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Abstract.
We assume that students can acquire a wage premium, thanks to studies, and form a ra-
tional expectation of their future earnings, which depends on personal "ability". Students
receive a private, noisy signal of their ability, and universities can condition admission de-
cisions on the results of noisy tests. We assume ¯rst that universities are maximizing social
surplus, and contrast the results with those obtained when they are pro¯t maximizers. If
capital markets are perfect, and if test results are public knowledge, then, the optimal
tuition fee is greater than marginal cost, and there is no sorting on the basis of test scores.
Students optimally self-select as a result of pricing only. If capital markets are perfect but
asymmetries of information are bilateral, i.e., if universities observe a private signal of each
student's ability, or if there are borrowing constraints, then, the optimal policy involves
a mix of pricing and pre-entry selection on the basis of test scores. Optimal tuition can
then be set below marginal cost, and can even become negative, if the precision of the
university's private assessment of students' abilities is high enough.
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1. Introduction

The public universities' state of ¯nancial crisis is an acute problem in many countries. Pub-
lic funds shortages being recurrent, the idea that tuition fees could be increased naturally
arises, but is understandably met with ¯erce resistance of citizens. In the United States,
many public schools have faced the hard choice of either cutting educational spending
and quality, or increasing price, and tuition has gone up in the recent years (see Winston
(1999), and his references). In Europe, the situation is almost tragic. A journalist recently
described Britain's universities as "depressingly threadbare, overcrowded and politicized"1;
it seemed to us |as Frenchmen and university teachers|, that this statement is close to
being an excellent description of the current state of our country's (mostly public) univer-
sities. To be more precise, we think that in French universities, poverty and bureaucracy
are a cause of demoralization. Tony Blair's plans to let tuition fees increase is hugely
unpopular2. In France, the question is still an absolute political taboo, although many
feel that an evolution towards university decentralization and a form of pricing is almost
inescapable. Tuition reform has already started in Germany, and is currently discussed in
other countries as well. Yet, it seems that the formal economic theory of university pricing,
the question of the optimal balance of fees and subsidies has not been studied with enough
precision.

The present article proposes an approach of optimal fees, as well as an analysis of
university behavior. In doing so, we pay special attention to informational asymmetries.
University policies are examined under opposite assumptions; we assume ¯rst that univer-
sities are non-pro¯t institutions, and contrast the results with those obtained under the
assumption that they are rent-seeking, or "for-pro¯t" organizations. The possibility of
regulating, or providing incentives to rent-seeking universities, as well as the relevance of
normative "marginal cost pricing" theories is also considered in the latter case.

In our model, heterogeneous students can acquire a wage premium, thanks to studies.
They form a rational expectation of their future earnings, and apply for higher education on
the basis of this forecast. The expected wage premium depends on the university's quality,
the number of graduates, and on the student's personal "talent", or "ability". Informa-
tion is incomplete, in the sense that neither the university, nor the student, can directly
observe talent. Students receive a private, noisy signal of their ability, and universities can
condition admission decisions on the results of tests, or entrance examinations. The cases
in which test results are, and are not publicly disclosed are both analyzed. Higher educa-
tion is costly, total cost depending on quality, quantity, and the average ability of recruits
(the well-known peer e®ect). A university has the right to set fees, and to set admission
standards, in the form of a minimal grade or test score. It also chooses a quality variable
and total enrollment. Non-pro¯t universities are assumed to choose their policy in order
to maximize social surplus. This provides us with a useful benchmark. The non-pro¯t
managers have no concern for equity, or no aversion for inequality, so that our results will
depend on e±ciency considerations only. In contrast, the rent-seeking university simply

1
The Economist (2003a)

2
The Economist (2003b)
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maximizes an expression of pro¯t, that is, tuition revenues minus costs, which provides a
clear description of the other extreme.

We consider both the case of "perfect capital markets", and the situation in which
there are borrowing constraints, with the consequence that talented students from low
income families can be barred from higher education by tuition.

Our results are the following. First, if capital markets are perfect, and if test or
entrance examination results are public knowledge, and rational students condition their
application decisions on private as well as public signals, then, an optimal policy involves
a positive fee, and no sorting on the basis of test scores. Students optimally self-select as
a result of pricing only. In addition, the optimal tuition fee is greater than marginal cost.

Second, if capital markets are perfect but asymmetries of information are bilateral, in
the sense that universities observe a signal of each student's ability which is not disclosed
or not taken into account by students, then, the optimal policy of a non-pro¯t university
involves a mix of pricing and pre-entry selection on the basis of grades or test scores. The
optimal policy can then entail a direct student subsidy: optimal tuition can be set below
marginal cost, and can even become negative, if the precision of the university's private
assessment of students' abilities is good enough. This result is not due to redistribution
or equity motives on the part of the benevolent university; it is driven solely by e±ciency
considerations.

Third, the rent-seeking university's policies are ine±cient: tuition fees tend to be
too high and admission standards tend to be too low. An incentive transfer schedule,
depending on enrollment and knowledge of the wage distributions, can fully correct the
ine±ciencies due to rent-seeking or for-pro¯t behavior.

Fourth, when students face borrowing constraints, even if test scores are publicly dis-
closed, the university's optimal policy must be a combination of pricing and selection, with
the possibility that, again, tuition be set below marginal cost, to alleviate the ine±ciencies
due to the fact that some good students are deterred by price. Again, this result is not due
to assumed redistribution motives of the benevolent university manager; it follows from
e±ciency, surplus maximization considerations only.

To sum up, we ¯nd that university pricing is a socially e±cient policy, but that
it should be mixed with pre-entry selection of students, either because the university has
private information on students' abilities, or because, due to ¯nancial market imperfections,
some students face borrowing constraints, or both. Now, the optimal tuition fee can
be optimally set below marginal cost, and will be a decreasing function of the entrance
examination's precision as a signal of student ability. The more accurate entrance exams
are, the larger the discount on tuition.

To arrive at these results, we had to choose a university objective function. This is
problematic, and every choice is open to criticism3. Winston (1999) remarkably summa-
rizes the intuitions, and provides a non-technical description, of university economics. We
have kept his vision of the "industry" in mind and arrive at results which, we think, do
not contradict his observations. Our choice has been to "cut the Gordian knot" and to
consider two extreme, probably equally unrealistic cases: the purely benevolent, and the

3
A few contributions have been devoted to a formal microeconomic analysis of universities, but the topic

seems underdeveloped; see, for instance, Garvin (1980), Borooah (1994).
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purely greedy, for-pro¯t (or rent-seeking) university managers4. The perfect competition
case has been studied by Rothschild and White (1995), who emphasize the important idea
that students are inputs in the production of their own human capital. In the present
contribution, the university is endowed with market power. This could represent a private
university with a substantial market share or a leadership position, but also a dominant
network of public universities. The industrial organization of the higher education sec-
tor remains di±cult to model, and in particular, the various forms of price and non-price
competition among universities are still very much unexplored5.

We assume the existence of peer e®ects, in the sense that the average ability of en-
rolled students increases the quality of education for a given expenditure, or equivalently,
decreases total cost for a given quality objective. The theory of peer group e®ects, or
local interactions in education has been studied, among other contributions, by Arnott
and Rowse (1987), de Bartolome (1990), Benabou (1993), and Epple and Romano (1998).
There have been many attempts at testing for the presence of peer-group e®ects in educa-
tion, from school to college, since the Coleman (1966) report; e.g., among recent contribu-
tions, Betts and Morell (1999), Hoxby (2000), Sacerdote (2001), Angrist and Lang (2002),
Rothstein (2002), Zimmerman (2003). The common view is that these e®ects are impor-
tant in higher education, even if is di±cult to estimate their magnitude. All our results
would be qualitatively the same if peer group e®ects were negligible. Yet, our analysis
permits one to see how they intervene in the determination of optimal university pricing
and enrollment. They would probably become crucial in theories of strategic interactions
among universities.

Our representation of university technology comprises a quality variable. Quality can
be viewed as an index aggregating particular expenditures and teachers' e®orts, including
the teacher's endeavor to stimulate student e®ort. To keep the model relatively simple,
we did not introduce a moral hazard (i.e., hidden e®ort incentives) problem explicitly in
the analysis. Recent empirical studies show the importance of education quality on future
wages (e.g., Card and Krueger (1992), Angrist and Lavy (1999)), and the e®ect of teacher
incentives on student achievement (e.g., Lavy (2002)).

Finally, our analysis of optimal pricing is not independent of an economic theory of
examination procedures. Important pioneering work on the economic theory of exams is
due to Costrell (1994) and Betts (1998). Our philosophy is closer to that of Fern¶andez
and Gal¶³ (1999), and Fern¶andez (1998), who presents a simpli¯ed version of the model
analyzed in the former contribution. In her paper, student population is described by a
joint distribution of ability and wealth. The problem is to allocate students to high quality,
or to low quality schools, knowing that high quality school capacity is ¯xed and that
student ability and quality are complementary inputs in the production of future earnings.
For e±ciency reasons, high ability types should be allocated to high quality schools. A
costly (and socially wasteful) test technology can be used to decide which students will
be admitted to high quality schools. Each student can produce a given, deterministic test
result at the personal cost of a given amount of e®ort (which varies with ability). Fern¶andez

4
In our model, rent-seeking and pro¯t maximization behaviors are formally equivalent.

5
However, Del Rey (2001) and De Fraja and Iossa (2001), study asymmetric duopoly models; Gary-Bobo

and Trannoy (2002) contains an attempt at modelling monopolistic competition.
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(1998) then compares a publicly regulated, test-based allocation system with a competitive
equilibrium allocation in which schools set prices. Tests and prices are equivalent when
students can borrow against future income. We ¯nd the same equivalence of tests and
fees as screening devices in Section 2 of the present paper, in a setting which is di®erent,
but essentially related. She then shows that markets and exams are not equivalent when
students cannot borrow. Examination-led allocations dominate market equilibria because,
under zero-borrowing, some able-but-poor students take the place of some wealthy-but-less-
able students, which improves the overall matching of students to schools, and therefore,
aggregate output. The main di®erences of our work with that of Fern¶andez consist in
introducing incomplete information under more radical forms: (students observe noisy
signals of their ability, test results are random), in comparing various forms of informational
asymmetry, (unilateral and bilateral), and studying variable enrollment and education
quality. With the addition of these elements, we show under which circumstances optimal
policies should balance selection on the basis of grades and self-selection by means of the
price mechanism; we compute the optimal tuition and show how the amount of subsidy (or
tuition rebate) is related to the informational properties of the examination technology;
we ¯nally sketch the analysis of the role of borrowing constraints in the determination of
tuition rebates.

