USE IT OR LOSE IT: EFFICIENCY GAINS FROM WEALTH TAXATION

Fatih Guvenen

Gueorgui Kambourov

Burhan Kuruscu

Minnesota, FRB Mpls, NBER

Toronto

Toronto

Sergio Ocampo

Minnesota

Daphne Chen

Florida State

January 20, 2016

Guvenen, Kambourov, Kuruscu, Ocampo, Chen

Use It Or Lose It

January 20, 2016 1 / 64

The art of taxation consists in so plucking the goose...

... as to get the most feathers with the least hissing.

- Jean Baptiste Colbert, Minister of Finance to Louis XIV

CAPITAL INCOME TAXES

Country	% of GDP	% of taxes
USA	8.0	27.0
UK		
France		
Germany		
Sweden		
Norway		
Luxembourg		
EU-28		

TABLE: Capital Taxes, Select OECD Countries

Source: European Commission (2011, Table 54, year 2006) and OECD (2011, USA).

Guvenen, Kambourov, Kuruscu, Ocampo, Chen

CAPITAL INCOME TAXES

% of GDP	% of taxes
8.0	27.0
11.4	31.5
10.7	24.3
6.5	16.8
7.5	15.5
15.9	36.5
11.2	31.3
9.2	23.2
	% of GDP 8.0 11.4 10.7 6.5 7.5 15.9 11.2 9.2

TABLE: Capital Taxes, Select OECD Countries

Source: European Commission (2011, Table 54, year 2006) and OECD (2011, USA).

Guvenen, Kambourov, Kuruscu, Ocampo, Chen

1 Is it "desirable" to tax wealth?

- Is it "desirable" to tax wealth?
- If yes, then how should such a tax be structured?

- Is it "desirable" to tax wealth?
- If yes, then how should such a tax be structured?

This paper: Study quantitatively the structure of optimal taxes on wealth

- Is it "desirable" to tax wealth?
- If yes, then how should such a tax be structured?

This paper: Study quantitatively the structure of optimal taxes on wealth

(A) taking wealth inequality seriously:

- Is it "desirable" to tax wealth?
- If yes, then how should such a tax be structured?

This paper: Study quantitatively the structure of optimal taxes on wealth

(A) taking wealth inequality seriously:

Generate the concentration of wealth.

- Is it "desirable" to tax wealth?
- If yes, then how should such a tax be structured?

This paper: Study quantitatively the structure of optimal taxes on wealth

(A) taking wealth inequality seriously:

- Generate the concentration of wealth.
- Build on a new generation models of inequality featuring...

- Is it "desirable" to tax wealth?
- If yes, then how should such a tax be structured?

This paper: Study quantitatively the structure of optimal taxes on wealth

(A) taking wealth inequality seriously:

- Build on a new generation models of inequality featuring...
- (B) ... rate-of-return heterogeneity .. leading to a sharp contrast between:
 - Taxing income flow from capital
 - Taxing stock of capital (wealth)

- Is it "desirable" to tax wealth?
- If yes, then how should such a tax be structured?

This paper: Study quantitatively the structure of optimal taxes on wealth

- (A) taking wealth inequality seriously:
 - Generate the concentration of wealth.
 - Build on a new generation models of inequality featuring...
- (B) ... rate-of-return heterogeneity .. leading to a sharp contrast between:
 - Taxing income flow from capital (capital income tax)
 - Taxing stock of capital (wealth) (wealth tax)

Simple Example

• One-period model. Tax collected end of period.

- One-period model. Tax collected end of period.
- ▶ Two brothers, Fredo and Mike, each with \$1000 of wealth.

- One-period model. Tax collected end of period.
- ► Two brothers, Fredo and Mike, each with \$1000 of wealth.
- Key heterogeneity: in investment/entrepreneurial ability
 - (Fredo) Low ability: earns $r_f = 0\%$ net return
 - (Mike) High ability: earns $r_m = 20\%$ net return.

- One-period model. Tax collected end of period.
- ► Two brothers, Fredo and Mike, each with \$1000 of wealth.
- Key heterogeneity: in investment/entrepreneurial ability
 - (Fredo) Low ability: earns $r_f = 0\%$ net return
 - (Mike) High ability: earns $r_m = 20\%$ net return.
- Government taxes to finance G = \$50

	Capital income tax		Wealth tax
	Fredo	Mike	
	$(r_f=0\%)$	$(r_m = 20\%)$	
Wealth	1000	1000	
Before-tax Income	0	200	
$\tau_k = \frac{50}{200} = 25\%$			
Tax liability			
After-tax return			
After-tax $\frac{W_m}{W_f}$			

	Capital income tax		Wealth tax
	Fredo	Mike	
	$\left(r_f=0\%\right)$	$(r_m = 20\%)$	
Wealth	1000	1000	
Before-tax Income	0	200	
$\tau_k = \frac{50}{200} = 25\%$			
Tax liability	0	50	
After-tax return	0%	$\frac{200-50}{1000} = 15\%$	
After-tax $\frac{W_m}{W_f}$	1150/1000 = 1.15		

	Capital income tax		Wealt	th tax
	Fredo	Mike	Fredo	Mike
	$\left(r_f=0\%\right)$	$(r_m = 20\%)$	$(r_f = 0\%)$	$(r_m = 20\%)$
Wealth	1000	1000	1000	1000
Before-tax Income	0	200	0	200
	$\tau_k = \frac{50}{200} = 25\%$		$\tau_a = \frac{50}{2200} \approx 2.27\%$	
Tax liability	0	50		
After-tax return	0%	$\frac{200-50}{1000} = 15\%$		
After-tax $\frac{W_m}{W_f}$	1150/1000 = 1.15			

	Capital income tax		Wealth tax	
	Fredo	Mike	Fredo	Mike
	$\left(r_f=0\%\right)$	(<i>r_m</i> = 20%)	$(r_f = 0\%)$	$(r_m = 20\%)$
Wealth	1000	1000	1000	1000
Before-tax Income	0	200	0	200
	$\tau_k = \frac{50}{200} = 25\%$		$\tau_a = \frac{50}{2200} \approx 2.27\%$	
Tax liability	0	50	$1000 \tau_{a} = 22.7$	$1200\tau_{a} = 27.3$
After-tax return	0%	$\frac{200-50}{1000} = 15\%$	$-\frac{22.7}{1000} = -2.3\%$	$\frac{200-27}{1000} = 17.3\%$
After-tax $\frac{W_m}{W_f}$	1150/1000 = 1.15		1173/977 ≈ <mark>1.20</mark>	

 Replacing capital income tax with wealth tax increases dispersion in after-tax returns.

- Replacing capital income tax with wealth tax increases dispersion in after-tax returns.
- Potential effects:

- Replacing capital income tax with wealth tax increases dispersion in after-tax returns.
- Potential effects:
 - Positive (+): Efficiency gain
 - (Static): Capital is allocated (mechanically) to more productive agents.
 - (Dynamic): If savings rates respond to changes in returns, this could further increase reallocation of capital toward more productive agents.

- Replacing capital income tax with wealth tax increases dispersion in after-tax returns.
- Potential effects:
 - Positive (+): Efficiency gain
 - (Static): Capital is allocated (mechanically) to more productive agents.
 - (Dynamic): If savings rates respond to changes in returns, this could further increase reallocation of capital toward more productive agents.
 - Negative (-): Increased wealth inequality.

