibrium and ensuring its strong local determinacy.

2.1 Reduced form of the model

The canonical New Keynesian model of a closed economy, used notably by Clarida, Gaĺı
and Gertler (1999) and Woodford (2003), is an intertemporal general equilibrium model which
manages to combine a simple reduced (log-linearized around the steady state) form with sound
microfoundations. This reduced form is composed of a Phillips curve, an IS equation and a loss
function (for the social planner) or an interest rate rule (for the central bank). In this subsection,
we present the Phillips curve and the IS equation.

The Phillips curve, derived from the firms’ profits maximization, is written:

∆pt = βEt {∆pt+1}+ γyt + εpc
t , (4)

where ∆pt denotes the inflation rate and yt the output gap (namely the deviation of the logarithm
of the real output level from its flexible-price value) at date t, while β and γ are two parameters
such that 0 < β < 1 and γ > 0. This Phillips curve is forward-looking because of the assumption
of price-setting à la Calvo, as firms know that the price they choose today will remain effective
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for more than one period on average. As put forward by Clarida, Gaĺı and Gertler (1999), the
exogenous cost-push shock εpc

t occurring at date t may be interpreted as the consequence of
frictions in the wage contracting process or as the consequence of pricing errors. For simplicity,
it is assumed to be identically and independently distributed with mean zero.

The IS equation, derived from the representative household’s utility maximization, is written:

yt = Et {yt+1} − η (rt − Et {∆pt+1}) + εis
t , (5)

where rt denotes the short-term nominal interest rate (expressed as deviations from its steady
state value) at date t, while η is a strictly positive parameter. This IS equation is forward-looking
due to the usual intertemporal substitution effect. The exogenous demand shock εis

t occurring
at date t may be interpreted as an unexpected exogenous public spending. For simplicity, it is
assumed to be identically and independently distributed with mean zero. As in all frameworks
with infinitely-lived utility-maximizing agents, there is also a transversality condition attached
to the optimization programme of the representative household, which will be satisfied by the
optimal equilibria considered in the next subsection.

2.2 Determination of the optimal equilibrium

In this subsection, we assume the existence of a social planner which chooses the values of
∆p, y and r minimizing the loss function

Lt = Et

{∑+∞

k=0
δk

[
(∆pt+k)2 + λ (yt+k)2

]}
(6)

subject to the structural equations (4) and (5). As shown by Woodford (2003, chap. 6), such a loss
function corresponds to (the opposite of) the second-order approximation of the representative
household’s utility function in the neighbourhood of the steady state when first-order terms are
offset by structural policies. Parameters δ and λ are then related to the structural parameters
of the model, and in particular δ = β. In what follows we assume more generally that λ > 0
and 0 < δ < 1, and that δ is sufficiently close to β in a sense to be further specified below. We
consider two alternative cases, depending on whether the social planner minimizes Lt at each
date t or once and for all.

We first determine the optimal equilibrium under discretion, that is to say the equilibrium
obtained when the social planner re-optimizes at each period, in other words when at each date
t ≥ t0 the social planner chooses ∆pt, yt and rt so as to minimize Lt subject to the struc-
tural equations. As shown in appendix B, the resulting outcome, usually named discretionary
equilibrium, or time-consistent plan, or non-reputational solution, is the following one for t ≥ t0:

∆pt =
λ

γ2 + λ
εpc

t , yt =
−γ

γ2 + λ
εpc

t and rt =
1
η
εis
t +

γ

(γ2 + λ) η
εpc

t .

These results, which hold under the assumption that δ is sufficiently close to β for the inequal-
ity δ

(
γ2 + λ

)2 ≥ β2λ2 to be satisfied, are discussed in details by Clarida, Gaĺı and Gertler (1999).
In brief, they indicate that demand shocks εis are entirely countered by monetary policy and have
therefore no impact on the representative household’s welfare, as output gap stabilization and
inflation stabilization are then mutually compatible, while on the contrary cost-push shocks εpc

are not entirely countered by monetary policy, as the central bank then faces a trade-off between
a higher inflation rate and a lower output gap. In both cases (εpc or εis), the effect of the shock
is one-shot, that is to say that the responses of ∆p, y and r are not inertial.
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We then determine the optimal equilibrium under commitment, that is to say the equilibrium
obtained when the social planner optimizes once and for all, in other words when at date t0 the
social planner chooses the state-contingent values of ∆pt0+n, yt0+n and rt0+n for all n ≥ 0 so
as to minimize Lt0 . To that aim, we specify the variables as (possibly not time-invariant) linear
combinations of the complete history of the exogenous disturbances:

∆pt0+n =
∑+∞

k=0

(
an−k

n εpc
t0+n−k + bn−k

n εis
t0+n−k

)
,

yt0+n =
∑+∞

k=0

(
cn−k
n εpc

t0+n−k + dn−k
n εis

t0+n−k

)
and rt0+n =

∑+∞

k=0

(
en−k
n εpc

t0+n−k + fn−k
n εis

t0+n−k

)
for n ≥ 0, and we determine these linear combinations which minimize the loss function (6)
subject to the structural equations (4) and (5). Note that we depart from the existing literature
in three important ways.

First, we assume that shocks εpc and εis are serially uncorrelated, which enables us to obtain a
simple analytical expression for the variables in equilibrium as functions of the exogenous shocks
only. By contrast, the existing literature typically considers serially correlated shocks and conse-
quently does not determine analytically the variables in equilibrium as functions of the exogenous
shocks only. Indeed, these analytical results would rest on the general analytical expression of the
roots of a polynomial whose degree is strictly higher than two under the assumption of serially
correlated shocks, and this expression either is little exploitable (when the degree of the polyno-
mial is three or four) or does not exist (when the degree of the polynomial is strictly higher than
four).

Second, we optimize over the class of linear combinations of shocks which are possibly not time-
invariant. By contrast, the existing literature considers only time-invariant linear equilibrium
candidates, whether implicitly in the form of impulse-response functions as in Clarida, Gaĺı
and Gertler (1999), or explicitly as in Giannoni and Woodford (2003a, 2003b) and Woodford
(2003, chap. 8). Since we eventually obtain a time-invariant equilibrium, we thus show that the
time-invariant linear equilibrium which the existing literature finds is optimal among all time-
invariant linear equilibrium candidates, is also optimal among all (possibly not time-invariant)
linear equilibrium candidates.