In the following, Section 2 presents basic assumptions and an analysis of our model
under complete information assumptions. Section 3 presents the results in the asymmetric
information setting. Section 4 is devoted to a variant of the model in which informational
asymmetries are bilateral, and Section 5 analyzes the impact of borrowing constraints on
the optimal policy.

2. Optimal Tuition Fee and Admission Policy under Complete Information

2.1. The Skill Premium

Our point of departure is a formalization of the skill premium which can be earned by means
of higher education. We suppose to simplify the analysis that there exists a university (or
college), with a single department, exerting some form of monopoly or market power as
a provider of higher education and skilled workers. Let the potential student population
be of size N . Each student is characterized by a "talent" or "ability" variable, denotedbµ. In the present section, ability is observed by the student, and in the next one, ability
is not observed, neither by the university, nor by the student, but the student receives
a noisy private signal relative to her (his) own ability. The complete information setting
of the present section can be viewed as a limiting case of the more realistic, incomplete
information model to be studied later.

The university and public authorities are assumed able to estimate the probability
distribution of ability. We suppose that there exist two categories of workers only, the
skilled, who are graduates from the university (or college), and the unskilled, who did not
study. The unskilled workers' wage rate is a constant w0 and the university (or college)
graduates' wage is w. The future wage w of a skilled worker is random, because it depends
on the individual's ability; we suppose that the following relation holds,

ln(w) = ln(w0) + b¢(x; e) + bµ; (1)
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where b¢, the skill premium, is a function of the number of graduates, denoted x, (it
depends in fact on the ratio of skilled over unskilled workers in the economy), and of the
quality of studies provided by the university, denoted e.

Students do not exert any personal e®ort, and all enrolled students receive a diploma,
for simplicity. It must however be clear that µ̂ captures the fact that graduates are not
all equal, due to di®ering talents, which are re°ected in more or less brilliant grades, as
well as more or less lucrative perspectives on the labor market. Therefore, the assumption
that all students obtain a degree does not preclude student heterogeneity. We assume
that the skill premium is decreasing with respect to x, and increasing with respect to
e (and continuously di®erentiable with respect to both variables); these are reasonable
assumptions, compatible with a general equilibrium model in which skilled and unskilled
labor are used as inputs in the production process.

With the help of these assumptions, we can derive the demand for higher education,
that is, determine the number of candidates for registration. University policy is charac-
terized by three variables: the number of graduates x (equal to the number of enrolled
students in equilibrium), the quality of studies e, and the tuition fee, denoted p. Potential
students decide to apply for registration in view of these three variables. An important,
and probably strong |although very common| assumption is that all agents observe and
(or) form correct expectations about the skill premium b¢ (for a discussion of this approach,
e.g. Manski (1993)).

The student's preferences are assumed to be represented by the same inter-temporal,
in¯nite horizon, additively separable utility function. Higher education takes place in the
¯rst period of the student's life-cycle, at time t = 0. Utility is assumed to be quasi-linear
with respect to consumption at t = 0. Formally, for a consumption pro¯le c = (c0; c1; c2; :::)
we de¯ne utility u(c) as follows,

u(c) = c0 +

1X
t=1

®t ln(ct); (2)

where

® =
1

1 + r
(3)

is the discount factor associated with a psychological interest rate r > 0, used by agents
to discount future utility.

2.2. Number of Candidates for Registration (Demand)

To simplify the analysis, we assume that a worker's wage is constant during her (his)
entire working life. Agents do not save, and consume their wages, which are expressed in
real terms. With the help of these assumptions, an agent who doesn't study remains an
unskilled worker for life; his or her utility can be written, using (2) and (3),

u0 = w0 +
ln(w0)

r
: (4)
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Using (1), (2) and (3), if the agent chooses to study, her expected utility, conditional on

ability bµ can be written,
uµ = ¡p+ ln(w0)

r
+
b¢
r
+
bµ
r
; (5)

since the student is not working at time 0, and pays p as a tuition fee. Introducing a
capitalized skill premium, as well as a capitalized value of ability,

¢(x; e) =
b¢(x; e)
r

; µ =
bµ
r
; (6)

we get the following expression: uµ = ¡p + ln(w0)=r +¢+ µ. An individual with ability
µ chooses to study if and only if uµ ¸ u0, that is, if and only if,

µ ¸ y ´ p+ w0 ¡¢; (7)

where y is an ability threshold above which agents do apply for registration at the univer-
sity. This threshold depends on p and ¢ and thus on the values of (e; p; x) (the quality of
studies, tuition fee and total number of graduates), since ¢ is a function of (x; e).

Let us denote by F the cumulative probability distribution of µ. In the following, we
assume that F is continuously di®erentiable with a density denoted f . With the help of
these notations, the demand facing the university is N (1¡ F (y)).

Now, we want to allow for the possibility of student selection by the university. Let
us assume for the time being that ability is observable, and that the university chooses
an ability threshold, denoted z, below which student applications are rejected, that is,
only the µ ¸ z are accepted. Thus, "e®ective" demand, which is the combined product of
screening and pricing, depends on p and z. Formally, let ¯rst

t = maxfy; zg: (8a)

E®ective demand, denoted q, is a function of t de¯ned as

q(t) = N(1¡ F (t)): (8b)

2.3. University Teaching Technology and Peer Group E®ects

Our model will be fully speci¯ed if we describe higher education costs. We would like to
capture the idea that the often discussed "peer group e®ects" can be present and a®ect the
quality of education for a given cost, or equivalently, a®ect the cost of providing a given
quality of education. To do so, we assume that there exists a continuously di®erentiable
university cost function, denoted C, depending on chosen education quality e, on the
number of enrolled students x, and on average student ability, denoted v. In other words,
total university cost is given by C(x; e; v), where v is the expected value of ability, knowing
that abilities µ ¸ t are enrolled by the university. We provide a formal expression for v
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below. It is natural to assume that C is increasing with respect to x and e, and non-
increasing with respect to v. This assumption, which is not the most general way of
modelling the fact that students are inputs in the production process of their own human
capital (e.g., Rothschild and White (1995)), nevertheless captures the essential idea behind
peer e®ects.

At this stage, it will probably clarify the discussion if we show that the model described
above is formally equivalent to one in which the the peer group e®ect directly a®ects the
skill premium through average student ability v. To see this, assume that the job market
values worker quality, denoted e, and that worker quality is produced with the help of
teacher e®ort ´ and peer e®ects so that e = Á(´; v), where Á is a kind of production
function, which is increasing with respect to ´ for all v. Now, if the teaching technology
is represented by a cost function depending on teacher e®ort and the number of students
only, that is, if C = ~C(x; ´), and if the skill premium depends on quality and the number
of graduates only, that is, ¢ = ¢(x; e), then, the latter can be expressed as a function of
e®ort ´ as follows,

~¢(x; ´; v) ´ ¢(x; Á(´; v)):
This shows reasonable conditions under which the approach in which the skill premium
would be a function of average peer ability is formally equivalent to one in which average
peer ability is an argument of the university cost function. It happens that the latter
approach is much simpler than the former from the technical point of view, as will be seen
below.

2.4. The Philanthropic View and Social Optimum

We de¯ne a higher education institution as "philanthropic" when its objective is to max-
imize the social value, or social surplus, of its education activity. It is of course a strong
assumption to assume that a university is philanthropic, but this approach will provide us
with a very clear benchmark, equivalent to the idea of Pareto optimum. Since utilities are
quasi-linear, social surplus maximization yields e±cient policies and allocations. In the
following, we will of course contrast this view with other, less optimistic theories of the
university objective, that will be called "cynic views".

It is now possible to compute the optimal policy of a philanthropic university. The
university will be ¯nanced by subsidies (or by donations), in the case of a de¯cit. The
required amount of public resources (or donations) is simply,

D = C(x; e)¡ px: (9)

The amount D will be subtracted from social surplus to balance the university budget at
time 0. We therefore suppose that the share of total cost that the students of a given
cohort do not pay for in the form of tuition fees will be paid in the form of (lump-sum)
taxes, or contributions, made by the same or other other agents, such as alumni donations,
etc. There are of course more subtle relations between public pricing, public subsidies
voluntary contributions, and the tax system, involving political economy and redistribution
problems which will not be studied in the present analysis. In particular, we assume that
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the social justice problems are solved by means of other redistributive tools, in the hands
of independent public authorities. More precisely, we assume that equality of opportunity
problems are solved in the sense that no student with the necessary talents is barred
from studying because of a ¯nancial constraint. We are perfectly aware of the fact that
this picture is a bit too rosy, and that more sophisticated modelling work on the case in
which imperfections of credit markets and family backgrounds di®erences create unequal
opportunities is needed. We address the borrowing constraints question in the ¯nal section
of this paper. In the present section and the following one, our analysis aims at showing
the simple structure of the optimal higher education pricing problem in a pure e±ciency
case, which can again be seen as a benchmark. Under the assumptions made above, the
philanthropic objective (social surplus) can be de¯ned as follows,

W = xE (uµ j µ ¸ y; µ ¸ z) + (N ¡ x)u0 + px¡C(x; e; v); (10)

and can be interpreted as the total sum of the x graduates' expected utilities, and of the
remaining (N ¡ x) unskilled workers. If the expressions of utilities uµ and u0 given by
(4)-(6) are substituted in W , we get, after some straightforward simpli¯cations,

W = x (¢(x; e)¡ w0 + v(t))¡ C(x; e; v(t)) +Nu0; (11)

where, by de¯nition,

v(t) = E(µ j µ ¸ t) =
R1
t µf(µ)dµ

1¡ F (t) ; (12)

is the mean ability of an individual, knowing that this individual is a student, and t =
max(y; z). Thus, W is the di®erence between total student or skilled worker productivity,
x(¢ + v), and total opportunity costs xw0 plus total direct costs C of higher education.