- Replacing capital income tax with wealth tax increases dispersion in after-tax returns.
- Potential effects:
 - Positive (+): Efficiency gain
 - (Static): Capital is allocated (mechanically) to more productive agents.
 - (Dynamic): If savings rates respond to changes in returns, this could further increase reallocation of capital toward more productive agents.
 - Negative (-): Increased wealth inequality.
- Conjecture: positive effects will be first order and negative effects will be second order.

WHY MISALLOCATION IN THE LONG RUN?

- In the simple example above, we assumed that Mike and Fredo had the same initial wealth.
- But in reality, those with high returns will eventually hold most of the wealth.
- If so, the misallocation of wealth to low return individuals will be a small problem?

Across Generations

 Children of very successful entrepreneurs often inherit large amounts of wealth but may not be able to work it efficiently.

Across Generations

 Children of very successful entrepreneurs often inherit large amounts of wealth but may not be able to work it efficiently.

- Over the Life Cycle
 - One-hit wonders versus serial entrepreneurs.

Across Generations

 Children of very successful entrepreneurs often inherit large amounts of wealth but may not be able to work it efficiently.

Over the Life Cycle

- One-hit wonders versus serial entrepreneurs.
- Sector-specific shocks.

Across Generations

• Children of very successful entrepreneurs often inherit large amounts of wealth but may not be able to work it efficiently.

Over the Life Cycle

- One-hit wonders versus serial entrepreneurs.
- Sector-specific shocks.

► Key Idea:

 Wealth tax can alleviate misallocation of capital across entrepreneurs who differ in their productivity.

Across Generations

• Children of very successful entrepreneurs often inherit large amounts of wealth but may not be able to work it efficiently.

Over the Life Cycle

- One-hit wonders versus serial entrepreneurs.
- Sector-specific shocks.

► Key Idea:

- Wealth tax can alleviate misallocation of capital across entrepreneurs who differ in their productivity.
- Wealth tax is like pruning: it eliminates weak branches, strengthens stronger ones.

OUTLINE

Model

- 2 Parameterization
- 8 Tax reform experiment
- Optimal taxation
- 6 Conclusions and current work

MODEL

HOW DID RICH BECOME RICH?

FIGURE: Precautionary saving motive or Higher returns?

Next 10>
NEW MODELS OF INEQUALITY

► A new literature builds power law models of inequality (building on earlier work by Champernowne (1953) and Simon (1955)).

NEW MODELS OF INEQUALITY

► A new literature builds power law models of inequality (building on earlier work by Champernowne (1953) and Simon (1955)).

Model

- Benhabib, Bisin, and Zhu (2011), Benhabib, Bisin, and Luo (2015), Gabaix, Lasry, Lions, and Moll (2015):
 - Return heterogeneity and return persistence across generations is key for matching the wealth distribution (and the right tail)

NEW MODELS OF INEQUALITY

• A new literature builds power law models of inequality (building on earlier work by Champernowne (1953) and Simon (1955)).

Model

- Benhabib, Bisin, and Zhu (2011), Benhabib, Bisin, and Luo (2015), Gabaix, Lasry, Lions, and Moll (2015):
 - Return heterogeneity and return persistence across generations is key for matching the wealth distribution (and the right tail)
- Fagereng, Guiso, Malacrino, and Pistaferri (2015) provide evidence for permanent differences in rate of returns.

HOUSEHOLDS

- OLG demographic structure.
- ► Individuals face mortality risk and can live up to *H* years.
- Let ϕ_h be the unconditional probability of survival up to age *h*, where $\phi_1 = 1$.

HOUSEHOLDS

- OLG demographic structure.
- ► Individuals face mortality risk and can live up to *H* years.
- Let ϕ_h be the unconditional probability of survival up to age *h*, where $\phi_1 = 1$.
- Each household supplies labor in the market and produces a differentiated intermediate good using her capital (wealth).
- Households maximize $\mathbb{E}_0\left(\sum_{h=1}^H \beta^{h-1} \phi_h u(c_h, \ell_h)\right)$
- Accidental bequests are inherited by (newborn) offspring.

HOUSEHOLD LABOR MARKET EFFICIENCY

▶ Labor market efficiency of household *i* at age *h* is

$$\log y_{ih} = \underbrace{\kappa_h}_{\text{lifecycle permanent}} + \underbrace{\theta_i}_{\text{permanent}} + \underbrace{\eta_{ih}}_{\text{AR(1)}}$$

• Individual-specific labor market ability θ_i is imperfectly inherited from parents,

$$\theta_i^{child} = \rho_\theta \theta_i^{parent} + \varepsilon_\theta$$

ENTREPRENEURIAL ABILITY

- Key source of heterogeneity: entrepreneurial ability z_i .
- ▶ Household *i* produces *x*_{*ih*} units of intermediate good *i* according to

 $x_{ih} = \mathbf{z}_i a_{ih}$.

ENTREPRENEURIAL ABILITY

- ► Key source of heterogeneity: entrepreneurial ability *z_i*.
- ▶ Household *i* produces *x*_{*ih*} units of intermediate good *i* according to

 $x_{ih} = \mathbf{z}_i a_{ih}$.

► *z* is constant over the lifecycle. (Returns will not be!)

ENTREPRENEURIAL ABILITY

- ► Key source of heterogeneity: entrepreneurial ability *z_i*.
- ▶ Household *i* produces *x*_{*ih*} units of intermediate good *i* according to

 $x_{ih} = \mathbf{z}_i a_{ih}$.

- z is constant over the lifecycle. (Returns will not be!)
- A newborn inherits *z* imperfectly from her parent:

$$\log(z^{child}) = \rho_z \log(z^{parent}) + \varepsilon_z.$$

COMPETITIVE FINAL GOOD PRODUCER

Final good output is $Y = Q^{\alpha} L^{1-\alpha}$, where

$$Q = \left(\int_i x_i^{\mu} di\right)^{1/\mu}, \ \mu < 1.$$

Price for intermediate good *i* is

$$p_i(x_i) = \alpha x_i^{\mu-1} Q^{\alpha-\mu} L^{1-\alpha}.$$

Wage rate (per efficiency unit of labor) is

$$w = (1-\alpha)Q^{\alpha-1}L^{1-\alpha}.$$

HOUSEHOLD BUDGET

Household's can finance their production by borrowing up to a fraction of their wealth or lend to other households at interest rate r.

HOUSEHOLD BUDGET

- Household's can finance their production by borrowing up to a fraction of their wealth or lend to other households at interest rate r.
- ▶ *r* is determined in equilibrium (net supply of external funds is zero).

