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Abstract

This paper incorporates a time-varying severity of disasters into the hypothesis proposed by

Rietz (1988) and Barro (2006) that risk premia result from the possibility of rare large disasters.

During a disaster an asset’s fundamental value falls by a time-varying amount. This in turn

generates time-varying risk premia and thus volatile asset prices and return predictability.

Using the recent technique of linearity-generating processes, the model is tractable and all

prices are exactly solved in closed form. In this paper’s framework, the following empirical

regularities can be understood quantitatively: (i) equity premium puzzle; (ii) risk-free rate

puzzle; (iii) excess volatility puzzle; (iv) predictability of aggregate stock market returns with

price-dividend ratios; (v) often greater explanatory power of characteristics than covariances

for asset returns; (vi) upward sloping nominal yield curve; (vii) predictability of future bond

excess returns and long term rates via the slope of the yield curve; (viii) corporate bond spread

puzzle; (ix) high price of deep out-of-the-money puts; and (x) high put prices being followed

by high stock returns. The calibration passes a variance bound test, as normal-times market

volatility is consistent with the wide dispersion of disaster outcomes in the historical record.

The model also extends to Epstein-Zin-Weil preferences and to a setting with many factors.
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1 Introduction

Lately, there has been a revival of a hypothesis proposed by Rietz (1988) that the possibility of

rare disasters, such as economic depressions or wars, is a major determinant of asset risk premia.

Indeed, Barro (2006) has shown that, internationally, disasters have been suffi ciently frequent and

large to make Rietz’s proposal viable and account for the high risk premium on equities.

The rare disaster hypothesis is almost always formulated with constant severity of disasters. This

is useful for thinking about averages but cannot account for some key features of asset markets such

as volatile price-dividend ratios for stocks, volatile bond risk premia, and return predictability. In

this paper, I formulate a variable-severity version of the rare disasters hypothesis and investigate the

impact of time-varying disaster severity on the prices of stocks and bonds as well as the predictability

of their returns.1

I show that many asset puzzles can be qualitatively understood using this model. I then demon-

strate that a parsimonious calibration allows one to understand the puzzles quantitatively, provided

that real and nominal variables have a suffi ciently variable sensitivity to disasters (something I will

argue is plausible below).

The proposed framework allows for a very tractable model of stocks and bonds in which all prices

are in closed forms. In this setting, the following patterns are not puzzles but emerge naturally

when the present model has just two shocks: one real for stocks and one nominal for bonds.2

A. Stock market: Puzzles about the aggregates

1. Equity premium puzzle: The standard consumption-based model with reasonable relative risk

aversion (less than 10) predicts a too-low equity premium (Mehra and Prescott 1985).

2. Risk-free rate puzzle: Increasing risk aversion leads to a too-high risk-free rate in the standard

model (Weil 1989).3

3. Excess volatility puzzle: Stock prices seem more volatile than warranted by a model with a

constant discount rate (Shiller 1981).

4. Aggregate return predictability: Future aggregate stock market returns are partly predicted

by price/dividend (P/D) and similar ratios (Campbell and Shiller 1988).

B. Stock market: Puzzles about the cross-section of stocks

1A later companion paper, Farhi and Gabaix (2009) studies exchange rates. A brief introduction is Gabaix (2008),
but almost all results appear here for the first time.

2I mention just a few references, but most puzzles have been documented by numerous authors.
3For this and the above puzzle, the paper simply imports from Rietz (1988), Longstaff and Piazzesi (2004) and

Barro (2006).
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5. Characteristics vs. Covariances puzzle: Stock characteristics (e.g. the P/D ratio) often predict

future returns as well as or better than covariances with risk factors (Daniel and Titman 1997).

C. Nominal bond puzzles

6. Yield curve slope puzzle: The nominal yield curve slopes up on average. The premium of long-

term yields over short-term yields is too high to be explained by a traditional RBC model.

This is the bond version of the equity premium puzzle (Campbell 2003).

7. Long term bond return predictability: a high slope of the yield curve predicts high excess

returns on long term bonds (Macaulay (1938), Fama-Bliss (1987), Campbell-Shiller (1991)).