Third, we specify the variables prior to optimization as functions of the complete history of
the exogenous disturbances without imposing any time-consistency requirement. By contrast, the
existing literature either optimizes over the class of equilibrium candidates which depend only on
the shocks occurring from date t0 onwards, as implicitly done by Clarida, Gaĺı and Gertler (1999)
who look for the equilibrium in the form of an impulse-response function for a shock occurring
at date t0 or after, or imposes a time-consistency requirement as in the “timeless perspective” of
Giannoni and Woodford (2003a, 2003b) and Woodford (2003, chap. 8) which amounts in effect to
assume that the economy was already at the equilibrium considered before date t0. The primary
reason why the existing literature does not allow for such a “retroactivity” in the absence of any
time-consistency requirement may be that the equilibrium obtained is irrelevantly complicated
when one optimizes over the class of time-invariant linear combinations of the complete history
of shocks without imposing any time-consistency requirement. We overcome this problem by
optimizing over the class of linear combinations which are possibly not time-invariant. The
equilibrium obtained turns out to be “non-retroactive” anyway.

As shown in appendix C, we obtain the following results for t ≥ t0:
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∆pt =
δz

β
εpc

t − γ2δ

βλ (1− βz)

∑t−t0

k=1
zk+1εpc

t−k,

yt =
−γδ

βλ

∑t−t0

k=0
zk+1εpc

t−k,

rt =
1
η
εis

t +
γδ

[
βz2 − (1 + β + γη) z + 1

]
βηλ (1− βz)

∑t−t0

k=0
zk+1εpc

t−k,

where z is a positive constant, expressed in appendix C as a function of the parameters. These
results hold under the assumption that δ is sufficiently close to β for the following inequality to
be satisfied: γ2δ + β2λ + δλ > βδλ + βλ, which ensures that z < 1.

As under discretion, the output gap and the inflation rate are insulated from the effects of
demand shocks εis, but not from those of cost-push shocks εpc. The main difference between
the optimal equilibria under discretion and under commitment is that the effect of εpc is more
prolonged here: the shock εpc is one-shot, but the responses of ∆p, y and r are inertial. This
is because following a positive cost-push shock, the social planner can now trade off not only
between a higher inflation rate and a lower output gap at a given date, but also between the
present and the future situations. In other words, the commitment technology enables her to
spread the burden of the adjustment to the shock over several periods. This equilibrium is time-
inconsistent of course, as the social planner faces no incentive to go on reacting to bygone shocks
in this purely forward-looking framework.

2.3 Implementation of the optimal equilibrium

In this subsection, we replace the social planner by a central bank which sets r according
to an interest rate rule (3). We look for the interest rate rules implementing the optimal equi-
librium determined in the previous subsection and ensuring its strong local determinacy. Note
however that as shown by appendix D, the economy is “controllable” in the sense that not
only the optimal equilibrium, but also any local equilibrium can be implemented by a well-chosen
interest rate rule ensuring its strong local determinacy. More precisely, any bounded trajectory
{∆pt, yt, rt}+∞t0

satisfying (4) and (5) at all dates t ≥ t0 and written in the VAR form ∆pt

yt

rt

 =
∑n

i=1
Si

 ∆pt−i

yt−i

rt−i

 + T

[
εpc

t

εis
t

]
where n ∈ N∗, Si for i ∈ {1, ..., n} are 3×3 matrices and T is a 3×2 matrix, can be implemented
by a well-chosen interest rate rule ensuring its strong local determinacy.

We first look for the interest rate rules ensuring strong local equilibrium determinacy. Ap-
pendix D shows that these interest rate rules are necessarily forward-looking. Loosely speaking,
the reason for this “forward-lookingness” is the following. Since yt and Et {yt+k} for k ≥ 1 can
be residually derived from ∆pt and Et {∆pt+k} for k ≥ 1 with the Phillips curve, and rt and
Et {rt+k} for k ≥ 1 from yt, Et {yt+k} and Et {∆pt+k} for k ≥ 1 with the IS equation, the interest
rate rule will ensure strong local equilibrium determinacy if and only if it pins down ∆pt and
Et {∆pt+k} for k ≥ 1 uniquely. Now in order to pin down ∆pt uniquely, the interest rate rule
should disconnect ∆pt from the non-predetermined variables at date t. More precisely, combine
the IS equation and the Phillips curve at date t to get:

∆pt = εpc
t − β

η
εis

t + βrt +
β + γη

η
yt −

β

η
Et {yt+1} .
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The interest rate rule should therefore cancel the effect of yt and Et {yt+1} on ∆pt, that is to
say that its forward-looking part should amount to the term 1

η Et {yt+1} if b0 = −β+γη
βη . More

generally, this forward-looking part will be determined conditionally on b0 and modulo the Phillips
curve and the IS equation, as made clear by appendix D.

We then look more precisely for the interest rate rules which make the strong-locally unique
equilibrium selected coincide with the optimal equilibrium determined in the previous subsec-
tion. Because yt, rt, Et {yt+k} and Et {rt+k} for k ≥ 1 can be residually derived from ∆pt and
Et {∆pt+k} for k ≥ 1 with the Phillips curve and the IS equation, the interest rate rule will select
the optimal equilibrium if and only if it implements the optimal values of ∆pt and Et {∆pt+k}
for k ≥ 1. Now, as shown in appendix D, the Phillips curve, the IS equation and the interest
rate rule can be combined to get some initial conditions and a time-invariant linear recurrence
equation on ∆pt and Et {∆pt+k} for k ≥ 1. The choice of the interest rate rule then affects the
number and the values of the roots of the characteristic polynomial of this recurrence equation,
as well as the number and the identity of the initial conditions. Moreover, we can to some extent
independently control (the number and the value of) the roots of the characteristic polynomial
on the one hand and (the number and the identity of) the initial conditions on the other hand.
For instance, adding a term ωεpc

t−k where ω 6= 0 and k ≥ 1 to an interest rate rule of initial size
N1 < k amounts in effect to provide one or several additional initial conditions and to postpone
the starting date of the recurrence equation without affecting this recurrence equation.

Under commitment, one root and two initial conditions are needed to ensure the implemen-
tation of the optimal equilibrium. Indeed, the optimal impulse-response function of the inflation
rate can then be summarized by the values of ∆pt and ∆pt+1 as functions of εis

t and εpc
t , and

the recurrence equation ∆pt+n = z∆pt+n−1 for n ≥ 2. Appendix D shows that the adequate
interest rate rules are necessarily backward-looking (N1 ≥ 1), and that the set of these rules of
size N1 is a 3N1 + 1-dimension vectorial space. For instance, the unique adequate interest rate
rule of size N1 = 1 satisfying the quadruple constraint (b0, c−1, d0, d−1) =

(
−β+γη

βη , 0, 0, 0
)

is the
following one for t ≥ t0:

rt =
1
η
Et {yt+1} −

β + γη

βη
yt + Ayt−1 −

γ2

βλ (1− βz)
∆pt + B∆pt−1 +

1
η
εis

t

with A =
γ

[
βλ2 (1− βz)2 + γ4δz

]
δ
[
βλ2 (1− βz)3 − βγ4δz2

]11t>t0 and B =
−γ4z

βλ2 (1− βz)3 − βγ4δz2
11t>t0 ,

where the terms 11t>t0 truncate the interest rate rule at date t0 to exclude the endogenous variables
occurred at date t0 − 1.