HOUSEHOLD BUDGET

- Household's can finance their production by borrowing up to a fraction of their wealth or lend to other households at interest rate r.
- ▶ *r* is determined in equilibrium (net supply of external funds is zero).
- Without taxes, wealth after-production:

$$\max_{\substack{k \le \vartheta a}} [(1-\delta)k + p(zk)zk - (1+r)(k-a)]$$

= $(1+r)a + \max_{\substack{k \le \vartheta a}} [p(zk)zk - (r+\delta)k]$
= $(1+r)a + \pi^*(z,a)$

HOUSEHOLD BUDGET

- Household's can finance their production by borrowing up to a fraction of their wealth or lend to other households at interest rate r.
- *r* is determined in equilibrium (net supply of external funds is zero).
- Without taxes, wealth after-production:

$$\max_{\substack{k \le \vartheta a}} [(1-\delta)k + p(zk)zk - (1+r)(k-a)]$$

= $(1+r)a + \max_{\substack{k \le \vartheta a}} [p(zk)zk - (r+\delta)k]$
= $(1+r)a + \pi^*(z,a)$

After-tax wealth:

 $\Pi(a, z; \tau_k) = a + (ra + \pi^*(z, a))(1 - \tau_k) \quad \text{under capital income tax}$ $\Pi(a, z, \tau_a) = ((1 + r)a + \pi^*(z, a))(1 - \tau_a) \quad \text{under wealth tax}$

HOUSEHOLD BUDGET

During retirement:

$$(1+\tau_c)c + a' = \Pi(a, z, \tau) + y_R(\theta, \eta)$$

During working life:

$$(1 + \tau_c)c + a' = \Pi(a, z, \tau) + (1 - \tau_\ell)(wy_h n)^{\psi}$$

HOUSEHOLD BUDGET

During retirement:

$$(1+\tau_c)c+a'=\Pi(a,z,\tau)+y_R(\theta,\eta)$$

During working life:

$$(1 + \tau_c)c + a' = \Pi(a, z, \tau) + (1 - \tau_\ell)(wy_h n)^{\psi}$$

• Today: $\psi \equiv 1$.

HOUSEHOLD BUDGET

During retirement:

$$(1+\tau_c)c+a'=\Pi(a,z,\tau)+y_R(\theta,\eta)$$

During working life:

$$(1 + \tau_c)c + a' = \Pi(a, z, \tau) + (1 - \tau_\ell)(wy_h n)^{\psi}$$

- Today: $\psi \equiv 1$.
- Without heterogeneity in *z* and with $\mu = 1$, the two tax systems are equivalent.

HOUSEHOLD BUDGET

During retirement:

$$(1+\tau_c)c+a'=\Pi(a,z,\tau)+y_R(\theta,\eta)$$

During working life:

$$(1 + \tau_c)c + a' = \Pi(a, z, \tau) + (1 - \tau_\ell)(wy_h n)^{\psi}$$

- Today: $\psi \equiv 1$.
- Without heterogeneity in *z* and with $\mu = 1$, the two tax systems are equivalent.
- Two financial frictions:
 - **1** Households can borrow up to $\vartheta 1$ fraction of their wealth *a*
 - $\vartheta = 1$ means HH's cannot borrow or lend.
 - 2 Non-negative wealth: $a \ge 0$.

GOVERNMENT

- ► The government budget balances. Two scenarios:
- **1** Taxing capital income and labor income:

$$G + SSC = \sum_{h,a,\mathbf{s}} \left[\tau_k \times (ra + \pi^*(z,a)) + \tau_\ell \times wy_h + \tau_c \times c_h(a,\mathbf{s}) \right] \Gamma(a,\mathbf{s};h)$$

where

$$SSC = \sum_{a,\mathbf{s},h\geq R} y_R(\theta,\eta)\Gamma(h,a,\mathbf{s}).$$

GOVERNMENT

- The government budget balances. Two scenarios:
- 1 Taxing capital income and labor income:

$$G + SSC = \sum_{h,a,\mathbf{s}} \left[\tau_k \times (ra + \pi^*(z,a)) + \tau_\ell \times wy_h + \tau_c \times c_h(a,\mathbf{s}) \right] \Gamma(a,\mathbf{s};h)$$

where

$$SSC = \sum_{a,\mathbf{s},h\geq R} y_R(\theta,\eta)\Gamma(h,a,\mathbf{s}).$$

2 Taxing wealth and labor income:

$$G + SSC = \sum_{h,a,\mathbf{s}} \left[\boldsymbol{\tau}_{a} \times \left(\left((1+r)a + \pi^{*}(z,a) \right) \right) + \boldsymbol{\tau}_{\ell} w y_{h} + \boldsymbol{\tau}_{c} c_{h}(a,\mathbf{s}) \right] \Gamma(a,\mathbf{s};h)$$

► $s \equiv (\theta, \eta, z)$ and $\Gamma(a, s; h)$ is the stationary distribution of agents over states.

Guvenen, Kambourov, Kuruscu, Ocampo, Chen

FUNCTIONAL FORMS AND PARAMETERS

Preferences:

$$u(c,\ell) = \frac{\left(c^{\gamma}\ell^{1-\gamma}\right)^{1-\sigma}}{1-\sigma}$$

- Pension system:
 - $y_R(\theta, \eta) = \Phi(\theta, \eta) \times \overline{Y}$ where \overline{Y} is the average earnings in economy, and
 - $\Phi(\theta, \eta)$ is a concave replacement rate function taken from Social Security's OASDI system.

1 Tax reform:

Calibrate the model to replicate US economy with capital income taxes with θ = 1 (no financial markets).

1 Tax reform:

- Calibrate the model to replicate US economy with capital income taxes with $\vartheta = 1$ (no financial markets).
- Replace capital income taxes with wealth taxes so as to keep government revenue constant.

1 Tax reform:

- Calibrate the model to replicate US economy with capital income taxes with θ = 1 (no financial markets).
- Replace capital income taxes with wealth taxes so as to keep government revenue constant.

Ø Optimal taxation:

- Government maximizes utilitarian social welfare choosing:
 - linear labor income and capital income taxes, or
 - linear labor income and wealth taxes.

1 Tax reform:

- Calibrate the model to replicate US economy with capital income taxes with $\vartheta = 1$ (no financial markets).
- Replace capital income taxes with wealth taxes so as to keep government revenue constant.

Optimal taxation:

Government maximizes utilitarian social welfare choosing:

- linear labor income and capital income taxes, or
- linear labor income and wealth taxes.
- **3** Repeat (1) and (2) with $\vartheta = 1.5$ and $\vartheta = 2.5$.

1 Tax reform:

- Calibrate the model to replicate US economy with capital income taxes with θ = 1 (no financial markets).
- Replace capital income taxes with wealth taxes so as to keep government revenue constant.

Ø Optimal taxation:

- Government maximizes utilitarian social welfare choosing:
 - linear labor income and capital income taxes, or
 - linear labor income and wealth taxes.
- **(3)** Repeat (1) and (2) with $\vartheta = 1.5$ and $\vartheta = 2.5$.
- Repeat (1), (2), and (3) with wealth taxes subject to an exemption level (in progress).

1 Tax reform:

- Calibrate the model to replicate US economy with capital income taxes with θ = 1 (no financial markets).
- Replace capital income taxes with wealth taxes so as to keep government revenue constant.

② Optimal taxation:

- Government maximizes utilitarian social welfare choosing:
 - linear labor income and capital income taxes, or
 - linear labor income and wealth taxes.
- **3** Repeat (1) and (2) with $\vartheta = 1.5$ and $\vartheta = 2.5$.
- Repeat (1), (2), and (3) with wealth taxes subject to an exemption level (in progress).
- **6** Repeat (4) with progressive labor taxes (in progress).

CALIBRATION TARGETS AND OUTCOMES

• We calibrate 5 parameters to match 5 data moments:

- **5** Parameters: $(\beta, \rho_z, \sigma_{\varepsilon_z}, \sigma_{\varepsilon_{\theta}}, \gamma)$
- 5 Moments: K/Y ratio, top 1% and top 10% wealth shares, standard deviation of log earnings, average hours worked.