8. Credit spread puzzle: Corporate bond spreads are higher than seemingly warranted by his-

torical default rates (Huang and Huang 2003).

D. Options puzzles

9. Deep out-of-the-money puts have higher prices than predicted by the Black-Scholes model

(Jackwerth and Rubinstein 1996).

10. When prices of puts on the stock market index are high, its future returns are high (Bollerslev,

Tauchen and Zhou forth.).

To understand the economics of the model, first consider bonds. Consistent with the empirical

evidence reviewed below, a disaster leads on average to a positive jump in inflation in the model.

This has a greater detrimental impact on long-term bonds, so they command a high risk premium

relative to short-term bonds. This explains the upward slope of the nominal yield curve. Next,

suppose that the size of the expected jump in inflation itself varies. Then the slope of the yield

curve will vary and will predict excess bond returns. A high slope will mean-revert and thus predicts

a fall in the long rate and high returns on long term bonds. This mechanism accounts for many

stylized facts on bonds.

The same mechanism is at work for stocks. Suppose that a disaster reduces the fundamental

value of a stock by a time-varying amount. This yields a time-varying risk premium which generates

a time-varying price-dividend ratio and the “excess volatility”of stock prices. It also makes stock

returns predictable via measures such as the dividend-price ratio. When agents perceive the severity

of disasters as low, price-dividend ratios are high and future returns are low.

The model’s mechanism also impacts disaster-related assets such as corporate bonds and options.

If high-quality corporate bonds default mostly during disasters, then they should command a high

premium that cannot be accounted for by their behavior during normal times. The model also
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generates option prices with a “volatility smirk,”i.e. a high put price (hence implied volatility) for

deep out-of-the-money puts.

After laying out the framework and solving it in closed form, I calibrate it. The values for

disasters are essentially taken from Barro and Ursua (2008)’s analysis of many countries’disasters,

defined as falls in GDP or consumption of 10% or more. The calibration gives results for stocks,

bonds and options consistent with empirical values. The volatilities of the expectation about disaster

sizes are very hard to measure directly. However, the calibration generates a steady state dispersion

of anticipations that is lower than the dispersion of realized values. This is shown by “dispersion

ratio tests”in the spirit of Shiller (1982), which are passed by the disaster model. By that criterion,

the calibrated values in the model appear reasonable. Importantly, they generate a series of fine

quantitative predictions. Hence, the model calibrates quite well.

Throughout this paper, I use the class of “linearity-generating”(LG) processes (Gabaix 2009).

That class keeps all expressions in closed form. The entire paper could be rewritten with other

processes (e.g. affi ne-yield models) albeit with considerably more complicated algebra and the need

to resort to numerical solutions. The LG class and the affi ne class give the same expression to a

first order approximation. Hence, there is little economic consequence in the use of LG processes

and their use should be viewed as an analytical convenience.

Relation to the literature A few papers address the issue of time-varying disasters. Longstaff

and Piazzesi (2004) consider an economy with constant intensity of disasters, but in which stock

dividends are a variable, mean-reverting share of consumption. They find a high equity premium,

and highly volatile stock returns. Veronesi (2004) considers a model in which investors learn about

a world economy that follows a Markov chain through two possible economic states, one of which

may be a disaster state. He finds GARCH effects and apparent “overreaction.”Weitzman (2007)

provides a Bayesian view that the main risk is model uncertainty, as the true volatility of consump-

tion may be much higher than the sample volatility. Unlike the present work, those papers do not

consider bonds, nor study return predictability.

After the present paper was circulated, Wachter (2009) proposed a different model, based on

Epstein-Zin utilities, where valuation movements come solely from the stochastic probability of

disaster, and which analyzes stocks and the short term rate, but not nominal bonds. The present

paper, in contrast, allows the stochasticity to come both from movements in the probability of

disaster and from the expected recovery rate of various assets, and can work with CRRA as well

as Epstein-Zin utility. Importantly, it is conceived to easily handle several assets, such as nominal

bonds and stocks (here), stocks with different timing of cash flows (Binsbergen, Brandt and Koijen

2009), particular sectors of the stock market (Ghandi and Lustig 2009) and exchange rates (Farhi

and Gabaix 2009). This choice is motivated by the empirical evidence, which shows that several
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factors are needed to explain risk premia (Fama and French 1993) across stocks and bonds. It is

useful to have asset-specific shocks, as single-factor models generate perfect correlations of risk-

premia correlations across assets, while empirically valuation ratios are not very correlated across

assets (see section 4).