Under discretion, similarly, no root and one initial condition are enough to ensure the imple-
mentation of the optimal equilibrium. Appendix D shows that the adequate interest rate rules
can be backward-looking (N1 > 0) or not (N1 = 0), and that the set of these rules of size N1 is
a 3N1 + 2-dimension vectorial space. For instance, the unique adequate interest rate rule of size
N1 = 0 satisfying the double constraint (b0, d0) =

(
−β+γη

βη , 0
)

is the following one:

rt =
1
η
Et {yt+1} −

β + γη

βη
yt −

γ2

βλ
∆pt +

1
η
εis
t .

Note that these two examples of adequate interest rate rules happen to be “minimally history-
dependent rules”, that is to say rules of minimal size N1, and “direct rules”, that is to say rules

10



which involve only the target variables ∆p and y, in the terminology of Woodford (2003, chap.
8) and Giannoni and Woodford (2003a, 2003b).

3 Application to a small open economy model

This section applies our point to the canonical New Keynesian model of a small open economy.
We first present the reduced form of this model. We then directly apply our results to the case
of a flexible exchange rate regime under discretion and under commitment, as the reduced form
of the model is then isomorphic to that of the closed economy model previously considered. We
finally consider the case of a fixed exchange rate regime, that is to say we determine analytically
the unique equilibrium in this case and characterize the interest rate rules implementing this
equilibrium and ensuring its strong local determinacy.

3.1 Reduced form of the model

What we call the canonical New Keynesian model of a small open economy is an intertemporal
general equilibrium model laid out by Clarida, Gaĺı and Gertler (2001), very close to the model
used by Gaĺı and Monacelli (2002) and Monacelli (2003). The reduced form of this model log-
linearized around its steady state is composed of a Phillips curve, an IS equation, a loss function
(for the social planner) or an interest rate rule (for the central bank), the uncovered interest rate
parity, the law of one price and the long-run purchasing power parity.

If we assume for simplicity that the large foreign economy remains constantly at its steady
state, then the Phillips curve, the IS equation and the loss function can be written in the same
form as in the canonical New Keynesian model of a closed economy, that is to say as (4), (5)
and (6) respectively, the only change being that the variable ∆p now denotes the domestic PPI
inflation rate. Moreover, the general form of the interest rate rule will correspond to (3) if we
restrict our attention like Woodford (2003, chap. 8) and Giannoni and Woodford (2003a, 2003b)
to the interest rate rules expressing the nominal interest rate as a function only of the (past and
present) exogenous shocks εpc and εis, the (past, present and expected future) nominal interest
rate r and the (past, present and expected future) target variables ∆p and y.

As the foreign nominal interest rate keeps constantly equal to its steady state value, the
uncovered interest parity is written Et {∆et+1} = rt, where ∆e denotes the first difference in the
log of the nominal exchange rate e (log of the value of one foreign currency unit expressed in
domestic currency). The law of one price is written ∆qt = α∆pt + (1− α) ∆et, with 0 < α < 1,
where ∆q represents the CPI inflation rate. Finally, the long-run purchasing power parity is
written lim

k→+∞
(pt+k − et+k) = 0.

3.2 Flexible exchange rate regime

Under a flexible exchange rate regime, the optimal equilibria under discretion and under
commitment are determined in two steps, as the structure of the system is then block-recursive.
First, ∆p, y and r are derived from the minimization of the loss function subject to the IS equation
and the Phillips curve. Second, ∆q and ∆e are residually obtained with the help of the uncovered
interest parity, the long-run purchasing power parity and the law of one price.

Because the Phillips curve, the IS equation and the loss function are identical to those of the
closed economy framework, the optimal values of ∆p, y and r will be identical to those obtained
in subsection 2.2. Like previously, the analytical expression of the optimal equilibrium under
commitment is a new result as it is absent from the existing literature, namely here Clarida,
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Gaĺı and Gertler (2001), Gaĺı and Monacelli (2002) and Monacelli (2003), who consider serially
correlated shocks. Finally, because the general form of the interest rate is the same as in the
closed economy framework, the results obtained in subsection 2.3 can also be readily applied to
our small open economy framework under a flexible exchange rate regime.

3.3 Fixed exchange rate regime

We look for the fixed exchange rate regime equilibrium among all equilibrium candidates which
express the variables as (possibly not time-invariant) linear combinations of the entire history of
shocks, that is to say for variables ∆p and y in particular:

∆pt =
∑+∞

k=0

(
gk

t εpc
t−k + hk

t εis
t−k

)
and yt =

∑+∞

k=0

(
sk

t εpc
t−k + wk

t εis
t−k

)
.

As shown in appendix E, the fixed exchange rate regime equilibrium turns out to be unique and
to express the variables as time-invariant linear combinations of the entire history of shocks:

∆pt = γxεis
t − γ (1− x)

∑+∞

k=1
xkεis

t−k

+xεpc
t − (1− x)

∑+∞

k=1
xkεpc

t−k,

yt = x (1 + β − βx) εis
t − (1− βx) (1− x)

∑+∞

k=1
xkεis

t−k

− (1− βx) (1− x)
γ

∑+∞

k=0
xkεpc

t−k.

Like previously, these analytical results are new as the existing literature, namely here Gaĺı and
Monacelli (2002) and Monacelli (2003), considers serially correlated shocks and consequently
cannot easily determine analytically the variables in equilibrium as functions of the exogenous
shocks only. These results indicate in particular that the output gap and the inflation rate are not
insulated from the effects of the demand shock εis under a fixed exchange rate regime, because
a “leaning against the wind” monetary policy reaction to this shock would be incompatible with
the fixity of the exchange rate.

In what remains to our knowledge the only study about interest rate rules for fixed exchange
rate regimes, Benigno, Benigno and Ghironi (2000) do acknowledge the importance of ensuring
strong local equilibrium determinacy and propose accordingly a two-tier monetary policy of the
same nature as the one put forward by Clarida, Gaĺı and Gertler (1999), Benhabib, Schmitt-Grohé
and Uribe (2002a, 2002b, 2003) and Christiano and Rostagno (2001). Such a monetary policy is
however problematic for the reasons mentioned in the introduction. What we propose instead,
like previously, is a single interest rate rule which ensures strong local equilibrium determinacy.