To determine the optimum, the social surplus (11) must be maximized under the
constraints that the number of enrolled students cannot be higher than the number of
screened applications, that is, x · q(t) with t = max(y; z) and y = p+ w0 ¡¢.

The philanthropic faculty will always be able to close the gap between x and q(t) with
the help of an increase of the tuition fee p or of the pass-threshold z if x < q(t), because
q is a decreasing function of t. Thus x = q(t) at the optimum. To see this, suppose that
z > y and that x < q(z). Then, locally, dW=dz = (x ¡ Cv)v0(t), where Cv is the partial
derivative of C with respect to v. But, by assumption, Cv < 0 and

v0(t) =
f(t)

1¡ F (t) (v(t)¡ t) ¸ 0; (13)

because v(t) = E(µ j µ ¸ t) ¸ t, with a strict inequality if t is not the highest value in the
support of f . It follows that dW=dz > 0 and the university should increase z. Suppose now
that y > z and x < q(y). Then locally, for the same reasons as above, dW=dp = dW=dy =
(x ¡ Cv)v0(y) > 0, and the university should increase p. As a consequence, it is possible
to set x = q(t), and to invert the e®ective demand curve. We then obtain the expression
of an ability-threshold t¤, or marginal ability, which is a function of x. Inverting (8b), we
get,

t = t¤(x) ´ F¡1
³
1¡ x

N

´
; (14)
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giving the value of t for which exactly x individuals with abilities greater than t apply for
registration at the university.

It is then useful to remark that,

xv (t¤(x)) = x

R1
t¤(x) µf(µ)dµ

x=N
= N

Z 1

t¤(x)
µf(µ)dµ; (15)

and for future reference, using Leibniz's rule, we get

d

dx
[xv (t¤(x))] = t¤(x): (16a)

and
dv(t¤(x))
dx

=

µ
1

x

¶
[t¤(x)¡ v(t¤(x))] < 0 (16b)

In order to derive the necessary conditions for an optimum, we now maximize the following
function with respect to (x; e),

W (x; e) = x (¢(x; e)¡ w0) + xv(t¤(x))¡ C[x; e; v(t¤(x))] +Nu0; (17)

Let us denote Cx, ¢x, Ce, ¢e the partial derivatives of C and ¢ with respect to x and e
respectively. The necessary conditions for optimality are,

x¢x +¢¡ w0 + t¤ = Cx + Cv
µ
1

x

¶
(t¤ ¡ v(t¤)); (18)

x¢e = Ce: (19)

Conditions (18) and (19) are easily interpreted. Equation (18) says that the marginal social
value of a graduate must be equal to its marginal cost, while equation (19) says that the
marginal social value of quality x¢e must be equal to its marginal cost Ce, at the optimum.
The marginal value of a graduate is the sum of two terms: the graduate's marginal ability
t¤, and the marginal "social revenue" of the skills produced by the university, that is,
x¢x + ¢ ¡ w0: A negative term x¢x appears in the latter expression (since ¢x < 0 by
assumption), and expresses the fact that an additional skilled worker lowers the wage of
all the other graduates on the labor market. At the optimum, the university must take
this e®ect into account and should not °ood the market with too many skilled workers.
The marginal cost is itself the sum of two terms: the ¯rst is the direct marginal cost
Cx, the second, which is also positive (being the product of two negative terms) is the
marginal "peer e®ect". Increasing x by one unit reduces the average quality of students
as shown by (16b); hence, it reduces the peer group e®ect, which increases the cost by
(dv=dt)(dt¤=dx)Cv.

The optimal allocation is basically expressed in terms of x, e and t. The remaining
part of the analysis is mainly a problem of implementation. Some form of student screening
takes place at the optimum, since the optimal t is not equal to its smallest possible value;
then, do we wish the optimal screening level to be implemented by means of a "merit list"
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(i.e., by the entrance admission-threshold z) or by "means of money" (i.e., the tuition p)?
An increase of the tuition fee p will increase the average quality v of students equally well
as an increase of the admission threshold z, these tools are perfect substitutes. This is
true if students and the university perfectly observe the ability levels. We will see that this
conclusion does not hold fully in an incomplete information version of the model, although
money and merit may remain imperfect substitutes.

In welfare terms, given our utilitarian formulation of the social surplus, and the quasi-
linearity of preferences, the tuition p has no e®ect on welfare, apart from its role in de-
termining the ability of the marginal enrolled student t¤, that is, its role as a screening
tool. The tuition has redistributive e®ects, but they do not matter under quasi-linearity.
Again, this conclusion would not hold in a world in which informational and ¯nancial
imperfections play an important role, as will be seen below.

Formally, equations (18) and (19) determine the optimal values (x¤; e¤), from which
we derive t¤¤ ´ t¤(x¤), the optimal ability of the marginal student. In addition, we know
that t¤¤ = max(y¤; z¤) for some pair (y¤; z¤). The relation of y¤ with the optimal tuition
p¤ is derived from (7) above, and given by the formula,

p¤ = y¤ +¢(x¤; e¤)¡w0: (20)

Implementation of the optimum by means of tuition means choosing y¤ = t¤¤ > z¤ and
choosing the tuition p¤ so that (20) holds with y¤ ´ t¤(x¤). Implementation of the optimum
by "merit" is tantamount to choosing z¤ = t¤¤ > y¤ and choosing the tuition p¤ so that
(20) holds.

It follows that there are two possible pricing regimes in our complete information
model: one in which tuition matters because it determines demand (locally) and one in
which sorting according to ability makes tuition ine®ective as a screening device. In the
second regime, one can say that the usual interpretation of some observed facts holds:
tuition is set at a deliberately low level to create an excess demand, which aims at facil-
itating the selection of good students by the university. We are now equipped to clarify
the meaning of the often discussed application of "marginal cost pricing" to universities.

2.5. "Marginal Cost" Pricing and Optimality

At this stage, it should be noted that implementation by means of a tuition fee does not
require any observation of the admitted student's abilities: it would therefore also work
under conditions of asymmetric information, when ability µ is a private information of
the applicants. Under these informational conditions, the only thing that the university
authorities need to know is, as usual, the distribution of abilities F . The university can
then implement an optimum by setting p¤ appropriately (so that t¤¤ = y¤ of course), and
students will self-select according to the optimal screening rule, since only abilities greater
than t¤¤ will apply. In this case, introducing an entrance examination procedure would
produce information on abilities, but would presumably be costly. Examination costs can
then be saved by the philanthropic university manager, insofar as redistribution e®ects
do not matter, because pricing alone does the entire job of implementing the optimum.
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Consider now the optimal tuition in this case. Using (18), (20), and y¤ = t¤(x¤), we easily
derive,

p¤ = Cx + Cvv̂x ¡ x¤¢x: (21a)

where, using (16b),

v̂x ´ t¤(x)¡ v(t¤(x))
x

< 0: (21b)

Since x¢x · 0, Cx > 0, Cv < 0 and v̂x < 0, we ¯nd that p is unambiguously positive.
Thus, we can state the following.

Result 1. If abilities are private information of the students applying for higher education,
tuition alone can be used to screen applicants and to implement a social optimum. In this
case, at any interior optimum, tuition is greater than the university's marginal cost of a
student.

When abilities are not observable, tuition fees are used to discourage the students whose
abilities lie below the socially optimal threshold. These fees are not just a token, since
they must then cover the marginal cost of education (including the marginal peer e®ect).
De¯ne now, the university ¯xed cost

K(e; v) = lim
x!0+

C(x; e; v); (22)

which depends on the chosen quality of studies e, and possibly on the average ability of
recruits v, and assume that marginal cost Cx is increasing with respect to x. From (21a),
multiplying by x and subtracting C, we get,

px¡C = xCx + xCvv̂x ¡ x2¢x ¡ C:

De¯ne the university rent as R = px¡C (this does not mean that the university will earn
this "rent" at the optimum, because the social planner can tax it). Then, from the above
expression, we get,

R+K = ¡x2¢x + xCvv̂x + xCx ¡C +K;
and since C is assumed to be convex (because marginal cost is assumed to be increasing),
we have K¡C+xCx ¸ 0. The assumptions ¢x < 0 and Cv < 0 therefore yield R+K > 0,
or equivalently px¡C +K > 0, and we can state the following result.

Result 2. If abilities are private information of the students and if the university cost is
convex, then, a social optimum is implemented by means of a tuition fee, and university
revenues px must be greater than variable costs C ¡K.

It must then be the case that part of the university ¯xed cost will be covered by a public
subsidy, or another source of revenue. This being said, we know that the optimal policy
can be implemented by a combination of tuition and sorting of abilities, and in this case,
the above pricing formula has no reason to apply. In practice, universities do combine the
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tools of selection by money and selection by merit, they engage in the costly production
of information on abilities (by means of tests and entrance examinations), and students
are subsidized (e.g. Winston (1999)). These facts are more appropriately captured in
an incomplete information framework. Before we start the analysis of the incomplete
information case, we now contrast the "cynic" and "philanthropic views". To this end,
and for the sake of completeness, we analyze the behavior of a rent-seeking (or purely
for-pro¯t) university under conditions of complete information.

2.6. The Cynic View: Rent-Seeking and For-Pro¯t University

We now study the behavior of a deregulated rent-seeking or for-pro¯t university. The
university is deregulated in the sense that it is free to choose total enrollment x, tuition
fee p, quality e, and the admission threshold z. The university is also endowed with
market power; this is an approximation for a situation in which, say, a centrally governed
public network of universities has a quantitatively important share of the higher education
market, but the model could as well capture the behavior of a private university with a
dominant position.