CALIBRATION TARGETS AND OUTCOMES

• We calibrate 5 parameters to match 5 data moments:

5 Parameters: $(\beta, \rho_z, \sigma_{\varepsilon_z}, \sigma_{\varepsilon_{\theta}}, \gamma)$

• 5 Moments: K/Y ratio, top 1% and top 10% wealth shares, standard deviation of log earnings, average hours worked.

• We set $\tau_k = 25\%$, $\tau_\ell = 22.4\%$, and $\tau_c = 7.5\%$ (Source: McDaniel, 2007)

CALIBRATION TARGETS AND OUTCOMES

• We calibrate 5 parameters to match 5 data moments:

- **5** Parameters: $(\beta, \rho_z, \sigma_{\varepsilon_z}, \sigma_{\varepsilon_{\theta}}, \gamma)$
- 5 Moments: K/Y ratio, top 1% and top 10% wealth shares, standard deviation of log earnings, average hours worked.
- We set $\tau_k = 25\%$, $\tau_\ell = 22.4\%$, and $\tau_c = 7.5\%$ (Source: McDaniel, 2007)
- Calibrated model generates:
 - total tax revenues of 29.5% of GDP
 - ratio of capital tax revenue to total tax revenue of 28%
 - both matching the US data perfectly.

PARAMETER CHOICES

TABLE: Benchmark Parameters Calibrated Jointly in Equilibrium

Parameter		Value
Curvature of utility	σ	4.0
Curvature CES aggregator for varieties	μ	0.90
Capital share in production	α	0.33
Interg. persistence of labor efficiency	$ ho_ heta$	0.50
Persistence of labor efficiency shock	ho	0.90
Std. dev. of labor efficiency shock	σ_η	0.20
Discount factor	β	0.942
Consumption share in utility	γ	0.449
Persistence of entrepr. ability	$ ho_z$	0.50
Std. dev. of entrepr. ability	σ_{ε_z}	0.65
Std. dev. of individual fixed effect	$\sigma_{arepsilon_ heta}$	0.34

Tax Reform

TAX REFORM: WEALTH DISTRIBUTION

TABLE: Benchmark vs.	Wealth Tax Economy
----------------------	--------------------

	US Data	Benchmark	Wealth Tax
Top 1%	0.34*		
Top 10%	0.69*		
Top 20%	0.82		
Wealth Gini	0.82		
Capital/Output	3.00*		
Bequest/Wealth	1–2%		
$\sigma(\log(\text{Earnings}))$	0.80*		
Avg. Hours	0.40^{*}		

TAX REFORM: WEALTH DISTRIBUTION

	US Data	Benchmark	Wealth Tax
Top 1%	0.34*	0.35	
Top 10%	0.69^{*}	0.68	
Top 20%	0.82	0.83	
Wealth Gini	0.82	0.84	
Capital/Output	3.00*	3.00	
Bequest/Wealth	1–2%	1.17%	
$\sigma(\log(\text{Earnings}))$	0.80*	0.80	
Avg. Hours	0.40^{*}	0.40	

TABLE: Benchmark vs. Wealth Tax Economy

RATE OF RETURN HETEROGENEITY

TABLE: Benchmark vs. Wealth Tax Economy

		Percentiles of Return Distribution (%)				
	P10	P50	P90	P95	P99	
		Before-tax				
Benchmark	2.18	5.69	12.69	17.34	26.08	

RATE OF RETURN HETEROGENEITY

TABLE: Benchmark vs. Wealth Tax Economy

	Percentiles of Return Distribution (%)				
	P10	P50	P90	P95	P99
		В	efore-tax		
Benchmark	2.18	5.69	12.69	17.34	26.08
Wealth tax	1.99	5.30	11.39	15.32	23.26
RATE OF RETURN HETEROGENEITY

	Percentiles of Return Distribution (%)						
	P10	P50	P90	P95	P99		
	Before-tax						
Benchmark	2.18	5.69	12.69	17.34	26.08		
Wealth tax	1.99	5.30	11.39	15.32	23.26		
		I	After-tax				
Benchmark	1.64	4.27	9.52	13.00	19.56		
Wealth tax	0.21	3.46	9.45	13.31	21.11		

TAX REFORM: WEALTH DISTRIBUTION

	US Data	Benchmark	Wealth Tax
Top 1%	0.34*	0.35	0.43
Top 10%	0.69*	0.68	0.74
Top 20%	0.82	0.83	0.86
Wealth Gini	0.82	0.84	0.86
Capital/Output	3.00*	3.00	3.10
Bequest/Wealth	1–2%	1.17%	1.27%
$\sigma(\log(\text{Earnings}))$	0.80*	0.80	0.79
Avg. Hours	0.40^{*}	0.40	0.41

REALLOCATION OF WEALTH ACROSS AGENTS

TABLE: Tax Reform from τ_k to τ_a : Change in Worker Composition

% Change in Types in Top x% Wealth Group								
Top x%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
1	_	-42.05	-30.37	-17.08	-3.93	0.01	10.39	
5	-24.02	-21.38	-17.54	-14.13	-2.13	12.76	4.89	
10	-21.20	-19.27	-15.02	-9.35	1.15	11.56	3.34	
50	-6.99	-5.82	-4.87	-1.34	3.75	1.89	0.68	

 Composition of wealth holdings shift toward more productive individuals.

	Benchmark	Wealth Tax	% Change
τ_k	25.0%	0.00	
$ au_a$	0.00	1.74%	
\overline{k}			
Q			
W			
Y			
L			
С			

	Benchmark	Wealth Tax	% Change
τ_k	25.0%	0.00	
$ au_a$	0.00	1.74%	
k			11.48
Q			
W			
Y			
L			
С			

	Benchmark	Wealth Tax	% Change
τ_k	25.0%	0.00	
$ au_a$	0.00	1.74%	
\overline{k}			11.48
Q			22.62
W			
Y			
L			
С			

	Donohmork	Weelth Terr	07 Change
	benchmark	weatth fax	% Change
τ_k	25.0%	0.00	
$ au_a$	0.00	1.74%	
k			11.48
Q			22.62
W			6.49
Y			
L			
С			

	Benchmark	Wealth Tax	% Change
τ_k	25.0%	0.00	
$ au_a$	0.00	1.74%	
\overline{k}			11.48
Q			22.62
W			6.49
Y			7.93
L			
С			

	Benchmark	Wealth Tax	% Change
τ_k	25.0%	0.00	
τ _a	0.00	1.74%	
\overline{k}			11.48
Q			22.62
W			6.49
Y			7.93
L			1.35
С			

Benchmark	Wealth Tax	% Change
25.0%	0.00	
0.00	1.74%	
		11.48
		22.62
		6.49
		7.93
		1.35
		9.58
	Benchmark 25.0% 0.00	Benchmark Wealth Tax 25.0% 0.00 0.00 1.74%

WELFARE ANALYSIS: TWO MEASURES

Let $\mathbf{s}_0 \equiv (\theta, z, a_0)$, and V_0 and \mathbb{V}_0 be lifetime value function in benchmark (US) and counterfactual economies, respectively.

WELFARE ANALYSIS: TWO MEASURES

Let $\mathbf{s}_0 \equiv (\theta, z, a_0)$, and V_0 and \mathbb{V}_0 be lifetime value function in benchmark (US) and counterfactual economies, respectively.