Like in subsection 2.3 and for the same reason, such an interest rate rule is found to be
necessarily forward-looking. Moreover, in a similar way as in subsection 2.3, we need only one
root and two initial conditions to ensure the implementation of the fixed exchange rate regime
equilibrium. Indeed, the impulse-response function of the inflation rate can then be summarized
by the values of ∆pt and ∆pt+1 as functions of εpc

t and εis
t , and the recurrence equation ∆pt+n =

x∆pt+n−1 for n ≥ 2. Appendix D shows that the adequate interest rate rules are necessarily
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backward-looking (N1 ≥ 1), and that the set of these rules of size N1 is a 3N1 + 1-dimension
vectorial space. For instance, the unique adequate interest rate rule of size N1 = 1 satisfying the
quadruple constraint (b0, c−1, d0, d−1) =

(
−β+γη

βη , 0, 0, 0
)

is the following one:

rt =
1
η
Et {yt+1} −

β + γη

βη
yt −

1− x

βx
∆pt +

γ

β (1− βx)
yt−1

+
β + γη

βη
εis

t − γ

β (1− βx)
εis

t−1.

Since the nominal interest rate keeps constantly equal to its steady state value (r = 0) under such
an interest rate rule, the central bank can be said to be active ex ante and passive ex post.

Conclusion

This paper aims at giving a new insight into the design of interest rate rules precluding multiple
equilibria. Our main contribution consists in examining the interest rate rules which ensure strong
local equilibrium determinacy, that is to say which make sure that there is a unique equilibrium
starting out in the neighbourhood of the steady state and that this equilibrium remains constantly
in that neighbourhood. We first show in a general framework that such interest rate rules do
exist. We then show, in the more specific but very popular canonical New Keynesian framework,
that they are forward-looking so as to insulate the current situation from the private agents’
expectations about the future situation, and this result provides what is to our knowledge a new
theoretical justification for the adoption of forward-looking interest rate rules by central banks.
We characterize moreover, in this specific framework, the set of interest rate rules which make
the strong-locally unique equilibrium selected coincide with the desired equilibrium.

The issue of strong local equilibrium indeterminacy is admittedly more restrictive than that of
global equilibrium indeterminacy. In particular, our interest rate rules may well not be effective
outside the neighbourhood of the steady state, as they are only meant to prevent the economy from
leaving this neighbourhood. But ensuring strong local equilibrium determinacy is still enough for
an interest rate rule to preclude all kinds of equilibria described in the existing literature, including
endogenous fluctuations around the steady state and equilibria converging to the liquidity trap, a
deterministic cycle or a chaotic cycle, provided they originate near the steady state. At last but
not least, strong local equilibrium determinacy rules out the “boom and bust” equilibria identified
in this paper, which may be of practical importance as most post-war American recessions have
been due, according to a widespread point of view, to a monetary policy tightening putting an
end to a period of increasing inflation rate and could therefore be interpreted as such “boom and
bust” equilibria.

References

[1] Amato J. D. and Th. Laubach (2004): “Implications of habit formation for optimal monetary
policy”, Journal of Monetary Economics, Vol. 51, pp. 305-325.
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Appendix

A Existence of interest rate rules ensuring strong local determinacy

As argued in subsection 1.2, strong local equilibrium determinacy is ensured if and only if there
is a unique set of sequences {∆pt, yt, rt}+∞t0

satisfying (1), (2) and (3) at all dates t ≥ t0 and
the corresponding sequences (∆pt)

+∞
t0

and (yt)
+∞
t0

are bounded. We show that interest rate rules
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ensuring strong local equilibrium determinacy do exist by providing examples of such interest
rate rules. We consider two alternative cases in turn, according to whether the Phillips curve is
forward-looking or not, that is to say whether (apc

i , bpc
i ) = (0, 0) for i ∈ {1, ..., Npc

2 } or not.
If the Phillips curve is not forward-looking, then consider an interest rate rule (3) of the kind

rt =
1

cis
K

[
yt−K −

∑Nis
2

i=K+1
ais

i Et {∆pt−K+i} −
∑Nis

2

i=K+1
bis
i Et {yt−K+i}−∑K

i=−Nis
1

ais
i ∆pt−K+i −

∑K−1

i=−Nis
1

bis
i yt−K+i −

∑K−1

i=−Nis
1

cis
i rt−K+i

]
+[

∆pt−K −
∑0

i=−N
Ai∆pt−K+i −

∑0

i=−N
Biyt−K+i

]
+∑0

i=−N
diε

pc
t−K+i +

∑0

i=−N
fiε

is
t−K+i

where K ≡ max
[
i ∈

{
0, ..., N is

2

}
such that cis

i 6= 0
]
, N ∈ N and (Ai, Bi) ∈ R2 for i ∈ {−N, ..., 0}

with A0 and B0 such that (1−A0) bpc
0 6= B0.

We first show by recurrence that ∆pt, yt, rt, Et {∆pt+n}, Et {yt+n} and Et {rt+n} for n ≥ 1
are uniquely determined with such an interest rate rule. Indeed, the introduction of this interest
rate rule (taken in expectations Et {.} at date t + K) into the IS equation taken at date t leads
to

∆pt =
∑0

i=−N
Ai∆pt+i +

∑0

i=−N
Biyt+i −

∑0

i=−N
diε

pc
t+i −

∑0

i=−N
fiε

is
t+i − εis

t . (7)

The two equations (1) and (7) taken at date t pin down the two unknowns ∆pt and yt

(which are the only non-predetermined endogenous variables in these equations) uniquely as
(1−A0) bpc

0 6= B0. For n ∈ N∗ similarly, if ∆pt and yt as well as (if n ≥ 2) Et {∆pt+k} and
Et {yt+k} for k ∈ {1, ..., n− 1} are already determined, then the two equations (1) and (7) taken
in expectations Et {.} at date t + n pin down the two unknowns Et {∆pt+n} and Et {yt+n}
uniquely as (1−A0) bpc

0 6= B0. Thus ∆pt, yt, Et {∆pt+n} and Et {yt+n} for n ≥ 1 are uniquely
determined, and rt and Et {rt+n} for n ≥ 1 are then residually uniquely determined with the
interest rate rule considered.

We then show that N and the coefficients Ai, Bi, di and fi for i ∈ {−N, ..., 0} can be chosen
so that the uniquely determined sequences (∆pt)

+∞
t0

and (yt)
+∞
t0

are bounded. Take for simplicity
(d0, f0) = (0,−1) and (if N ≥ 1) (di, fi) = (0, 0) for i ∈ {−N, ...,−1}. Equations (1) and (7) then
correspond to the following linear cross-recurrence equations for t ≥ t0:

∆pt − bpc
0 yt =

∑−1

i=−Npc
1

apc
i ∆pt+i +

∑−1

i=−Npc
1

bpc
i yt+i + εpc

t ,

(1−A0) ∆pt −B0yt =
∑−1

i=−N
Ai∆pt+i +

∑−1

i=−N
Biyt+i.