The cynic view assumes that the university (the faculty) seeks to maximize their rent

R = px¡ C(x; e; v(t)); (23)

with respect to (e; x; p; z), subject to the constraints x · q(t), t = max(y; z) and y =
p + w0 ¡¢(x; e), e®ective demand q being de¯ned by (8b). This rent can be understood
as the amount of resources that are made available to ¯nance faculty activities other than
teaching. In academic systems in which teacher's careers essentially depend on research
achievement, it is likely that research will be a major faculty objective (although there is
of course no guarantee), so that R might as well stand for research. But R can of course
easily be interpreted as pro¯t, and our model is then that of a for-pro¯t university.

It can again be shown that x = q(t) at the optimum. Suppose that z < y, then
t = y, and an increase of p yields dR=dp = dR=dy = x ¡ Cvv0(t) > 0, so that p should
be increased until q(t) equals x. Suppose now that z > y, then t = z, and an increase
in z yields dR=dz = ¡Cvv0(t) > 0, so that z should be increased until q(t) equals x.
Substituting q(t) = x and p = y + ¢ ¡ w0 in the expression for rent (23) yields the
program,

max(e;y;z) f(y +¢(q(t); e)¡ w0)q(t)¡ C[q(t); e; v(t)]g (24)

subject to t = max(y; z). Finally, z (and the constraint de¯ning t) can be eliminated
from the optimization program as follows. To solve the problem, it is su±cient to choose
t and y subject to t ¸ y; if t > y at the optimum, then t = z and if t = y then z can
be arbitrarily chosen so that y ¸ z at the optimum. The rent-seeking university therefore
wants to maximize,

R(e; t; y) = q(t) [y +¢(q(t); e)¡ w0]¡C(q(t); e; v(t)); (25)

subject to the constraint t ¸ y. Let now ¸ be the constraint's Lagrange multiplier. Kuhn
and Tucker's necessary conditions for constrained optimality can be written:

(y +¢¡w0 + q(t)¢x)q0(t)¡ Cxq0(t)¡Cvv0(t) = ¡¸; (26a)
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q(t)¢e = Ce; (26b)

q(t) = ¸ and ¸(t¡ y) = 0: (26c)

Conditions (26) immediately yield an important qualitative result: since q(t) = ¸ > 0,
they imply y = t, and the rent-seeking university will not use pre-enrollment selection to
sort students; the active screening variable is the tuition fee. Using q0=q = ¡f=(1 ¡ F )
and v0t = ¡(q0=q)(v¡ t) to rearrange terms in (26), we get the following rent-maximization
conditions,

x¢x + p = Cx +Cv

µ
y ¡ v(y)
x

¶
+

µ
1¡ F (y)
f(y)

¶
; (27a)

x¢e = Ce; with (27b)

y = t¤(x); and p = t¤(x) + ¢¡w0: (27c)

A direct comparison of (27a)-(27c) with (18)and (19) above immediately shows that the
rent-seeking university does not choose an optimal allocation (e; x; p; z). The rent-seeking
university does not enroll enough students. Since it behaves as if marginal cost was higher
by (1 ¡ F )=f , they will typically set enrollment x below its optimal level. It follows
that they will choose a tuition level which is too high with respect to the philanthropic
optimum (conditional on chosen quality e). Quality will be higher or lower than its socially
optimal value, depending on the sign of the cross second-order partial derivative ¢xe.
Equations (19) and (26b) show that the rent-seeking university will choose an optimal level
of quality e if and only if it chooses an optimal level of enrollment x. These properties
hold under complete information conditions, as well as if abilities are private information
of the students. We can state the following result.

Result 3. When compared with the philanthropic university, the rent-seeking university
(a), chooses a sub-optimal level of enrollment, and (b), tuition is their only screening device
and they do not sort students according to ability.

A comparison of the cynic objective (24) with the philanthropic objective (17) immediately
shows that the cynic solution will typically not be socially optimal. The di®erence between
the two objectives stems from the fact that the rent-seeking university prices according to
the last enrolled student's ability (or marginal ability t¤(x)), while the philanthropic man-
ager takes the total value of student abilities N

R1
t¤(x) µf(µ)dµ (or xv(t

¤(x)) into account.
There is a close formal analogy between the complete information version of our model
and the model of a monopoly choosing both quantity and quality, as studied by Spence
(1975) and Sheshinski (1976).

The distortions caused by rent-seeking behavior can easily be corrected: it would be
su±cient to tax the marginal value of ability and simultaneously, to pay a subsidy equal
to the total value of ability. We can state the following result.
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Result 4. The rent-seeking university chooses a socially e±cient policy if it is subject to
a public money transfer T (x), depending on enrollment only, and de¯ned as,

T (x) = ¡xt¤(x) +N
Z 1

t¤(x)
µf(µ)dµ + constant; (28)

where t¤(x) is de¯ned by (14).

It is remarkable that the incentive money transfer T depends on the number of graduates
x, and on distribution F only | because t¤ itself only depends on F . It is also remarkable
that cost observations are not needed to regulate the rent-seeking university. Enrollment
x is in principle observable by the public regulator, and the ability distribution F can be
estimated by an econometrician, by means of the Mincerian regression function (1), which
was our point of departure. If the cynic view is correct, a public regulator of universities
should collect data on students' wages and careers and perform some econometric work, to
correct the distortions caused by rent-seeking behavior. Even though unbiased estimates
of a regression function function like ¢(x; e), are more di±cult to obtain than it would
seem at ¯rst glance (e.g. Card (1999), Harmon, Oosterbek, and Walker (2003)), given the
enormous amount of empirical work devoted to the topic, returns-to-education economet-
rics is nowadays common practice. In our simpli¯ed model, it is easy to see how two-step
methods µa la Heckman (e.g. Heckman (1978), Willis and Rosen (1979)) can be used to
estimate F and ¢. Assume that ¢ is linear and e is constant. We get the regression equa-
tion, ln(wi=w0) = a+bx+µi, where i indexes individual observations. We neglect possible
controls such as age and experience to simplify the discussion. Given that we observe
students only, the expected value of µi is not zero. We get instead E[µi j µi > y] = v(y),
where y = p+w0¡bx¡a. Two-step methods (or, of course, standard maximum likelihood
techniques) can be applied to estimate the regression ln(wi=w0) = a+bx+v(y)+´i, where
E(´i) = 0.

3. Asymmetric Information and Entrance Examinations

Let us now come back to the study of philanthropic and cynic views of university, but under
less restrictive assumptions relative to the information of the students, public regulator,
and Faculty. Our fundamental assumption will now be that students do not observe their
own ability µ; they are endowed with incomplete knowledge of their own talent, formed
by means of noisy informative signals. Students are assumed to observe a private signal of
ability; more precisely, they observe s, where, by de¯nition,

s = µ + "; (29)

where ability µ and ", a zero-mean noise, are assumed to be normal and independent
random variables.

In addition, an costless examination technology provides an estimation of ability which
is publicly observable. The examination grade is a random variable denoted z, and is
de¯ned as follows:

z = µ + º; (30)
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where º is normal with a zero mean and independent from µ and ". The grade z is known
to the student and to the Faculty (i.e., the university authorities). This examination can
be interpreted as a national ¯nal high school exam, (such as baccalaur¶eat in France, or
Abitur in Germany), or z can be viewed as an entrance test score.

The university can set a pass mark ¹z; a student is then admitted for registration only
if his or her grade z is greater than ¹z. The value of higher education is now expressed in
expected terms, conditional on the two signals (s; z). Let u1 be the expected utility of
higher education,

u1 = ¡p+ ln(w0)
r

+¢+ E (µ j s; z) ;
where variables, p, w, r, ¢, have the same meaning as in the above section. The utility of
a non-educated worker is still

u0 = ¡w0 + ln(w0)
r

:

An individual applies for higher education if and only if u1 ¸ u0, that is, equivalently, if
and only if,

E (µ j s; z) ¸ ¹y ´ p+ w0 ¡¢(x; e): (31)

Under our normality assumptions, a student's rational estimation of her own ability, that
is, E (µ j s; z), is itself a normal random variable. Let ¾2µ , ¾2" , ¾2º , be the variances of µ, ", et
º, respectively, and let ¹ be the prior mean of µ. Some computations, using the normality
assumption yield the classic result,

E (µ j s; z) = s¾2µ¾
2
º + z¾

2
µ¾

2
" + ¹¾

2
º¾

2
"

¾2µ¾
2
º + ¾

2
µ¾

2
" + ¾

2
º¾

2
"

: (32)

This expression being linear with respect to s and z, we have,

E (µ j s; z) ´ ®s+ ¯z + °¹ ´ y; (33)

where the values of ®, ¯, and ° are de¯ned by identifying (32) et (33). The random signal
y can be interpreted as the expected ability of an individual, knowing her private signal
and her test score or examination grade. With this speci¯cation, a student is enrolled if
she is willing to apply and if she satis¯es the requirements of the entrance selection process
based on z, that is, if and only if,

z ¸ ¹z and y ¸ ¹y: (34)

E®ective demand can then be written,

x = q(¹y; ¹z) = N Pr(y ¸ ¹y; z ¸ ¹z);

that is,

q(¹y; ¹z) = N

Z 1

¹z

Z 1

¹y

Ã(y; z)dydz; (35)

where Ã is the joint normal density of (y; z).
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3.1. The Philanthropic View: Optimal Examination and Tuition Fees

Expected social surplus can be written,

W = xE [u1 j y ¸ ¹y; z ¸ ¹z] + (N ¡ x)u0 + px¡C:

De¯ne,
v(¹y; ¹z) ´ E [µ j y ¸ ¹y; z ¸ ¹z] : (36)

Function v is the expected ability of enrolled students, knowing that their grade is greater
than ¹z and that their private assessment y is greater than ¹y. After some simpli¯cations, we
get, W = x [¢(x; e)¡ w0 + v(¹y; ¹z)]¡C[x; e; v(¹y; ¹z)]+Nu0, and substituting the constraint
x = q(¹y; ¹z) in the above expression yields the expression of social surplus, or philanthropic
objective,

W (e; ¹y; ¹z) = q(¹y; ¹z) [¢(q(¹y; ¹z); e)¡ w0 + v(¹y; ¹z)]¡ C[q(¹y; ¹z); e; v(¹y; ¹z)] +Nu0: (37)

W can be maximized with respect to (e; ¹y; ¹z), instead of (e; p; ¹z), given that ¹y = p+w0¡¢.
This maximization problem can be decomposed into two sub-problems. A ¯rst sub-problem
is to maximize xv(¹y; ¹z)¡C(x; e; v(¹y; ¹z)) with respect to (¹y; ¹z), for given (e; x). Given that
Cv · 0, this is tantamount to maximizing v(¹y; ¹z) subject to x = q(¹y; ¹z), with respect to
(¹y; ¹z), for ¯xed x. The necessary conditions for an optimal pair (¹y; ¹z) (if it is ¯nite!) are
simply

v¹y
v¹z
=
q¹y
q¹z
; and x = q(¹y; ¹z); (38)

where subscripts denote partial derivatives. The interpretation of condition (38) is easy if
it is reminded that, v¹y = @v=@¹y = @v=@p, q¹y = @q=@¹y = @q=@p; it says that the marginal
rate of substitution between p and ¹z should equal its marginal rate of transformation,
conditional on the ¯xed production target x. The second sub-problem is then to maximize
W with respect to (x; e), given that the optimal (¹y; ¹z) have been expressed as functions of
x.