Measure 1: Compute individual specific consumption equivalent welfare and integrate:

 $V_0((1 + CE_1(\mathbf{s}_0))c^*_{\rm US}(\mathbf{s}_0), \ell^*_{\rm US}(\mathbf{s}_0)) = \mathbb{V}_0(c(\mathbf{s}_0), \ell(\mathbf{s}_0))$

$$\overline{CE}_{1} \equiv \sum_{\mathbf{s}_{0}} \Gamma_{\mathrm{US}}(\mathbf{s}_{0}) \times CE(\mathbf{s}_{0})$$

WELFARE ANALYSIS: TWO MEASURES

Let $s_0 \equiv (\theta, z, a_0)$, and V_0 and \mathbb{V}_0 be lifetime value function in benchmark (US) and counterfactual economies, respectively.

Measure 1: Compute individual specific consumption equivalent welfare and integrate:

$$\mathcal{V}_{0}((1 + CE_{1}(\mathbf{s}_{0}))c_{\mathrm{US}}^{*}(\mathbf{s}_{0}), \ell_{\mathrm{US}}^{*}(\mathbf{s}_{0})) = \mathbb{V}_{0}(c(\mathbf{s}_{0}), \ell(\mathbf{s}_{0}))$$

$$\overline{CE}_1 \equiv \sum_{\mathbf{s}_0} \Gamma_{\mathrm{US}}(\mathbf{s}_0) \times CE(\mathbf{s}_0)$$

Measure 2: Fixed proportional consumption transfer to all individuals in the benchmark economy:

$$\sum_{\mathbf{s}_0} \Gamma_{\mathrm{US}}(\mathbf{s}_0) \times V_0((1 + \overline{CE}_2)c^*_{\mathrm{US}}(\mathbf{s}_0), \ell^*_{\mathrm{US}}(\mathbf{s}_0)) = \sum_{\mathbf{s}_0} \Gamma(\mathbf{s}_0) \times \mathbb{V}_0(c(\mathbf{s}_0), \ell(\mathbf{s}_0)).$$

TAX REFORM: WHO GAINS, WHO LOSES?

		Productivity group						
Age	<i>z</i> ₁	<i>z</i> ₂	<i>z</i> 3	<i>z</i> 4	<i>Z</i> 5	<i>z</i> 6	<i>Z</i> 7	
20–25	5.58	5.46	5.18	4.64	4.11	6.67	13.53	
25–34	5.24	5.12	4.85	4.29	3.62	6.23	13.82	
35–44	4.34	4.21	3.94	3.38	2.70	5.41	13.38	
45–54	3.16	3.04	2.78	2.28	1.66	4.38	12.37	
55-64	1.25	1.16	0.98	0.63	0.24	3.17	10.97	
65-74	-0.32	-0.35	-0.43	-0.60	-0.71	2.38	9.63	
75+	-0.03	-0.04	-0.06	-0.12	-0.22	1.82	7.58	

TABLE: Welfare Change, By Age and Productivity

Note: Each cell reports the average of $CE_1(\theta, z, a, h) \times 100$ within each age and productivity group.

Guvenen, Kambourov, Kuruscu, Ocampo, Chen

=

POLITICAL SUPPORT FOR WEALTH TAXES

		Productivity group						
Age	<i>z</i> ₁	<i>z</i> ₂	Z3	Z4	<i>Z</i> 5	z ₆	<i>Z</i> 7	
20-25	0.99	0.98	0.97	0.94	0.89	0.99	1.00	
25–34	0.99	0.98	0.97	0.95	0.90	0.99	1.00	
35–44	0.96	0.95	0.94	0.91	0.88	0.99	1.00	
45-54	0.90	0.88	0.85	0.82	0.78	0.99	1.00	
55-64	0.71	0.69	0.67	0.62	0.57	0.99	1.00	
65–74	0.00	0.00	0.00	0.16	0.22	0.99	1.00	
75+	0.00	0.00	0.00	0.68	0.49	1.00	1.00	

TABLE: Fraction with Positive Welfare Gain

_

TAX REFORMS: SUMMARY

	\overline{CE}_1	\overline{CE}_2
Average CE for newborns	4.92%	
Average CE	2.31%	

TAX REFORMS: SUMMARY

	\overline{CE}_1	\overline{CE}_2
Average CE for newborns	4.92%	5.06%
Average CE	2.31%	2.91%
Fraction in favor of wealth tax	71.8%	

Optimal Taxation

TWO OPTIMAL TAX PROBLEMS

We consider two scenarios. The government chooses:

- (linear) labor taxes and capital income taxes
- (linear) labor taxes and wealth taxes.

(Progressive labor taxes are work in progress)

TWO OPTIMAL TAX PROBLEMS

We consider two scenarios. The government chooses:

- (linear) labor taxes and capital income taxes
- (linear) labor taxes and wealth taxes.

(Progressive labor taxes are work in progress)

The government maximizes average utility of the newborn.

TWO OPTIMAL TAX PROBLEMS

We consider two scenarios. The government chooses:

- (linear) labor taxes and capital income taxes
- ② (linear) labor taxes and wealth taxes.

(Progressive labor taxes are work in progress)

The government maximizes average utility of the newborn.

Then analyze:

Benchmark vs. Optimal tax (either capital or wealth)

WELFARE CHANGE: OPTIMAL TAXES

Guvenen, Kambourov, Kuruscu, Ocampo, Chen

WELFARE CHANGE: OPTIMAL TAXES

Guvenen, Kambourov, Kuruscu, Ocampo, Chen

WELFARE CHANGE: OPTIMAL TAXES

Guvenen, Kambourov, Kuruscu, Ocampo, Chen

	τ_k	$ au_\ell$	τ _a	\overline{k}/Y	Top 1%	Top 10%
Benchmark	25%	22.4%	-	3.0	0.35	0.68
Tax reform						
Opt. τ_k						
Opt. τ_a						

	$ au_k$	$ au_\ell$	τ _a	\overline{k}/Y	Top 1%	Top 10%
Benchmark	25%	22.4%	-	3.0	0.35	0.68
Tax reform	-	22.4%	1.74%	3.10	0.43	0.74
Opt. τ_k						
Opt. τ_a						

	$ au_k$	$ au_\ell$	τ _a	\overline{k}/Y	Top 1%	Top 10%
Benchmark	25%	22.4%	_	3.0	0.35	0.68
Tax reform	-	22.4%	1.74%	3.10	0.43	0.74
Opt. τ_k	1.62%	29.6%	_	3.61	0.43	0.72
Opt. τ_a						

	$ au_k$	$ au_\ell$	τ _a	\overline{k}/Y	Top 1%	Top 10%
Benchmark	25%	22.4%	_	3.0	0.35	0.68
Tax reform	-	22.4%	1.74%	3.10	0.43	0.74
Opt. τ_k	1.62%	29.6%	_	3.61	0.43	0.72
Opt. τ_a	-	23.2%	1.54%	3.16	0.43	0.74

WEALTH TAXES AND EFFICIENCY GAINS

 Raising revenue through wealth taxes reduces capital stock less than raising through capital income taxes.

WEALTH TAXES AND EFFICIENCY GAINS

• Quality-adjusted capital, \overline{Q} , declines **less** than *k* under wealth taxes. Opposite is true under capital income taxes.