The choice of N = N∗, (A0, B0) = (a∗0 + 1, b∗0) and (if N ≥ 1) (Ai, Bi) = (a∗i , b
∗
i ) for i ∈

{−N, ...,−1} then ensures that (∆pt)
+∞
t0

and (yt)
+∞
t0

are bounded.
If the Phillips curve is forward-looking, then consider an interest rate rule (3) of the kind
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rt =
1

cis
K

[
yt−K −

∑Nis
2

i=K+1
ais

i Et {∆pt−K+i} −
∑Nis

2

i=K+1
bis
i Et {yt−K+i}−∑K

i=−Nis
1

ais
i ∆pt−K+i −

∑K−1

i=−Nis
1

bis
i yt−K+i −

∑K−1

i=−Nis
1

cis
i rt−K+i

]
+[

∆pt−K−H −
∑0

i=1−H
apc

H+i∆pt−K+i −
∑0

i=1−H
bpc
H+iyt−K+i−∑−H

i=−N
Ai∆pt−K+i −

∑−H

i=−N
Biyt−K+i

]
+∑0

i=−N
diε

pc
t−K+i +

∑0

i=−N
fiε

is
t−K+i

where K ≡ max
[
i ∈

{
0, ..., N is

2

}
such that cis

i 6= 0
]
, H ≡

max [i ∈ {1, ..., Npc
2 } such that (apc

i , bpc
i ) 6= (0, 0)], N ∈ N such that N ≥ H, and (Ai, Bi) ∈ R2

for i ∈ {−N, ...,−H} with A−H and B−H such that A−Hbpc
H 6= (B−H − bpc

0 ) apc
H .

We first show by recurrence that ∆pt, yt, rt, Et {∆pt+n}, Et {yt+n} and Et {rt+n} for n ≥ 1
are uniquely determined with such an interest rate rule. Indeed, the introduction of this interest
rate rule (taken in expectations Et {.} at date t + K) into the IS equation taken at date t leads
to

∆pt−H =
∑0

i=1−H
apc

H+i∆pt+i +
∑0

i=1−H
bpc
H+iyt+i +

∑−H

i=−N
Ai∆pt+i +∑−H

i=−N
Biyt+i −

∑0

i=−N
diε

pc
t+i −

∑0

i=−N
fiε

is
t+i − εis

t , (8)

while the substraction of (1) taken at date t from (8) taken in expectations Et {.} at date t + H

leads to

0 = A−HEt0 {∆pt}+
∑−1

i=−Npc
1

(Ai−H − apc
i ) Et0 {∆pt+i}+∑0

i=−Npc
1

(Bi−H − bpc
i ) Et0 {yt+i}+∑−Npc

1 −1

i=−N+H
Ai−HEt0 {∆pt+i}+

∑−Npc
1 −1

i=−N+H
Bi−HEt0 {yt+i} . (9)

Equations (8) and (9) taken at date t pin down the two unknowns ∆pt and yt (which are
the only non-predetermined endogenous variables in these equations) uniquely as A−Hbpc

H 6=
(B−H − bpc

0 ) apc
H . For n ∈ N∗ similarly, if ∆pt and yt as well as (if n ≥ 2) Et {∆pt+k} and

Et {yt+k} for k ∈ {1, ..., n− 1} are already determined, then equations (8) and (9) taken in ex-
pectations Et {.} at date t + n pin down the two unknowns Et {∆pt+n} and Et {yt+n} uniquely
as A−Hbpc

H 6= (B−H − bpc
0 ) apc

H . Thus ∆pt, yt, Et {∆pt+n} and Et {yt+n} for n ≥ 1 are uniquely
determined, and rt and Et {rt+n} for n ≥ 1 are then residually uniquely determined with the
interest rate rule considered.

We then show that N , the coefficients Ai and Bi for i ∈ {−N, ...,−H} and the coefficients
di and fi for i ∈ {−N, ..., 0} can be chosen so that the uniquely determined sequences (∆pt)

+∞
t0

and (yt)
+∞
t0

are bounded. Take for simplicity N ≥ Npc
1 + H, d−H = −1, f0 = −1, di = 0 for

i ∈ {−N, ..., 0} \ {−H} and fi = 0 for i ∈ {−N, ...,−1}. For t ≥ t0 + H, equations (1) and (9)
taken in expectations Et0 {.} at date t then correspond to the following linear cross-recurrence
equations:
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−apc
H Et0 {∆pt} − bpc

H Et0 {yt} =
∑−1

i=1−H
apc

i+HEt0 {∆pt+i}+ Et0 {∆pt−H}+∑−1−H

i=−Npc
1 −H

apc
i+HEt0 {∆pt+i}+∑0

i=−Npc
1 −H

bpc
i+HEt0 {yt+i}+ Et0

{
εpc

t−H

}
,

−A−HEt0 {∆pt}+ (bpc
0 −B−H) Et0 {yt} =

∑−1

i=−Npc
1

(Ai−H − apc
i ) Et0 {∆pt+i}+∑−1

i=−Npc
1

(Bi−H − bpc
i ) Et0 {yt+i}+∑−Npc

1 −1

i=−N+H
Ai−HEt0 {∆pt+i}+∑−Npc

1 −1

i=−N+H
Bi−HEt0 {yt+i} .

The choice of N = max (N∗ + H,Npc
1 + H), (A−H , B−H) = (a∗0 + 1, b∗0 + bpc

0 ) and (if N ≥ H +1)
Ai = a∗H+i11i≥−N∗−H + apc

H+i11i≥−Npc
1 −H and Bi = b∗H+i11i≥−N∗−H + bpc

H+i11i≥−Npc
1 −H for i ∈

{−N, ...,−H − 1} then ensures that (Et0 {∆pt})+∞t0
and (Et0 {yt})+∞t0

converge geometrically
towards zero, and therefore that (∆pt)

+∞
t0

and (yt)
+∞
t0

are bounded.

B Determination of the optimal equilibrium under discretion

At each date t the social planner chooses ∆pt, yt and rt so as to minimize Lt subject to the
Phillips curve and the IS equation taken at all dates, or equivalently at each date t the social
planner chooses ∆pt and yt so as to minimize Lt subject to the Phillips curve taken at date t,
while r is residually determined with the IS equation. As a consequence, at each date t the social
planner considers the current expectations about the future situation (Et{xt+k} for x ∈ {∆p, y, r}
and k ≥ 1) as given when minimizing Lt.