Within the class of rational, representative-agents frameworks that deliver time-varying risk

premia, the variable rare disasters model may be a third workable framework, along with the

external-habit model of Campbell-Cochrane (CC, 1999) and the long run risk model of Bansal-

Yaron (BY, 2004). They have proven to be two very useful and influential models. Still, the reader

might ask, why do we need another model of time-varying risk premia? The variable rare disasters

framework has several useful features.

First, as emphasized by Barro (2006), the model uses the traditional iso-elastic expected util-

ity framework like the majority of macroeconomic theory. CC and BY use more complex utility

functions with external habit and Epstein-Zin (1989)-Weil (1990) utility, which are harder to em-

bed in macroeconomic models. In Gabaix (2009b) (see also Gourio 2009), I show how the present

model (which is in an endowment economy) can be directly mapped into a production economy

with traditional real-business cycle features. Hence, the rare disasters idea brings us close to the

long-sought unification of macroeconomics and finance (see Jermann (1998), Boldrin, Christiano

and Fisher (2001), and Uhlig (2007) for attacks of this problem using habit formation). Second,

the model makes different predictions for the behavior of “tail-sensitive”assets, such as deep out of

the money options, and high-yield corporate bonds —broadly speaking, it of course predicts they

command very high premia. Third, the model is particularly tractable. Stock and bond prices have

linear closed forms. As a result, asset prices and premia can be derived and analytically understood

without recourse to simulations. Fourth, the model easily accounts for some facts that are hard to

generate in the CC and BY models. In the model, “characteristics”(such as price-dividend ratios)

predict future stock returns better than market covariances, something that it is next to impossible

to generate in the CC and BY models. The model also generates a low correlation between con-

sumption growth and stock market returns, which is hard for CC and BY to achieve, as emphasized

by Lustig, van Nieuwerburgh, and Verdelhan (2008).

There is a well-developed literature that studies jumps particularly with option pricing in mind.

Using options, Liu, Pan andWang (2004) calibrate models with constant risk premia and uncertainty

aversion demonstrating the empirical relevance of rare events in asset pricing. Santa-Clara and Yan

(forth.) also use options to calibrate a model with frequent jumps. Typically, the jumps in these

papers happen every few days or few months and affect consumption by moderate amounts, whereas

the jumps in the rare-disasters literature happen perhaps once every 50 years, and are larger. Those

authors do not study the impact of jumps on bonds and return predictability.

Section 2 presents the macroeconomic environment and the cash-flow processes for stocks and
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bonds. Section 3 derives equilibrium prices. Section 4 proposes a calibration, and reports the

model’s implications for stocks, options and bonds. Section 5 discusses various extensions of the

model, in particular to an Epstein-Zin-Weil economy. The Appendix contains the notations of the

paper and some derivations. An online appendix contains supplementary information.

2 Model Setup

2.1 Macroeconomic Environment

The environment follows Rietz (1988) and Barro (2006) and adds a stochastic probability and

severity of disasters. There is a representative agent with utility E0

[∑∞
t=0 e

−ρt (C1−γ
t − 1

)
/ (1− γ)

]
,

where γ ≥ 0 is the coeffi cient of relative risk aversion and ρ > 0 is the rate of time preference. She

receives a consumption endowment Ct. At each period t+1, a disaster may happen with a probability

pt. If a disaster does not happen Ct+1/Ct = egC where gC is the normal-time growth rate of the

economy. If a disaster happens Ct+1/Ct = egCBt+1, where Bt+1 > 0 is a random variable.4 For

instance, if Bt+1 = 0.8, consumption falls by 20%. To sum up:5

Ct+1

Ct
= egC ×

{
1 if there is no disaster at t+ 1

Bt+1 if there is a disaster at t+ 1
(1)

The pricing kernel is the marginal utility of consumption Mt = e−ρtC−γt , and follows:

Mt+1

Mt

= e−δ ×
{

1 if there is no disaster at t+ 1

B−γt+1 if there is a disaster at t+ 1
(2)

where δ = ρ+ γgc, the “Ramsey”discount rate, is the risk-free rate in an economy that would have

a zero probability of disasters. The price at t of an asset yielding a stream of dividends (Ds)s≥t is:

Pt = Et
[∑

s≥tMsDs

]
/Mt.