OPTIMAL TAXES: AGGREGATE VARIABLES

TABLE: Optimal Taxes and Aggregate Variables

	ΔQ	ΔL	ΔY	Δw	Δw
					(net)
Benchmark	0.0	0.0	0.0	0.0	0.0
Tax reform	22.63	1.35	7.93	6.49	6.49
Opt. τ_k					
Opt. τ_a					

OPTIMAL TAXES: AGGREGATE VARIABLES

TABLE: Optimal Taxes and Aggregate Variables

	ΔQ	ΔL	ΔY	Δw	Δw
					(net)
Benchmark	0.0	0.0	0.0	0.0	0.0
Tax reform	22.63	1.35	7.93	6.49	6.49
Opt. τ_k	39.18	-1.46	10.43	12.07	1.70
Opt. τ_a					

OPTIMAL TAXES: AGGREGATE VARIABLES

TABLE: Optimal Taxes and Aggregate Variables

	ΔQ	ΔL	ΔY	Δw	Δw
					(net)
Benchmark	0.0	0.0	0.0	0.0	0.0
Tax reform	22.63	1.35	7.93	6.49	6.49
Opt. τ_k	39.18	-1.46	10.43	12.07	1.70
Opt. τ_a	24.77	1.07	8.34	7.20	6.15

OPTIMAL TAXES: WELFARE

TABLE: Optimal Taxes and Welfare Gains

	τ_k	$ au_\ell$	τ _a	<u>CE</u> ₂ (%)
Benchmark	25%	22.4%	_	-
Tax reform	-	22.4%	1.74%	5.06
Opt. τ_k				
Opt. τ_a				

Because wealth taxes raise revenue in a less distorting fashion, it allows gov't to reduce the more distrorting labor income taxes especially relative to capital income taxes.

OPTIMAL TAXES: WELFARE

TABLE: Optimal Taxes and Welfare Gains

	$ au_k$	$ au_\ell$	τ _a	<u>CE</u> ₂ (%)
Benchmark	25%	22.4%	_	_
Tax reform	_	22.4%	1.74%	5.06
Opt. τ_k	1.62%	29.6%	_	3.44
Opt. τ_a				

Because wealth taxes raise revenue in a less distorting fashion, it allows gov't to reduce the more distrorting labor income taxes especially relative to capital income taxes.

OPTIMAL TAXES: WELFARE

TABLE: Optimal Taxes and Welfare Gains

	$ au_k$	$ au_\ell$	τ _a	<u>CE</u> ₂ (%)
Benchmark	25%	22.4%	_	_
Tax reform	-	22.4%	1.74%	5.06
Opt. τ_k	1.62%	29.6%	_	3.44
Opt. τ_a	_	23.2%	1.54%	5.08

Because wealth taxes raise revenue in a less distorting fashion, it allows gov't to reduce the more distrorting labor income taxes especially relative to capital income taxes.
OPTIMAL WEALTH TAX: DISTRIBUTION OF WELFARE CHANGES

Welfare gain by age/productivity group									
Age:	<i>z</i> ₁	<i>z</i> ₂	<i>z</i> 3	<i>z</i> 4	<i>z</i> 5	<i>z</i> ₆	<i>Z</i> 7		
<25	5.33	5.22	4.98	4.51	4.13	6.69	13.08		
25–34	5.01	4.91	4.68	4.19	3.70	6.35	13.41		
35–44	4.19	4.08	3.84	3.37	2.87	5.63	13.05		
45–54	3.09	2.98	2.76	2.33	1.88	4.66	12.11		
55–64	1.25	1.17	1.02	0.72	0.47	3.46	10.78		
65–74	-0.28	-0.31	-0.37	-0.51	-0.52	2.64	9.48		
>75	-0.03	-0.03	-0.05	-0.10	-0.15	1.97	7.46		

Optimal Capital Tax Welfare

Financial Markets Extension

► HH's borrowing decision:

$$\max_{k \le \vartheta a} \{(1-\delta)k + p(zk)zk - (1+r)(k-a)\}$$

► HH's borrowing decision:

$$\max_{k \le \vartheta a} \{(1-\delta)k + p(zk)zk - (1+r)(k-a)\}$$

Same mechanisms at work: results are qualitatively the same.

HH's borrowing decision:

$$\max_{k \le \vartheta a} \{ (1-\delta)k + p(zk)zk - (1+r)(k-a) \}$$

- Same mechanisms at work: results are qualitatively the same.
- ► Quantitatively, differences in outcomes between capital income and wealth tax economies become smaller with higher *∂*,

HH's borrowing decision:

$$\max_{k \le \vartheta a} \{ (1-\delta)k + p(zk)zk - (1+r)(k-a) \}$$

- Same mechanisms at work: results are qualitatively the same.
- ► Quantitatively, differences in outcomes between capital income and wealth tax economies become smaller with higher *∂*,
- However, even for generous credit conditions, differences remain large so that welfare gain from wealth tax is still substantially higher.

HH's borrowing decision:

$$\max_{k \le \vartheta a} \{ (1-\delta)k + p(zk)zk - (1+r)(k-a) \}$$

- Same mechanisms at work: results are qualitatively the same.
- ► Quantitatively, differences in outcomes between capital income and wealth tax economies become smaller with higher *∂*,
- However, even for generous credit conditions, differences remain large so that welfare gain from wealth tax is still substantially higher.

TABLE: Moments under Capital Income Tax

	\overline{k}/Y	Top 1%	Top 10%	$\sigma(\log(E))$	Hours	$\frac{\overline{B}}{\overline{k}}$	$\frac{\overline{B}}{\overline{Y}}$
$\vartheta = 1$	3.00	0.35	0.68	0.80	0.4	0	0
$\vartheta = 1.5$	3.00	0.36	0.68	0.80	0.4	0.32	0.96
$\vartheta = 2.5$	3.00	0.36	0.68	0.80	0.4	0.56	1.61

Parameters

TABLE: Moments under Capital	Income Tax
------------------------------	------------

	\overline{k}/Y	Top 1%	Top 10%	$\sigma(\log(E))$	Hours	$\frac{\overline{B}}{\overline{k}}$	$\frac{\overline{B}}{\overline{Y}}$
$\vartheta = 1$	3.00	0.35	0.68	0.80	0.4	0	0
$\vartheta = 1.5$	3.00	0.36	0.68	0.80	0.4	0.32	0.96
$\vartheta = 2.5$	3.00	0.36	0.68	0.80	0.4	0.56	1.61

Parameters

► Federal Reserve Statistical Release (2015): Total non-financial business liability is \$12.2 Trillion ($\frac{B}{Y} = 0.68$)

	\overline{k}/Y	Top 1%	Top 10%	$\sigma(\log(E))$	Hours	$\frac{\overline{B}}{\overline{k}}$
$\vartheta = 1$	3.00	0.35	0.68	0.80	0.4	0
$\vartheta = 1.5$	3.00	0.36	0.68	0.80	0.4	0.32

0.80

0.4

TABLE: Moments under Capital Income Tax

Parameters

 $\vartheta = 2.5$

3.00

0.36

► Federal Reserve Statistical Release (2015): Total non-financial business liability is \$12.2 Trillion ($\frac{B}{Y} = 0.68$)

0.68

► Asker, Farre-Mensa, and Ljungqvist (2011): Debt/Asset ratio $(\frac{B}{k})$ is 0.2 and 0.31 for public and private firms respectively.