The first-order condition of the minimisation of Lt is written λyt + γ∆pt = 0. Simi-
larly, the first-order condition of the minimisation of Lt+k, taken in expectations Et {.}, is
written λEt {yt+k} + γEt {∆pt+k} = 0 for k ≥ 1. Using the Phillips curve taken in ex-
pectations Et {.} at dates t + k for k ≥ 1, we then get the following recurrence equation:
Et {∆pt+k+1} = γ2+λ

βλ Et {∆pt+k} for k ≥ 1.
We assume that δ is sufficiently close to β for the following inequality to be satisfied:

δ
(
γ2 + λ

)2 ≥ β2λ2. Under this assumption, given the above recurrence equation, the solution
to the optimization problem satisfies Et {∆pt+1} = 0, because Lt would take an infinite value if
Et {∆pt+1} differed from zero. The conditions λyt + γ∆pt = 0, λEt {yt+1} + γEt {∆pt+1} = 0
and Et {∆pt+1} = 0, together with the Phillips curve and the IS equation taken at date t, then
lead to the results for ∆pt, yt and rt displayed in subsection 2.2.

C Determination of the optimal equilibrium under commitment

We follow the undetermined coefficients method to solve analytically the social planner’s
optimization problem. We consider two alternative cases in turn, according to whether the social
planner has or has not observed shocks εpc

t0 and εis
t0 when she minimizes Lt0 at date t0. These two

cases are shown to lead to the same results.
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In the first case, the social planner has not observed shocks εpc
t0 and εis

t0 when she minimizes
Lt0 at date t0. She has nonetheless observed past shocks εpc

t0+k−j and εis
t0+k−j for j ≥ k + 1, so

that the variables can be rewritten in the following way prior to the minimization of Lt0 :

∆pt0+k ≡
∑k

j=0

(
ak−j

k εpc
t0+k−j + bk−j

k εis
t0+k−j

)
+ gk,

yt0+k ≡
∑k

j=0

(
ck−j
k εpc

t0+k−j + dk−j
k εis

t0+k−j

)
+ hk

and rt0+k ≡
∑k

j=0

(
ek−j
k εpc

t0+k−j + fk−j
k εis

t0+k−j

)
+ ik

for k ≥ 0. We look for the coefficients ak−j
k , bk−j

k , ck−j
k , dk−j

k , gk and hk for k ≥ 0 and 0 ≤ j ≤ k

which minimize Lt0 subject to the Phillips curve considered at all dates, i.e. which minimize the
following Lagrangian:

Et0

{∑+∞

k=0
δk

[
(∆pt0+k)2 + λ (yt0+k)2

]}
−

∑+∞

k=0
µk

(
∆pt0+k − βEt0+k {∆pt0+k+1} − γyt0+k − εpc

t0+k

)
.

The coefficients ek−j
k , fk−j

k and ik for k ≥ 0 and 0 ≤ j ≤ k are then residually determined with
the help of the IS equation. In a straighforward manner, we find that ∀k ≥ 0 and ∀j ∈ {0, ..., k},
bk−j
k = dk−j

k = 0. Now, the first-order conditions of the Lagrangian’s minimization with respect
to ak

k for k ≥ 0, ak−j
k for k ≥ 1 and j ∈ {1, ..., k}, ck−j

k for k ≥ 0 and j ∈ {0, ..., k}, g0, gk for
k ≥ 1, hk for k ≥ 0 can be respectively written in the following way:

2δkV (εpc) ak
k − µkεpc

t0+k = 0 for k ≥ 0,

2δkV (εpc) ak−j
k − µkεpc

t0+k−j + βµk−1ε
pc
t0+k−j = 0 for k ≥ 1 and j ∈ {1, ..., k} ,

2δkλV (εpc) ck−j
k + γµkεpc

t0+k−j = 0 for k ≥ 0 and j ∈ {0, ..., k} ,

2g0 − µ0 = 0,

2δkgk − µk + βµk−1 = 0 for k ≥ 1,

2δkλhk + γµk = 0 for k ≥ 0,

where V (εpc) represents the variance of the shock εpc. Moreover, the Phillips curve considered
at all dates leads to the following three additional equations:

βak
k+1 − ak

k + γck
k + 1 = 0 for k ≥ 0,

βak−j
k+1 − ak−j

k + γck−j
k = 0 for k ≥ 1 and j ∈ {1, ..., k} ,

βgk+1 − gk + γhk = 0 for k ≥ 0.

Let us note u ≡ k − j, v ≡ j, Au,v ≡ ak−j
k and Cu,v ≡ ck−j

k , so that Au,v and Cu,v charac-
terize respectively the reactions of ∆pt0+u+v and yt0+u+v to εpc

t0+u. Our nine equations are then
equivalent to the following systems of equations: γg0 + λh0 = 0

gk − βgk+1 − γhk = 0
γδgk+1 + δλhk+1 − βλhk = 0

for k ≥ 0
for k ≥ 0

(10)
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and


γAu,0 + λCu,0 = 0
γδAu,v+1 + δλCu,v+1 − βλCu,v = 0
βAu,v+1 −Au,v + γCu,v = 0
βAu,1 −Au,0 + γCu,0 + 1 = 0

for u ≥ 0
for u ≥ 0 and v ≥ 0
for u ≥ 0 and v ≥ 1
for u ≥ 0

. (11)

System (10) implies that the coefficients gk satisfy the following equations:

βλg1 −
(
γ2 + λ

)
g0 = 0,

βδλgk+2 −
(
γ2δ + β2λ + δλ

)
gk+1 + βλgk = 0 for k ≥ 0.

The latter equation corresponds to a recurrence equation on the gk for k ≥ 0. The corresponding
(second-order) characteristic polynomial has two positive real roots, one noted z potentially lower
than one, the other noted z′ strictly higher than one:

z =

(
β2λ + γ2δ + δλ

)
−

√
(β2λ + γ2δ + δλ)2 − 4β2δλ2

2βδλ
,

z′ =

(
β2λ + γ2δ + δλ

)
+

√
(β2λ + γ2δ + δλ)2 − 4β2δλ2

2βδλ
,

where z < 1 under our assumption that δ is sufficiently close to β for the following inequality
to hold: γ2δ + β2λ + δλ > βδλ + βλ. The general form of the solution to the recurrence
equation is therefore gk = qzk + q′z′k for k ≥ 0, where q and q′ are two real numbers. Two
equations are then needed to determine q and q′. The first one is provided by the initial condition
βλg1 −

(
γ2 + λ

)
g0 = 0. The second one is simply q′ = 0 and comes from the fact that δz′2 ≥ 1,

as can be readily checked, so that no solution with q′ 6= 0 would fit the bill as Lt would then be
infinite. We thus eventually obtain gk = 0 for k ≥ 0 and therefore hk = 0 for k ≥ 0.