The determination of (¹y; ¹z) is formally equivalent to the following problem. Assume
that an examination procedure has two consecutive tests (say, Math and English), and
that both tests are graded on a numerical scale. Grades in Math and English are random
variables s and z respectively. A student is admitted if a weighted average y of both grades
is greater than ¹y, and if | Math being considered very important| the math grade is
greater than ¹z. Our "¯rst sub-problem" above is formally equivalent to solving for the pair
(¹y; ¹z) which maximizes the expected ability v of admitted students, given that a certain
enrollment target x should be met.

To study the existence of solutions to the system of equations (38), we state a number
of technical Lemmata.

Lemma 1. vy=qy ¸ vz=qz is equivalent to hy(¹y; ¹z) ¸ hz(¹y; ¹z), where, by de¯nition,

hy(¹y; ¹z) ´ E(µ j y = ¹y; z ¸ ¹z); (39a)
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hz(¹y; ¹z) ´ E(µ j y ¸ ¹y; z = ¹z); (39b)

For proof, see the appendix

We now state a result which is a key for what follows.

Lemma 2. y is a su±cient statistic for µ, and,

E[µ j y; z] = y (40)

For proof, see the appendix

Intuitively, Lemma 2 says that the random variable y = ®s + ¯z + °¹, being a statisti-
cally optimal combination of the two signals s and z, conveys all the useful (private and
public) information about an individual's ability. This result has the following striking
consequence.

Proposition 1. If the grade or test result z is publicly observed and s is privately observed
by the students, then, there does not exist a ¯nite solution of (38): in this case, the optimal
(philanthropic) solution involves ¹z = ¡1, i.e., admission standards are the lowest possible;
optimal screening is performed by means of the tuition fee only.

For proof, see the appendix

The meaning of Proposition 1 can be rephrased as follows. In a world in which
economic agents are perfectly rational (i.e., if they are good enough statisticians), the
university can safely rely on student self-selection through the pricing mechanism only. An
optimal tuition p¤ is therefore the only useful tool, and selection by means of an admission
standard is super°uous, provided that students can assess their ability by conditioning on
the publicly disclosed academic grade z.

Thus, according to the philanthropic view, social value maximization doesn't lead the
university to make use of an optimal "policy mix" involving pricing and selection on the
basis of test scores. We study of variants of our model leading to less radical conclusions
in the following Sections. Let us now examine the pricing behavior of the philanthropic
university, and the screening and pricing policies of a rent-seeking, or pro¯t-maximizing,
university.

Given Proposition 1, de¯ne

q̂(¹y) = lim
¹z!¡1 q(¹y; ¹z) (41a)

and
v̂(¹y) = lim

¹z!¡1 v(¹y; ¹z) = E(µ j y ¸ ¹y); (41b)

and rewrite the philanthropic objective (37) as

W = q̂(¹y) [¢(q̂(¹y); e)¡ w0 + v̂(¹y)]¡ C[q̂(¹y); e; v̂(¹y)] +Nu0 (41c);
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to be maximized with respect to (e; ¹y). The ¯rst-order conditions for the maximization
of (41c) yield, q̂¢e = Ce with obvious notations, as a condition "determining" optimal
quality e, and, after some rearrangement of terms,

¢¡w0 + q̂¢+ v̂ ¡ Cx =
µ
Cv ¡ q̂
q̂

¶³
ĥy ¡ v̂

´
; (42)

where ĥy = E(µ j y = ¹y), and v̂ = E(µ j y ¸ ¹y), and we make use of the relation

v̂y=q̂y = (1=q̂)(ĥy ¡ v̂). From this condition, with some reworking, we get the next result.

Proposition 2. If z is publicly observed, the optimal tuition fee p¤ of the philanthropic
university is higher than marginal cost Cx. The optimal tuition is thus positive, i.e.,
students are not subsidized.

Proof: To prove Proposition 2, remark ¯rst that, using the de¯nition p = ¹y + ¢ ¡ w0,
equation (42) can be rewritten as,

p¤ = ¡q̂¢x +Cx + Cv
q̂
(ĥy ¡ v̂) + (¹y ¡ ĥy): (42b)

Remark then that the ¯rst two terms on the right-hand side of (42b) are positive since
by assumption, ¢x · 0. We show next that the last term is zero. Using the formula for
conditional expectation under normality, we get

ĥy = E(µ j ¹y) = ¹+ Cov(y; µ)
V ar(y)

(¹y ¡ ¹):

But, by de¯nition of conditional expectation, y¡¹ = E(µ¡ ¹ j s; z) is a linear orthogonal
projection of µ¡¹ onto the space spanned by s¡¹ and z¡¹. Thus, E[(µ¡y)(y¡¹)] = 0,
which is equivalent to Cov(µ; y) = E(y ¡ ¹)2 = V ar(y). This immediately yields ĥy = ¹y.
Finally, we get,

ĥy = ¹y · E[y j y ¸ ¹y] = E[E(µ j y) j y ¸ ¹y] = E(µ j y ¸ ¹y) = v̂;

and therefore, since Cv · 0, the third term on the right-hand side of (42b) is non-negative.
The right-hand side of (42b) is therefore a sum of nonnegative terms; we conclude that
p¤ > Cx > 0. Q.E.D.

3.2. The Cynic Approach again: the Rent-Seeking University's Policy

Let us now study the rent-seeking university in the same asymmetric information frame-
work, where z is publicly observed. The rent-seeking university will try to maximize
R = pq(¹y; ¹z)¡C(q(¹y; ¹z); e; v(¹y; ¹z)), subject to p = ¹y¡w0+¢(q(¹y; ¹z); e). The fee p can be
eliminated from the expression of rent, which becomes

q(¹y; ¹z) [¹y +¢(q(¹y; ¹z); e)¡ w0]¡C(q(¹y; ¹z); e; v(¹y; ¹z)); (43)
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and must be maximized with respect to (e; ¹y; ¹z). It would be easy to prove that the rent-
seeking university would not like to ration students (i.e., choose to set x < q), for it would
then always bene¯t from a raise of the tuition p. The rent maximization problem can be
decomposed into two steps. For ¯xed values of (x; e), the thresholds (¹y; ¹z) can ¯rst be set
so as to maximize x¹y ¡ C(x; e; v(¹y; ¹z)) subject to x = q(¹y; ¹z). This yields the ¯rst-order
conditions,

x

Cv
= vy ¡ vz

qz
qy: (44)

Given that Cv < 0, due to peer e®ects, and by Lemma 1, (44) implies that the rent-seeking
optimum should satisfy hy > hz, but, for ¯nite values of ¹z, this is again impossible. We
can state,

Proposition 3. If z is publicly observed, the optimal rent-seeking (or for-pro¯t) university
policy is to set ¹z = ¡1, i.e., admission standards are the lowest possible and tuition does
all the screening job.

For proof, see the appendix

If the peer e®ects were negligible, i.e., Cv = 0, it would be easy to provide a proof of the
latter result. It would then always be pro¯table to increase ¹y by d¹y > 0 and to reduce ¹z
by d¹z = ¡(qy=qy)d¹y, keeping x = q(¹y; ¹z) (and thus the cost C) constant, for that would
increase the rent R by dR = xdp = xd¹y > 0. The matter is slightly more complicated in
the presence of a peer e®ect, and the result is driven by the fact that hy < hz holds for
every ¯nite value of ¹z.

With the help of de¯nitions (41a)-(41b), rewrite the rent as R = (¹y + ¢(q̂(¹y); e) ¡
w0)q̂(¹y)¡C(q̂; e; v̂(¹y)), to be maximized with respect to (e; ¹y). A comparison of (41c) and
the above expression of rent obviously shows that the rent-seeking policy is not optimal in
the philanthropic sense. But the rent-seekers become dedicated philanthropists if they are
subjected to a certain public incentive transfer.

Proposition 4. The rent-seeking university chooses a socially optimal policy if it is sub-
jected to the following transfer T , de¯ned as,

T (e; x; p) = ¡x¹y + xv̂(¹y) + T0; (45)

where T0 is any constant.

The proof of this result is obvious since R + T ´ W + Constant. The result is more
interesting because equation (45) shows that the transfer T depends on ¹y, x and knowledge
of v̂. Since ¹y = p+w0¡¢(x; e), the transfer depends also on e. So it seems that the public
authority or public regulator can only compute the transfer if they observe x, p, and e. But
it is in fact the knowledge of the Mincerian regression function ln(w) = ln(w0)+¢(x; e)+µ,
involving an estimation of distribution parameters ¹ and ¾2µ which is required, with the
addition of the covariance Cov(y; µ) (equal to V ar(y) here), which are needed to compute
the average ability v. This is because

v̂(¹y) =

R1
¹y

R1
¡1 µÃ̂(µ; y)dµdyR1

¹y

R1
¡1 Ã̂(µ; y)dµdy

;
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where Ã̂ is the joint density of µ and y. Quality e, intervening only through its e®ect on ¢,
can be captured, in principle, as a ¯xed university e®ect. So the problem is to estimate the
distribution of y = E(µ j s; z). This latter distribution can in principle be estimated from
regression work, where wages are regressed on higher education achievement, secondary
education test scores, plus family and social background control variables for a cross section
of individuals. Again, a regulator which is also an (expert) econometrician can, in principle,
compute and implement the incentive transfer T , but the task is not really easy.