 $\frac{\overline{B}}{V}$

n

0.96

1.61

0.56

	\overline{k}/Y	Top 1%	Top 10%	$\sigma(\log(E))$	Hours	$\frac{\overline{B}}{\overline{k}}$	$\frac{\overline{B}}{\overline{Y}}$
$\vartheta = 1$	3.00	0.35	0.68	0.80	0.4	0	0
$\vartheta = 1.5$	3.00	0.36	0.68	0.80	0.4	0.32	0.96
$\vartheta = 2.5$	3.00	0.36	0.68	0.80	0.4	0.56	1.61

TABLE: Moments under Capital Income Tax

Parameters

- ► Federal Reserve Statistical Release (2015): Total non-financial business liability is \$12.2 Trillion ($\frac{B}{Y} = 0.68$)
- ► Asker, Farre-Mensa, and Ljungqvist (2011): Debt/Asset ratio $(\frac{\underline{B}}{k})$ is 0.2 and 0.31 for public and private firms respectively.
- $\vartheta = 1.5$ seems quite generous.

MOMENTS UNDER TAX REFORM

TABLE: Moments under Wealth Ta	ıx
--------------------------------	----

	τa	\overline{k}/Y	Top 1%	Top 10%	$\sigma(\log(E))$	Hours
$\vartheta = 1$	1.74%	3.10	0.43	0.74	0.79	0.41
$\vartheta = 1.5$	1.80%	3.11	0.44	0.73	0.79	0.41
$\vartheta = 2.5$	1.94%	3.08	0.43	0.72	0.79	0.41

TAX REFORM AND OUTPUT

TABLE: Bond Market, Tax Reform, and Output

	$Y(\tau_k)$	Y (t _a)	ΔY
$\vartheta = 1$	1.50	1.62	7.93%
$\vartheta = 1.5$			
$\vartheta = 2.5$			

TAX REFORM AND OUTPUT

TABLE: Bond Market, Tax Reform, and Output

	$Y(\tau_k)$	Y (t _a)	ΔY
$\vartheta = 1$	1.50	1.62	7.93%
$\vartheta = 1.5$	1.70	1.82	7.16%
$\vartheta = 2.5$			

TAX REFORM AND OUTPUT

TABLE: Bond Market, Tax Reform, and Output

	$Y(\tau_k)$	Y (t _a)	ΔY
$\vartheta = 1$	1.50	1.62	7.93%
$\vartheta = 1.5$	1.70	1.82	7.16%
$\vartheta = 2.5$	1.90	2.00	5.46%

Changes in Aggregates

WELFARE GAINS FROM TAX REFORM

TABLE: Welfare Gains from Tax Reform

	Newborn		А	.11	Fraction
	\overline{CE}_1	\overline{CE}_2	\overline{CE}_1	\overline{CE}_2	in favor
$\vartheta = 1$	4.92	5.06	2.31	2.91	71.8%
$\vartheta = 1.5$					
$\vartheta = 2.5$					

WELFARE GAINS FROM TAX REFORM

TABLE: Welfare Gains from Tax Reform

	New	born	А	.11	Fraction		
	\overline{CE}_1	\overline{CE}_2	\overline{CE}_1	\overline{CE}_2	in favor		
$\vartheta = 1$	4.92	5.06	2.31	2.91	71.8%		
$\vartheta = 1.5$	4.36	4.45	2.04	2.56	72.0%		
$\vartheta = 2.5$							

WELFARE GAINS FROM TAX REFORM

TABLE: Welfare Gains from Tax Reform

	New	born	All		Fraction	
	\overline{CE}_1	\overline{CE}_2	\overline{CE}_1	\overline{CE}_2	in favor	
$\vartheta = 1$	4.92	5.06	2.31	2.91	71.8%	
$\vartheta = 1.5$	4.36	4.45	2.04	2.56	72.0%	
$\vartheta = 2.5$	3.23	3.29	1.47	1.81	66.2%	

OPTIMAL TAXES

TABLE: Optimal Taxes

_										
		τ_k	$ au_\ell$	τ_a	$\frac{G_k}{G+SS}$	ΔY	Δw	Δw	\overline{CE}_2	\overline{CE}_2
			All numbers in %'s				(net)	NB	All	
	Opt. τ_k									
_	$\vartheta = 1$	1.62	29.6	_	2	10.43	12.07	1.70	3.44	3.40
	$\vartheta = 1.5$	3.67	29.1	_	4.5	9.11	10.69	1.21	2.90	3.00
	$\vartheta = 2.5$	6.38	28.5	-	7.6	7.16	8.84	0.35	2.18	2.68
	Opt. τ_a									
	$\vartheta = 1$	_	23.2	1.54	19.8	8.34	7.20	6.15	5.08	3.12
	$\vartheta = 1.5$	-	23.4	1.54	19.7	7.70	6.67	5.36	4.49	2.83
_	$\vartheta = 2.5$	-	24.1	1.46	18.7	6.52	6.07	3.70	3.46	2.40
_										

Guvenen, Kambourov, Kuruscu, Ocampo, Chen

Use It Or Lose It

January 20, 2016 53 / 64

- Conesa et al (AER, 2009) study optimal capital income taxes in incomplete markets OLG model
 - with idiosyncratic labor risk
 - without return heterogeneity
 - and find optimal $\tau_k = 36\%$
 - increase in welfare of CE = 1.33%.

- Conesa et al (AER, 2009) study optimal capital income taxes in incomplete markets OLG model
 - with idiosyncratic labor risk
 - without return heterogeneity
 - and find optimal $\tau_k = 36\%$
 - increase in welfare of CE = 1.33%.
- Why do we find optimal smaller τ_k (but a large τ_w)?

- Conesa et al (AER, 2009) study optimal capital income taxes in incomplete markets OLG model
 - with idiosyncratic labor risk
 - without return heterogeneity
 - and find optimal $\tau_k = 36\%$
 - increase in welfare of CE = 1.33%.
- Why do we find optimal smaller τ_k (but a large τ_w)?
 - In both Conesa et al and in our model, higher τ_k reduces capital accumulation and leads to lower output.

- Conesa et al (AER, 2009) study optimal capital income taxes in incomplete markets OLG model
 - with idiosyncratic labor risk
 - without return heterogeneity
 - and find optimal $\tau_k = 36\%$
 - increase in welfare of CE = 1.33%.
- Why do we find optimal smaller τ_k (but a large τ_w)?
 - In both Conesa et al and in our model, higher τ_k reduces capital accumulation and leads to lower output.
 - However, in our model, higher τ_k hurts productive agents disproportionately, leading to more misallocation, and further reducations in output.

- Conesa et al (AER, 2009) study optimal capital income taxes in incomplete markets OLG model
 - with idiosyncratic labor risk
 - without return heterogeneity
 - and find optimal $\tau_k = 36\%$
 - increase in welfare of CE = 1.33%.
- Why do we find optimal smaller τ_k (but a large τ_w)?
 - In both Conesa et al and in our model, higher τ_k reduces capital accumulation and leads to lower output.
 - However, in our model, higher τ_k hurts productive agents disproportionately, leading to more misallocation, and further reducations in output.
 - With wealth tax, the tax burden is shared between productive and unproductive agents, leading to smaller misallocation and lower declines in output with τ_a.

- Conesa et al (AER, 2009) study optimal capital income taxes in incomplete markets OLG model
 - with idiosyncratic labor risk
 - without return heterogeneity
 - and find optimal $\tau_k = 36\%$
 - increase in welfare of CE = 1.33%.
- Why do we find optimal smaller τ_k (but a large τ_w)?
 - In both Conesa et al and in our model, higher τ_k reduces capital accumulation and leads to lower output.
 - However, in our model, higher τ_k hurts productive agents disproportionately, leading to more misallocation, and further reducations in output.
 - With wealth tax, the tax burden is shared between productive and unproductive agents, leading to smaller misallocation and lower declines in output with τ_a.