The solution of system (11) will be time-invariant since the coefficients of this system do not
depend on u. For the sake of simplicity, we consider therefore a given u ≥ 0 in the following. Let
us first determine the coefficients Au,v for v ≥ 0, and then residually obtain the coefficients Cu,v

for v ≥ 0. System (11) implies that the coefficients Au,v satisfy the following equations:

βλAu,1 −
(
γ2 + λ

)
Au,0 + λ = 0,

βδλAu,v+2 −
(
γ2δ + β2λ + δλ

)
Au,v+1 + βλAu,v = 0 for v ≥ 0.

The latter equation corresponds to a recurrence equation on the Au,v for v ≥ 0 which is identical
to the recurrence equation on the gk for k ≥ 0 obtained above. The general form of the solution
to this recurrence equation is therefore Au,v = wzv + w′z′v for v ≥ 0, where w and w′ are two
real numbers. Two equations are then needed to determine w and w′. In a similar way as above,
the first one is provided by the initial condition βλAu,1 −

(
γ2 + λ

)
Au,0 + λ = 0 and the second

one is simply w′ = 0. At the end of the day, we thus obtain Au,v for v ≥ 0 and therefore Cu,v

for v ≥ 0, from which we derive the results for ∆p and y displayed in subsection 2.2. Finally, the
results for r are residually determined with the help of the IS equation.

In the second case, the social planner has observed shocks εpc
t0 and εis

t0 when she minimizes Lt0

at date t0. The variables can then be rewritten in the following way prior to the minimization of
Lt0 :
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∆pt0+k ≡
∑k−1

j=0

(
ak−j

k εpc
t0+k−j + bk−j

k εis
t0+k−j

)
+ gk,

yt0+k ≡
∑k−1

j=0

(
ck−j
k εpc

t0+k−j + dk−j
k εis

t0+k−j

)
+ hk

and rt0+k ≡
∑k−1

j=0

(
ek−j
k εpc

t0+k−j + fk−j
k εis

t0+k−j

)
+ ik

for k ≥ 0. We now look for the coefficients ak−j
k , bk−j

k , ck−j
k , dk−j

k , gk and hk for k ≥ 0 and
0 ≤ j ≤ k − 1 which minimize the same Lagrangian as above, before residually determining the
coefficients ek−j

k , fk−j
k and ik for k ≥ 0 and 0 ≤ j ≤ k − 1 with the help of the IS equation. In

a similar way as above, we find in a straighforward manner that ∀k ≥ 0 and ∀j ∈ {0, ..., k − 1},
bk−j
k = dk−j

k = 0. Now, the first-order conditions of the Lagrangian’s minimization with respect
to ak

k for k ≥ 1, ak−j
k for k ≥ 2 and j ∈ {1, ..., k − 1}, ck−j

k for k ≥ 1 and j ∈ {0, ..., k − 1}, g0, gk

for k ≥ 1, hk for k ≥ 0 can be respectively written in the following way:

2δkV (εpc) ak
k − µkεpc

t0+k = 0 for k ≥ 1,

2δkV (εpc) ak−j
k − µkεpc

t0+k−j + βµk−1ε
pc
t0+k−j = 0 for k ≥ 2 and j ∈ {1, ..., k − 1} ,

2δkλV (εpc) ck−j
k + µkγεpc

t0+k−j = 0 for k ≥ 1 and j ∈ {0, ..., k − 1} ,

2g0 − µ0 = 0,

2δkgk − µk + βµk−1 = 0 for k ≥ 1,

2δkλhk + γµk = 0 for k ≥ 0,

and the Phillips curve considered at all dates provides the following four additional equations:

βak
k+1 − ak

k + γck
k + 1 = 0 for k ≥ 1,

βak−j
k+1 − ak−j

k + γck−j
k = 0 for k ≥ 2 and j ∈ {1, ..., k − 1} ,

βg1 − g0 + γh0 + εpc
t0 = 0,

βgk+1 − gk + γhk = 0 for k ≥ 1.

These ten equations are then easily shown, through similar computations, to lead to the same
results for ∆p, y and r as in the first case.

D Characterization of the adequate interest rate rules

An adequate interest rate rule is defined as an interest rate rule which ensures strong local
equilibrium determinacy and which makes the strong-locally unique equilibrium selected coincide
with the desired equilibrium. We first look for the interest rate rules which ensure strong local
equilibrium determinacy, and show that they are necessarily forward-looking in a well-defined
manner. We then look more precisely for the interest rate rules which make the strong-locally
unique equilibrium selected coincide with the desired equilibrium, and show that they form a
vectorial space whose dimension depends on the desired equilibrium considered.

Equations (3), (4) and (5), taken at date t and in expectations Et {.} at dates t + k for k ≥ 1,
are equivalent to the following five equations:

yt =
1
γ

[−εpc
t + ∆pt − βEt {∆pt+1}] , (12)
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Et {yt+k} =
1
γ

[Et {∆pt+k} − βEt {∆pt+k+1}] for k ≥ 1, (13)

rt =
1
γη

[
γεis

t + εpc
t −∆pt + (1 + β + γη) Et {∆pt+1} − βEt {∆pt+2}

]
, (14)

Et {rt+k} =
1
γη

[−Et {∆pt+k}+ (1 + β + γη)Et {∆pt+k+1}

−βEt {∆pt+k+2}] for k ≥ 1 , (15)

and the equation noted (16) corresponding to the interest rate rule (3) taken at date t and in
expectations Et {.} at dates t + k for k ≥ 1, where the terms yt, Et {yt+j} for j ≥ 1, rt and
Et {rt+j} for j ≥ 1 are expressed as in (12), (13), (14) and (15).

Given the block-recursivity of this system of equations, ∆pt, Et {∆pt+k} for k ≥ 1, yt,
Et {yt+k} for k ≥ 1, rt and Et {rt+k} for k ≥ 1 will be uniquely determined, that is to say
strong local equilibrium determinacy will be ensured, if and only if ∆pt and Et {∆pt+k} for k ≥ 1
are themselves uniquely determined by (16) taken at date t and in expectations Et {.} at dates
t+k for k ≥ 1. Now, this equation considered in expectations Et {.} at dates t+k for k ≥ N1 +1
corresponds to a time-invariant linear recurrence equation on the expected future inflation rates:

∀k ≥ N1 + 1,
∑N2+2

i=−N1
miEt {∆pt+k+i} = 0,

where mi ∈ R for i ∈ {−N1, ..., N2 + 2}. For the interest rate rule to ensure strong local determi-
nacy, there must naturally exist an i ∈ {−N1, ..., N2 + 2} such that mi 6= 0, so that we can define
M ≡ max (i ∈ {−N1, ..., N2 + 2} , mi 6= 0). Given this recurrence equation, strong local equilib-
rium determinacy will thus be ensured if and only if ∆pt and (if N1 + M ≥ 1) Et {∆pt+k} for
1 ≤ k ≤ N1 + M are uniquely determined by (16) taken at date t and (if N1 ≥ 1) in expectations
Et {.} at dates t + k for 1 ≤ k ≤ N1. For these N1 + M + 1 unknowns to be uniquely determined
by these N1 + 1 linear equations, we must have M ≤ 0.