In practice, we know that the rent-seeking faculty will tend to underestimate the social
value of educating students, because they take ¹y, the marginal student's value into account
instead of v̂(¹y), the average student's value, and that ¹y · v̂(¹y) (as shown by the proof of
Proposition 2 above). It seems that the transfer function can be approximated by the sum
of two terms, a per capita subsidy, which aims at correcting the gap between marginal and
average values, minus a lump sum tax, formally T ¼ s0x+ T0, where s0 > 0 and T0 < 0.

The conclusions reached in this section are somewhat unpleasant, because the social
optimum doesn't rely on exams or test scores, but only on money. But these results are
probably less robust than it seems, for they depend on the property that the university's
information set is strictly included in that of the student. A balance between the two
screening tools appears to be an optimum if we assume a form of bilateral asymmetric
information, in which the university knows something that the student doesn't take into
account about his (her) own ability. We now turn to the study of such a setting, in a
variant of our model.

4. The Case of Bilateral Asymmetric Information

It seems reasonable to assume that the university is endowed with information about
student abilities that students themselves do not have, while continuing to assume that
students observe a noisy private signal of ability s. If we interpret z as a private signal of
the university about the student's ability, we can easily construct a variant of our model in
which informational asymmetries are bilateral. Assume then to ¯x ideas that z is the result
of an admission test which is compulsory, costless, and observed by academic authorities
only, and that the admission pass-mark is ¹z. Using the same notation as above, unless
speci¯ed otherwise, an individual will apply for registration if and only if u1 ¸ u0, where,

u1 = Pr(z ¸ ¹z j s)
·
¡p+ ln(w0)

r
+¢+ E(µ j s)

¸
+ Pr(z < ¹z j s)

·
w0 +

ln(w0)

r

¸
;

and

u0 = w0 +
ln(w0)

r
:

It follows that u1 ¸ u0 if and only if E(µ j s) ¸ w0 + p¡¢ ´ ¹y. Rede¯ne now
y = E(µ j s): (46)

A student applies for registration if and only if y ¸ ¹y. Due to normality assumptions, we
have,

y = ®0s+ (1¡ ®0)¹; (47a)
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where

®0 =
¾2µ

¾2µ + ¾
2
²

: (47b)

The number of enrolled (admitted) students is still q(¹y; ¹z) = NPr(y ¸ ¹y; z ¸ ¹z).

4.1. Philanthropic Optimum under Bilateral Asymmetric Information

The philanthropic objective of the university is still the same as above, that is, W =
x(¢(x; e) ¡ w0 + v(¹y; ¹z)) ¡ C[x; e; v(¹y; ¹z)] + Nu0, where v = E[µ j y ¸ ¹y; z ¸ ¹z], and of
course x = q(¹y; ¹z).

It follows that the optimal (¹y; ¹z) for given (x; e) are still a solution of system (38),
i.e., vy=qy = vz=qz, and x = q, and by Lemma 1, which still applies, (38) is equivalent to
hy = hz, where the h functions are still de¯ned by (39a)-(39b).

There are di®erences with the above version of the model, starting from this point.
Intuitively, z and y now play a symmetric informational part, and y is no longer a su±cient
statistic for (y; z). We can state,

Lemma 3.
E[µ j y; z] = a0y + b0z; (48a)

where,

a0 =
¾2º

¾2º + (1¡ ®0)¾2µ
(48b)

and a0 + b0 = 1, ®0 being de¯ned by (47).

For proof, see the appendix.

In this new setting, the system of equations (38) has a (¯nite) solution. Let Á(x) =

(2¼)¡1=2e¡x
2=2 denote the normal density and ©(x) =

R x
¡1 Á(u)du denote the normal

c.d.f. We can state the following.

Proposition 5. If z is a private information of the university and s is a private infor-
mation of the student, the optimal policy of the philanthropic university involves a mix of
non-trivial admission standards ¹z¤ and a tuition p¤. Formally, equations (38) possess a
solution (¹y¤; ¹z¤) for every given x > 0. More precisely, this solution is fully characterized
as follows:

¹y¤ = (1¡ ®0)¹+ ®0(¹z¤ ¡ ¾0»¤); (49a)

where »¤ solves the equation,

» =

µ
©(»)¡ ¾2º

¾2² + ¾
2
º

¶
Á(»)

(1¡ ©(»))©(») ; (49b)

¹z¤ solves,
x = q[(1¡ ®0)¹+ ®0(¹z ¡ ¾0»¤); ¹z]; (49c)

and ¯nally, ¾0 =
p
¾2² + ¾

2
º .
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For Proof, see the Appendix.

Proposition 5 provides us with a much more reasonable description of the world than
Proposition 1. To clarify its meaning, assume for instance that ¾2² = ¾

2
º (i.e., signals z and

s are "equally noisy"). Then, by (49b), we ¯nd that »¤ = 0 is the only solution (because
©(0) = 1=2), and by (49a), we get ¹y¤ = (1¡®0)¹+®0¹z¤: the ¯rst order condition in (38)
has provided us with a linear relationship between ¹y and ¹z. The "production level" x pins
down the appropriate value of ¹z, as indicated by (49c).

The distance between ¹y and ®0¹z depends on the ratio ¾
2
²=¾

2
º . To see this, de¯ne,

¸ =
¾2º

¾2² + ¾
2
º

:

Then, a simple application of the Implicit Function Theorem shows that

@»¤

@¸
< 0;

i.e., »¤ decreases when ¾2º=¾
2
² increases. Using (49a), it is also easy to see that the distance

¹y¤ ¡ ®0¹z¤ increases when ¸ increases, that is, formally,

@(¹y¤ ¡ ®0¹z¤)
@¸

= ¡®0¾0 @»
¤

@¸
> 0:

This result is intuitive, if test scores z become more noisy than private signals s, then,
less weight should be placed on selection by means of test scores, i.e., ¹y¤ ¡ ®0¹z¤ should
increase. This can be achieved if admission standards ¹z¤ are lowered and (or) tuition fees
are raised conditional on (x; e). This is because optimal tuition (conditional on (x; e)) is
of the form,

p¤ = ¹y¤ +¢(x; e)¡w0: (49d)

Now, maximization of the philanthropic objective W with respect to (e; ¹y; ¹z) yields
| after some rearrangement of terms | the following ¯rst-order necessary conditions,

q¢e = Ce; hy = hz; (50a)

q¢x +¢¡w0 + v ¡ Cx =
µ
1¡ Cv

q

¶
(v ¡ hy): (50b)

But it is no longer possible to show that (49d), (50a) and (50b) jointly imply p¤ > 0. It
happens that p¤ could be negative, a personal subsidy instead of a fee. More precisely, we
get the following result.
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Proposition 6. Assume that peer e®ects are negligible, i.e., Cv = 0. Then, in the bi-
lateral asymmetric information version of the model, the optimal tuition is smaller than
marginal cost, or even negative if the test score z is accurate enough as a measure of ability.
Formally, for su±ciently small ¾º , p

¤ < 0.

For Proof, see the Appendix

Proposition 6 captures in part the idea that some higher education institutions would at
the same time be highly selective, and subsidize talented students to lure them into their
classrooms. Winston (1999) shows that top universities and colleges in the US do indeed
at the same time seem to be those who o®er the highest subsidy to students, in view
of unit cost information. Intuitively, if the student's private signals s are very poor as
indicators of talent, but if the university admission test technology is very precise, it could
be optimal to select only the very best and to subsidize them heavily, to be sure that
no good element is deterred by the price. Remark that the result does not depend on a
redistribution motive on the part of the philanthropic university (because their objective
W is quasi-linear with respect to period 0 income, and utilitarian in nature). Proposition
6 only shows that negative fees can improve selection when the university can condition
admission on su±ciently accurate information about student's talents. In the next section,
we develop a version of the model in which students also face a ¯nancial constraint: the
presence of liquidity constrained students is then also a motive for tuition fee subsidization.
But before we turn to the study of this question, let us compare the philanthropic and
rent-seeking universities under the same bilateral asymmetric information assumptions.

4.2. The Cynic View under Bilateral Asymmetric Information

The rent R is still R = (¹y+¢(x; e)¡w0)x¡C[x; e; v(¹y; ¹z)], with x = q(¹y; ¹z). Decomposing
the problem again, it is easy to see that for ¯xed (x; e), the rent-seeking faculty should
choose (¹y; ¹z) so as to maximize x¹y ¡ C[x; e; v(¹y; ¹z)], subject to the constraint x = q(¹y; ¹z).
A necessary condition is therefore obtained from the ¯rst-order conditions for this latter
sub-problem. We must have (44) again, that is, x=Cv = vy ¡ (vz=qz)qy. This implies
vy=qy > vz=qz (recall that qy < 0 and Cv < 0), and, by Lemma 1, hy > hz. The
screening policy of the rent-seeking university will therefore not be socially optimal, because
optimality requires equality of the latter two terms.

To see what happens in this case, use condition hy > hz, and with the help of the
statement and proof of Proposition 5 above, it can be shown that the solution will be as
that given by (49a) above, except that »¤ is replaced with a value »r < »¤. It follows that
¹y ¡ ®0¹z will be greater under rent-seeking than at the (philanthropic) optimum. From
this, and the above remark, we conclude,

Result 5. The screening policy of the rent-seeking university is not socially optimal. The
rent-seeking university will set higher fees and (or) lower selection standards ¹z than the
philanthropic university, for any given value of (x; e).
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5. Borrowing Constraints and Asymmetric Information

We now address the question of ¯nancial constraints in human capital accumulation, i.e.,
the question of poor talented students, who cannot convince a banker that they deserve
credit. Would the presence of this market imperfection, due to incomplete information,
change the analysis presented above? We will see that it does, although not fundamen-
tally, in an extension of our model taking the distribution of student's "initial ¯nancial
endowments" and borrowing constraints into account. Some students, due to the borrow-
ing constraint, would not be able to pay the tuition fee, in spite of having received very
good signals relative to their future ability and earnings.