- Many countries currently have or have had wealth taxes:
 - France, Spain, Norway, Switzerland, Italy, Denmark, Germany, Finland, Sweden, among others.
- However, the rationale for such taxes are often vague:
 - fairness, reducing inequality, etc...
 - and not studied formally

- Many countries currently have or have had wealth taxes:
 - France, Spain, Norway, Switzerland, Italy, Denmark, Germany, Finland, Sweden, among others.
- However, the rationale for such taxes are often vague:
 - fairness, reducing inequality, etc...
 - and not studied formally

Piketty (Capital in Twenty-First Century, 2014, p. 526):

... Nevertheless, another classic argument in favor of a capital tax should not be neglected. It relies on a logic of incentives. The basic idea is that a on capital is an incentive to seek the best possible return on one's capital stock. Concretely, a tax of 1 or 2 percent on wealth is relatively light for an entreprenuer who manages to earn 10 percent a year on her capital. By contrast, it is quite heavy for a person who is content to park her wealth in investments returning at most 2 or 3 percent a year. According to this logic, the purpose of the tax on capital is thus to force people who use their wealth inefficiently to sell assets in order to pay their taxes, thus ensuring that those assets wind up in the hands of more dynamic investors...

Piketty (Capital in Twenty-First Century, 2014, p. 526):

... Nevertheless, another classic argument in favor of a capital tax should not be neglected. It relies on a logic of incentives. The basic idea is that a on capital is an incentive to seek the best possible return on one's capital stock. Concretely, a tax of 1 or 2 percent on wealth is relatively light for an entreprenuer who manages to earn 10 percent a year on her capital. By contrast, it is quite heavy for a person who is content to park her wealth in investments returning at most 2 or 3 percent a year. According to this logic, the purpose of the tax on capital is thus to force people who use their wealth inefficiently to sell assets in order to pay their taxes, thus ensuring that those assets wind up in the hands of more dynamic investors...

Here, we are proposing a case for wealth taxes entirely based on efficiency benefits and quantitatively evaluating its impact.

- Wealth taxes have different, sometimes opposite, implications from capital income tax.
- Revenue neutral tax reform from τ_k to τ_a :
 - reallocates capital from less productive wealthy to the more productive wealthy
 - gives the right incentives to the right people to save
 - increases output, consumption, wages, and welfare.
 - Welfare gains seem substantial

- Wealth taxes have different, sometimes opposite, implications from capital income tax.
- Revenue neutral tax reform from τ_k to τ_a :
 - reallocates capital from less productive wealthy to the more productive wealthy
 - sives the right incentives to the right people to save
 - increases output, consumption, wages, and welfare.
 - Welfare gains seem substantial
- Optimal wealth taxes are positive and large. Optimal capital taxes are small.
 - Welfare gain is substantially larger under wealth taxes.

- Current work and extensions:
 - Study optimal taxes allowing for exemption levels and progressivity.
 - Preliminary results indicate further gains in welfare and lower wealth inequality from optimal wealth tax.

- Current work and extensions:
 - Study optimal taxes allowing for exemption levels and progressivity.
 - Preliminary results indicate further gains in welfare and lower wealth inequality from optimal wealth tax.
 - Introduce estate taxes and study optimality vs. wealth taxes

- Current work and extensions:
 - Study optimal taxes allowing for exemption levels and progressivity.
 - Preliminary results indicate further gains in welfare and lower wealth inequality from optimal wealth tax.
 - Introduce estate taxes and study optimality vs. wealth taxes
 - Optimize over consumption taxes.

- Current work and extensions:
 - Study optimal taxes allowing for exemption levels and progressivity.
 - Preliminary results indicate further gains in welfare and lower wealth inequality from optimal wealth tax.
 - Introduce estate taxes and study optimality vs. wealth taxes
 - Optimize over consumption taxes.
 - Global wealth taxes?

Thanks!
TABLE:	Wealth	Concentration	by Asset	Type
				J F -

	Stocks	All stocks	Non-equity	Housing	Net Worth
	w/o pensions		financial	equity	
Top 0.5%	41.4	37.0	24.2	10.2	25.6
Top 1%	53.2	47.7	32.0	14.8	34.0
Top 10%	91.1	86.1	72.1	51.7	68.7
Bottom 90%	8.9	13.9	27.9	49.3	31.3
			ficients		
		Financ	Net Worth		
		0		0.82	

Source: Poterba (2000) and Wolff (2000)

	Percentiles of Rate of Return Distribution (%)							
	P10	P25	P50	P75	P90	P95	P99	
Population:	1.96	3.31	5.12	8.7	11.42	15.61	23.47	
Age group:								
<25	2.14	3.31	5.68	9.76	12.33	20.19	29.15	
25–34	2.01	2.86	4.97	8.36	10.56	16.07	20.27	
35–44	1.87	2.59	4.54	8.20	10.55	15.29	19.12	
45–54	1.8	2.4	4.29	7.70	9.75	14.77	18.12	
55–64	1.82	2.47	4.36	7.68	10.27	14.67	19.20	
65–74	2.14	3.83	5.43	9.55	12.05	14.6	17.76	

Appendix

TABLE: Optimal Capital Tax: Distribution of Welfare

Welfare gain by age/productivity group									
Age:		<i>z</i> ₁	<i>z</i> ₂	Z ₃	<i>z</i> 4	<i>Z</i> 5	<i>z</i> 6	<i>Z</i> 7	
<25		1.64	1.65	1.69	1.89	2.78	5.47	8.56	
25–34		1.62	1.64	1.69	1.91	2.90	6.02	9.47	
35–44		1.50	1.53	1.60	1.85	2.91	6.35	9.84	
45–54		1.24	1.28	1.34	1.58	2.58	6.07	9.55	
55–64		0.62	0.65	0.69	0.88	1.76	5.19	8.77	
65–74		0.01	0.02	0.05	0.18	0.95	4.34	7.86	
>75		0.00	0.00	0.01	0.04	0.36	2.94	6.15	

TABLE: Parameters with Bond Market

Parameter		$\vartheta = 1$	$\vartheta = 1.5$	$\vartheta = 2.5$
Discount factor	β	0.942	0.941	0.940
Consumption share in utility	γ	0.449	0.449	0.449
Persistence of entrepr. ability	$ ho_z$	0.50	0.50	0.50
Std. dev. of entrepr. ability	σ_{ε_z}	0.65	0.64	0.64
Std. dev. of individual fixed effect	$\sigma_{arepsilon_ heta}$	0.34	0.34	0.34

Back

TAX REFORM: CHANGES IN AGGREGATE VARIABLES

TABLE: Tax Reform and Aggregate Variables

	$\Delta \overline{k}$	ΔQ	ΔY	ΔC	ΔL	Δw	ΔR	ΔR
							$R_1 - R_2$	(net)
			All	numb	ers are	in %		
$\vartheta = 1$	11.48	22.62	7.93	9.58	1.35	6.49	-	-
$\vartheta = 1.5$	10.67	20.04	7.16	8.65	1.32	5.75	0.08	-0.73
$\vartheta = 2.5$	8.07	14.93	5.46	6.64	1.09	4.32	0.14	0.11
				Back				