Given (13) and (15), M ≤ 0 can only happen if the forward-looking part of the inter-
est rate rule (3), namely

∑N2
i=1 aiEt {∆pt+i} +

∑N2
i=1 biEt {yt+i} +

∑N2
i=1 ciEt {rt+i}, amounts

to 1+β+γη+βηb0
γη Et {∆pt+1} − β

γη Et {∆pt+2}. This forward-looking part is characterized modulo
the IS equation and the Phillips curve, by which we mean that there are an infinity of distinct
though equivalent expressions for this forward-looking part which are linked to each other through
the IS equation or the Phillips curve. If b0 = −β+γη

βη for instance, this forward-looking part
can be written 1

η Et {yt+1}, or equivalently 1
γη Et {∆pt+1} − β

γη Et {∆pt+2}, or still equivalently
1
η Et {yt+2} − Et {rt+1}+ Et {∆pt+2}, etc.

Having characterized the forward-looking part of the interest rate rule, we now turn to its
coefficients ai, bi, di, fi for i ∈ {−N1, ..., 0} and (if N1 ≥ 1) ci for i ∈ {−N1, ...,−1}. The
interest rate rule will make the strong-locally unique equilibrium selected coincide with the desired
equilibrium if and only if these 5N1 + 4 coefficients satisfy a certain number of linear constraints.
Because of the linearity of these constraints, the set {r − r0} of adequate interest rate rules
relatively to a given benchmark adequate interest rate rule r0 (rather than the set {r} of adequate
interest rate rules per se) will be a vectorial space.

Whatever the desired equilibrium considered, a number 2 (N1 + 1) of constraints come from
(16) taken at date t and (if N1 ≥ 1) in expectations Et {.} at dates t + k for 1 ≤ k ≤ N1, as the
coefficients should indeed be such that ∆pt and (if N1 ≥ 1) Et {∆pt+1}, ..., Et {∆pt+N1} depend
on the two shocks εpc

t and εis
t in the desired way. For instance, whether under discretion or under
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commitment we must have f0 = −1
η and (if N1 ≥ 1) ci = fi

η for i ∈ {−N1, ...,−1} to get the
optimal impulse-response function of ∆p with respect to εis.

If the desired equilibrium considered is the optimal equilibrium under commitment (whether
for a closed economy or a small open economy with a flexible exchange rate) or the fixed exchange
rate equilibrium (for a small open economy), then one additional constraint comes from the fact
that z or x must be a root of the characteristic polynomial of the recurrence equation on the
expected future inflation rates, given the results obtained in subsections 2.2 and 3.3. Besides, this
requirement implies N1 ≥ 1, for the degree of the characteristic polynomial to be at least one,
while N1 can be nil when the desired equilibrium considered is the optimal equilibrium under
discretion (whether for a closed economy or a small open economy with a flexible exchange rate).

As a consequence, the set of adequate interest rate rules is a 3N1+2-dimension vectorial space
with N1 ≥ 0 when the desired equilibrium considered is the optimal equilibrium under discretion
(whether for a closed economy or a small open economy with a flexible exchange rate), and a
3N1 + 1-dimension vectorial space with N1 ≥ 1 when the desired equilibrium considered is the
optimal equilibrium under commitment (whether for a closed economy or a small open economy
with a flexible exchange rate) or the fixed exchange rate equilibrium (for a small open economy).

Note finally that any given impulse-response function of ∆p with respect to εpc and εis (pro-
vided that this impulse-response function is that of an ARMA process with εpc and εis as white
noises) can be implemented by a suitable choice of N1 and the coefficients ai, bi, di, fi for
i ∈ {−N1, ..., 0} and (if N1 ≥ 1) ci for i ∈ {−N1, ...,−1}, since by this choice we can impose any
set of initial conditions for the recurrence equation on the expected future inflation rates and any
set of roots for the characteristic polynomial of this recurrence equation. As a consequence, the
economy is “controllable” in the sense given to this term in subsection 2.3.

E Determination of the fixed exchange rate equilibrium

The fixity of the nominal exchange rate (∆e = 0) implies, via the non-covered interest rate
parity, that the nominal interest rate should keep constantly equal to its steady state value (r = 0).
Now consider a given date t. The IS equation and the Phillips curve taken in expectations
Et {.} at dates t + n for n ≥ 1, together with the condition r = 0, imply that the expected
future inflation rates Et {∆pt+n} for n ≥ 1 follow a recurrence equation whose second-order
characteristic polynomial has x and x′ for roots, where

0 < x =
1 + β + γη −

√
(1 + β + γη)2 − 4β

2β
< 1

and x′ =
1 + β + γη +

√
(1 + β + γη)2 − 4β

2β
> 1.

Now the long-run PPP condition and the fixity of the nominal exchange rate imply that
Et {∆pt+n} cannot diverge as n → +∞, so that we get: Et {∆pt+n+1} = xEt {∆pt+n} for
n ≥ 1. The long-run PPP condition then becomes pt−1 + ∆pt + 1

1−xEt {∆pt+1} = 0. Finally,
the IS equation and the Phillips curve taken at date t, together with the condition rt = 0, imply
∆pt − 1

xEt {∆pt+1} = γεis
t + εpc

t . Because pt−1 does not depend on εis
t and εpc

t and because they
hold whatever the shocks εis

t and εpc
t , these three equations imply that:

gn+1
t+n+1 = xgn

t+n for n ≥ 1
g0

t + 1
1−xg1

t+1 = 0
g0

t − 1
xg1

t+1 = 1
and


hn+1

t+n+1 = xhn
t+n for n ≥ 1

h0
t + 1

1−xh1
t+1 = 0

h0
t − 1

xh1
t+1 = γ

.
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These systems enable us to get gn
t+n and hn

t+n for n ≥ 0. Because the results obtained do not
depend on t, we have gn

t = gn
t+n and hn

t = hn
t+n for n ≥ 0, so that we finally get ∆pt and

(residually with the Phillips curve) yt as displayed in subsection 3.3.
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