To perform the analysis, we come back to the informational assumptions of Section 3
(i.e. where z is publicly observed). For simplicity, we assume that the student's "initial
¯nancial endowment" (or "asset") is a normal random variable a with mean ¹a and variance
¾2a. Assume that a is independent of µ, ² and º (in fact, assume a independent of every
other random source in the model). Assume that if p > a, a student must borrow, and
that the lender attaches a "score" to each student, where the score is de¯ned as (´ +¢),
where ¢ is de¯ned by (1) and (6) above, and ´ is an independent normal random noise
with mean ¹ = E(µ) and variance ¾´. This random noise re°ects the errors of appreciation
made by the banker. Now, we assume that the lender will ¯nance the student's education
project if and only if

p · a+ ·(¢ + ´); (51)

where · is a coe±cient satisfying 0 · · · 1. De¯ning a new random variable t = a+ ·´,
the liquidity constraint (51) can be expressed as,

t ´ a+ ·´ ¸ p¡ ·¢ ´ ¹t; (52)

or simply t ¸ ¹t. Assume that, as in the asymmetric information model above, t, z and s
are observed by the students and that the university observes z only. Given independence,
the e®ective demand for education is now

~q(¹y; ¹z; ¹t) = N Pr(y ¸ ¹y; z ¸ ¹z) Pr(t ¸ ¹t) = q(¹y; ¹z) Pr(t ¸ ¹t): (53)

With the addition of the borrowing constraint, because of independence, the average ability
of students does not change, that is,

v(¹y; ¹z) = E(µ j y ¸ ¹y; z ¸ ¹z; t ¸ ¹t) = E(µ j y ¸ ¹y; z ¸ ¹z): (54)

It follows that the philanthropic objective W can still be expressed as W = x(¢(x; e) ¡
w0 + v) + Nu0 ¡ C(x; e; v), where x = ~q(¹y; ¹z; ¹t). Another di®erence with the analysis of
Section 4 above is that ¹t depends on ¹y. To see this, recall that p = ¹y +¢¡ w0, so that

¹t ´ ¹y + (1¡ ·)¢¡w0; (55)

and one should keep in mind that @¹t=@¹y = 1.
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The optimal screening policy (¹y; ¹z) maximizes xv¡C(x; e; v), for ¯xed (e; x), subject
to x = ~q(¹y; ¹z; ¹t). Introducing a Lagrange multiplier ¿ for the latter constraint leads to the
following system of ¯rst order optimality conditions,

(x¡ Cv)vy =¡ ¿(~qy + ~qt)
(x¡ Cv)vz =¡ ¿ ~qz:

Eliminating ¿ from the system and using the fact that ~qy = qy Pr(t ¸ ¹t) yields,µ
~qy

~qy + ~qt

¶
vy
qy
=
vz
qz
;

Using then the result of Lemma 1, that is vz=qz = (1=q)(hz¡v), etc., yields the equivalent
expression, µ

~qy
~qy + ~qt

¶
hy +

µ
~qt

~qy + ~qt

¶
v = hz (56)

Since by Lemma 2 we have hy = ¹y when z is publicly observed, we get the still equivalent,

~qt
~qy
(v ¡ hz) = hz ¡ ¹y;

In this case, by Lemma 2 again, we also have

hz = E(µ j y ¸ ¹y; z = ¹z) = E(y j y ¸ ¹y; z = ¹z):

Let g(t; ¹a; ¾t) be the Gaussian density of t, and G(t; ¹a; ¾t) its c.d.f (recall that t » N (¹a+
·¹; ¾2t )). Using ~qy = (1 ¡G(¹t; ¹a; ¾t))qy, and ~qt = ¡g(¹t; ¹a; ¾t)q, we can rewrite again (56)
as follows,

g(¹t; ¹a; ¾t)

(1¡G(¹t; ¹a; ¾t))
¡
v(¹y; ¹z)¡ hz(¹y; ¹z)

¢
=
¡qy(¹y; ¹z)
q(¹y; ¹z)

¡
hz(¹y; ¹z)¡ ¹y

¢
: (57)

There is no obvious impossibility to solve (57) for a ¯nite (¹y; ¹z), because, even if z is
publicly observed, the borrowing constraint is binding for some students. In the proof of
Proposition 1, the optimality condition hy = hz boils down to ¹y = E(y j y ¸ ¹y; z = ¹z)
which holds only asymptotically, i.e., if ¹z = ¡1 (or if ¹y = +1).

Equation (57) is a generalization of (38) above. To see this, assume that the weight of
liquidity constraints vanishes, i.e., formally, assume that ¹a ! +1 and ¾t ! 0. Then, in
(57), the ratio g=(1¡G)! 0 and it follows that the equation boils down to hz = ¹y which
is impossible, except asymptotically, if ¹z = ¡1.

Equation (57) is quite complex and hard to study, but it cannot be trivially solved
with ¹z = ¡1.
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Proposition 7. If x > 0, the solution (¹y; ¹z) of the system comprising equation (57), and
x = ~q(¹y; ¹z; ¹t), where ¹t is given as a function of ¹y by (55), if it exists, is ¯nite (¹z = ¡1 is
not an asymptotic solution of the system).

Proof:

Assume that ¹z ! ¡1, then, we get hz ! ¹y; v ! E(y j y ¸ ¹y); ¡qy=q tends towards a
¯nite, positive limit

R +1
¡1

R +1
¡1 Ã(µ; ¹y; z)dµdz=Pr(y ¸ ¹y); and ¯nally g=(1¡G) > 0 doesn't

change, because it doesn't depend on ¹z. It follows that when ¹z ! ¡1, the left-hand side
of (57) tends towards a positive limit, while the right-hand side tends towards 0. This is
impossible for a ¯nite value of ¹y. If in addition to ¹z, we let ¹y ! +1, then g=(1¡G)! 0,
and (57) boils down to 0 = 0, but this also implies ~q = 0, which contradicts the assumption
x > 0. Q.E.D.

The addition of borrowing constraints justi¯es the recourse to selection on the basis of test
scores and a form of direct student subsidization through rebates on tuition fees.

We have found two cases in which below cost pricing of higher education can be justi-
¯ed: it is either because universities have knowledge about student abilities that students
themselves do not have (the case of bilateral asymmetric information), or because some
good students are liquidity constrained, even if students and the university are equally in-
formed (in the sense that they exploit the information conveyed by test scores rationally).
In the latter case, it will also be optimal to raise the admission standards, and hence, si-
multaneously decrease tuition (i.e., decrease ¹y), to reduce the number of poor-but-talented
students ine±ciently deterred by price. (This is true since ¹z is ¯nite, and q is decreasing
with respect to both ¹y and ¹z.)

6. Conclusion

We have shown that tuition fees and selection on the basis of test scores are both used as
screening instruments in an optimal university policy, if some students are liquidity con-
strained, or if asymmetric information is bilateral (in the sense that both the university
and the students possess useful, non-redundant private information about students' abil-
ities). Our theory describes how the two screening instruments should be combined. We
also showed that the optimal tuition fee can entail an element of direct subsidy, a rebate,
which is an increasing function of the university's information accuracy. Optimal fees can
therefore be smaller than marginal cost. Price covers marginal cost only if the student's
information set includes the university information set (and if students are fully rational),
in which case entrance examinations are also useless. This means that a social optimum
will often be characterized by the need for outside resources in the form of public money or
donations, which are thus fully justi¯ed, to balance the university budget. Rent-seeking or
for-pro¯t teaching institutions will typically set prices too high and enroll too few students.
Finally, it does not seem that tuition fees alone constitute a solution to the university bud-
get problem. There is probably some scope for tuition increases in European countries,
where public universities and free access are dominant, and symmetrically, tuition charges
cannot be the universal remedy in the United States.
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7. Appendix

Proof Lemma 1.

Note ¯rst that,

v(¹y; ¹z) =

R1
¹y

R1
¹z

R1
¡1 µÃ(y; z; µ)dydzdµR1

¹y

R1
¹z

R1
¡1 Ã(y; z; µ)dydzdµ

;

where Ã is the joint normal density of (y; z; µ). The denominator of v is just q=N , so it
will be convenient to de¯ne a mapping g as follows,

v(¹y; ¹z) =
g(¹y; ¹z)

q(¹y; ¹z)
:

Now we get,

vy ´ @v

@¹y
=
gy
q
¡ gqy
q2
;

which is equivalent to,
vy
qy
=
1

q

µ
gy
qy
¡ v

¶
:

Likewise, vz=qz = (1=q) ((gz=qz)¡ v). Now remark that,

gy
qy
=
¡N R1

¹z

R1
¡1 µÃ(¹y; z; µ)dzdµ

¡N R1
¹z

R1
¡1 Ã(¹y; z; µ)dzdµ

= E[µ j y = ¹y; z ¸ ¹z] = hy:

Likewise, gz=qz = E[µ j y ¸ ¹y; z = ¹z] = hz. We can therefore conclude that vy=qy > vz=qz
if and only if hy > hz.
Q.E.D.

Proof of Lemma 2.

Given our normality assumptions, E[µ ¡ ¹ j y; z] is a linear orthogonal projection (theo-
retical regression) of µ ¡ ¹ onto the sub-space spanned by y ¡ ¹ and z ¡ ¹. Let us denote
¾ab = Cov(a; b) and ¾

2
a = V ar(a) for any random variables a, b. Applying a classic result,

it then follows, with matrix notation,

µ̂ ´ E[µ j y; z]¡ ¹ = (¾µy; ¾µz)¤¡1
µ
y ¡ ¹
z ¡ ¹

¶
;

where

¤ =

µ
¾2y ¾yz
¾yz ¾2z

¶
:

We then easily obtain,

¤¡1 =
1

det¤

µ
¾2z ¡¾yz
¡¾yz ¾2y

¶
;
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where det¤ = ¾2y¾
2
z ¡ ¾2yz. Thus, the coe±cients of (y ¡ ¹) and (z ¡ ¹) in the expression

of µ̂ are, respectively,

a =
¾2z¾µy ¡ ¾µz¾yz
¾2y¾

2
z ¡ ¾2yz

; and b =
¾2y¾µz ¡ ¾µy¾yz
¾2y¾

2
z ¡ ¾2yz

:

Now, since y = E[µ j s; z] is an orthogonal projection of µ onto the space spanned by s
and z, we must have Cov(µ ¡ y; y) = 0, which implies ¾µy = ¾2y. Since µ ¡ y ? y, in
particular, we also have µ ¡ y ? z, so that Cov(µ ¡ y; z) = 0, or, equivalently, ¾µz = ¾yz.
With the help of these remarks, it is easy to check that a = 1 and b = 0. Thus, ¯nally
E[µ j y; z] = ¹+ a(y ¡ ¹) = y.
Q.E.D.

Proof of Proposition 1.

From Lemma 1, we must solve hy = hz to solve (38). From Lemma 2, we derive,

hy = E[µ j y = ¹y; z ¸ ¹z] = E[E(µ j y; z) j y = ¹y; z ¸ ¹z] = ¹y;

and, using (33), we get,

hz = E
£
E(µ j y; z) j y ¸ ¹y; z = ¹z¤

= ®E[s j y ¸ ¹y; z = ¹z] + ¯¹z + °¹

= ®E

·
s

¯̄̄̄
s ¸ ¹y ¡ ¯¹z ¡ °¹

®

¸
+ ¯¹z + °¹

= ®¾sE

·
s¡ ¹
¾s

¯̄̄̄
s¡ ¹
¾s

¸ ¹y ¡ ¯¹z ¡ (1¡ ¯)¹
®¾s

¸
+ ¯¹z + (1¡ ¯)¹

= ®¾s
£
E(³ j ³ ¸ ³0)¡ ³0

¤
+ ¹y;

where ³ » N (0; 1) and,
³0 =

¹y ¡ ¯¹z ¡ (1¡ ¯)¹
®¾s

:

It follows that hy = hz is equivalent to,

E(³ j ³ ¸ ³0) = ³0;

which is impossible, except if ³0 = +1.
If ¹y = +1, then x = 0. But lim¹z!¡1 q(¹y; ¹z) is well de¯ned and positive. It is now

routine work to show that if there existed an optimum in which ¹z is ¯nite, then, decreasing
¹z slightly would increase W , so that the optimal philanthropic solution involves ¹z = ¡1.
Q.E.D.
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Proof of Proposition 3.

Since Cv < 0 and qy < 0, by (44), we know that vy=qy ¸ vz=qz at a maximum of rent R.
By Lemma 1, this is equivalent to hy ¸ hz, but the proof of Proposition 1 above shows
that this is equivalent to ³0 ¸ E(³ j ³ ¸ ³0), where ³0 = (1=®¾s)(¹y ¡ ¯¹z ¡ (1 ¡ ¯)¹),
which is impossible, except if ³0 = +1. If ¹y = +1, then x = 0. The limits of q and v
as ¹z ! ¡1 are well de¯ned. It is again routine work to show that if a rent maximum
involved a ¯nite value of ¹z, then R could be increased slightly by decreasing ¹z slightly. It
follows that ¹z = ¡1 is an optimal solution for the rent-seeking university.
Q.E.D.

Proof of Lemma 3.

As in the proof of Lemma 2, the classic result on conditional expectations under normality
assumptions yields,

E[µ j y; z] =¹+ (¾µy; ¾µz)
µ
¾2y ¾yz
¾yz ¾2z

¶¡1µ
y ¡ ¹
z ¡ ¹

¶
=¹+

(¾µy; ¾µz)

(¾2y¾
2
z ¡ ¾2yz)

µ
¾2z ¡¾yz
¡¾yz ¾2y

¶µ
y ¡ ¹
z ¡ ¹

¶ :

The coe±cients of (y ¡ ¹) and (z ¡ ¹) in the expression of µ̂ are, respectively,

a0 =
¾2z¾µy ¡ ¾µz¾yz
¾2y¾

2
z ¡ ¾2yz

; and b0 =
¾2y¾µz ¡ ¾µy¾yz
¾2y¾

2
z ¡ ¾2yz

:

Simple algebra then yields the stated result, using ®0 = ¾
2
µ=¾

2
s , because

¾2y = ®
2
0¾

2
s = ®0¾

2
µ ; ¾2z = ¾

2
µ + ¾

2
º ;

¾2µy = Cov(µ; ®0s) = ®0¾µs = ®0¾
2
µ ; ¾2yz = Cov(®0s; z) = ®0Cov(µ; µ) = ®0¾

2
µ ;

and ¯nally ¾µz = ¾
2
µ .

Q.E.D.

Proof of Proposition 5.

We must solve hy = hz in the bilateral asymmetric information version of the model.

hy =E
£
E(µ j z; y) ¯̄ y = ¹y; z ¸ ¹z¤

=E[a0y + b0z j y = ¹y; z ¸ ¹z]
=a0¹y + b0E[z j y = ¹y; z ¸ ¹z]:
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De¯ne ± = º ¡ ², and denote ¾0 = ¾± =
p
¾2º + ¾

2
² . Using z = s+ ±, we get,

E[z j y = ¹y; z ¸ ¹z] =E
·
s+ ±

¯̄̄
s =

¹y ¡ (1¡ ®0)¹
®0

; s+ ± ¸ ¹z
¸

=
¹y ¡ (1¡ ®0)¹

®0
+ E

µ
±
¯̄̄
± ¸ ®0¹z ¡ ¹y + (1¡ ®0)¹

®0

¶
=¾0

¡¡»0 +E(» j » ¸ »0)¢+ ¹z
=¾0

·
¡»0 + Á(»0)

1¡©(»0)
¸
+ ¹z:

where » » N (0; 1), and
»0 =

®0¹z + (1¡ ®0)¹¡ ¹y
®0¾0

:

Likewise,
hz =E

£
E(µ j y; z) j y ¸ ¹y; z = ¹z¤

=E[a0y + b0z j y ¸ ¹y; z = ¹z]
=a0E[y j y ¸ ¹y; z = ¹z] + b0¹z;

and,

E[y j y ¸ ¹y; z = ¹z] =(1¡ ®0)¹+ ®0E
µ
s
¯̄̄
s ¸ ¹y ¡ (1¡ ®0)¹

®0
; s+ ± = ¹z

¶
=®0¹z + (1¡ ®0)¹¡ ®0E

µ
±
¯̄̄
± · ®0¹z ¡ ¹y + (1¡ ®0)¹

®0

¶
=®0¾0

¡
»0 ¡E(» j » · »0)

¢
+ ¹y

=®0¾0

·
»0 +

Á(»0)

©(»0)

¸
+ ¹y:

Therefore, hy = hz is equivalent to,

b0

µ
¡»0 + Á(»0)

1¡ ©(»0)
¶
= a0®0

µ
»0 +

Á(»0)

©(»0)

¶
:

Since a0®0=b0 = ¾
2
º=¾

2
² , the above equation can be rewritten,

Á(»0)

1¡©(»0) ¡
¾2º
¾2²

µ
Á(»0)

©(»0)

¶
=

µ
¾2º
¾2²
+ 1

¶
»0;

which is equivalent to (49b), that is,

0 = (©(»)¡ ¸) Á(»)

(1¡ ©(»))©(») ¡ » ´ f(»;¸);
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where ¸ = ¾2º=(¾
2
º + ¾

2
² ).

It remains to show that f(x;¸) = 0 has a solution for every ¸ 2 (0; 1). To perform
this task, we study f 's limiting behavior.

lim
x!+1 f(x;¸) = lim

x!+1

·
Á(©¡ ¸)¡ x©(1¡ ©)

©(1¡ ©)
¸
:

Now, this ratio goes to 0=0 since x(1 ¡ ©(x)) ! 0. Using l'Hôpital's rule, and Á0(x) =
¡xÁ(x), we get

lim
x!+1 f(x;¸) = lim

x!+1

·¡xÁ(1¡ ¸¡©) + Á2 ¡©(1¡ ©)
Á(1¡ 2©)

¸
= lim
x!+1

·
x(1¡ ¸¡©)¡ Á

(2©¡ 1)
¸
+ lim
x!+1

·
(1¡ ©)
(2©¡ 1)

¸
lim

x!+1

µ
©

Á

¶
=
(+1)(¡¸)¡ 0

1
+
0

1
:0 = ¡1:

This is because, using l'Hôpital's rule again,

lim
x!+1

µ
©

Á

¶
= lim
x!+1

µ
Á

¡xÁ
¶
= 0:

The same type of reasoning would show that,

lim
x!¡1 f(x;¸) = +1:

Therefore, f being continuous, by the Intermediate Value Theorem, there exists a point
»0(¸) such that f(»0(¸); ¸) = 0 for every ¸ in (0; 1). In addition, it is not di±cult to check
that »0(¸) ! +1 if ¸ ! 0 and »0(¸) ! ¡1 if ¸ ! 1. Equations (49a) and (49c) are
immediate consequences of the de¯nition of »¤0 , of the condition x = q, and of the fact that
q is strictly decreasing with respect its arguments ¹y and ¹z.
Q.E.D.

Proof of Proposition 6.

Using the results obtained in the proof of Proposition 5, if ¾º ! 0, then b0 ! 0, a0 ! 1,
hz ! ¹z and hy ! E[z j z ¸ ¹z; y = ¹y]. At the optimum, since hz = hy, it must then be
true that

E[z j z ¸ ¹z¤; y = ¹y¤]! ¹z¤:

But this is possible only if ¹z¤ ! +1 and (or) ¹y¤ ! ¡1. From (49d), (50b) and Cv = 0,
we get,

p¤ = ¡q¢x + Cx + (y ¡ hy):
If ¾º is su±ciently close to 0, we get p

¤ < 0 because (¹y¤ ¡ hy) » (¹y¤ ¡ ¹z¤)! ¡1.
Q.E.D.
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