4Typically, extra i.i.d. noise is added, but given that it never materially affects asset prices it is omitted here.
It could be added without diffi culty. Also, a countercyclicality of risk premia could be easily added to the model
without hurting its tractability.

5The consumption drop is permanent. One can add mean-reversion after a disaster as in Gourio (2008a).
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2.2 Setup for Stocks

I consider a typical stock i which is a claim on a stream of dividends (Dit)t≥0, that follows:
6

Di,t+1

Dit

= egiD
(
1 + εDi.t+1

)
×
{

1 if there is no disaster at t+ 1

Fi,t+1 if there is a disaster at t+ 1
(3)

where εDi,t+1 > −1 is a mean zero shock that is independent of the disaster event. It matters only

for the calibration of dividend volatility. In normal times, Dit grows at an expected rate of giD.

But, if there is a disaster, the dividend of the asset is partially wiped out following Longstaff and

Piazzesi (2004) and Barro (2006): the dividend is multiplied by a random variable Fi,t+1 ≥ 0. Fi,t+1

is the recovery rate of the stock. When Fi,t+1 = 0 the asset is completely destroyed or expropriated.

When Fi,t+1 = 1, there is no loss in dividend.

To model the time-variation in the asset’s recovery rate, I introduce the notion of “resilience”

Hit of asset i,

Hit = ptE
D
t

[
B−γt+1Fi,t+1 − 1

]
. (4)

where ED (resp. END) is the expected value conditionally on a d isaster happening at t + 1 (resp.

no d isaster).7

In (4) pt and B
−γ
t+1 are economy-wide variables while the resilience and recovery rate Fi,t+1 are

stock-specific though typically correlated with the rest of the economy. When the asset is expected

to do well in a disaster (high Fi,t+1), Hit is high —investors are optimistic about the asset. In the

cross-section an asset with higher resilience Hit is safer than one with low resilience.

I specify the dynamics of Hit directly rather than specify the individual components pt, Bt+1

and Fi,t+1. I split resilience Hit into a constant part Hi∗ and a variable part Ĥit:

Hit = Hi∗ + Ĥit

and postulate the following linearity-generating (LG) process for the variable part Ĥit:

Ĥi,t+1 =
1 +Hi∗

1 +Hit

e−φHĤit + εHi,t+1 (5)

where EtεHi,t+1 = 0, and εHi,t+1, ε
D
t+1 and the disaster event are uncorrelated variables. Economically,

Ĥit does not jump if there is a disaster, but that could be changed with little consequence.8

6There can be many stocks. The aggregate stock market is a priori not aggregate consumption, because the
whole economy is not securitized in the stock market. Indeed, stock dividends are more volatile that aggregate
consumption, and so are their prices (Lustig, van Nieuwerburgh, Verdelhan, 2008).

7Later in the paper, when there is no ambiguity (e.g., for E
[
B−γt+1

]
), I will drop the D.

8εHt+1 can be heteroskedastic — but, its variance need not be spelled out, as it does not enter into the prices.
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Eq. 5 means that Ĥit mean-reverts to 0 but as a “twisted” autoregressive process (Gabaix

2009a develops these twisted or LG processes). As Hit hovers around Hi∗, 1+Hi∗
1+Hit

is close to 1 and

the process is an AR(1) up to second order terms: Ĥi,t+1 = e−φHĤit + εHi,t+1 + O
(
Ĥ2
it

)
. Gabaix

(2009a) shows that the process economically behaves like an AR(1). The “twist”term 1+Hi∗
1+Hit

makes

prices linear in the factors and independent of the functional form of the noise. I next turn to

bonds.

2.3 Setup for Bonds

The two most salient facts on nominal bonds are arguably the following. First, the nominal yield

curve slopes up on average; i.e., long term rates are higher than short term rates (e.g., Campbell

2003, Table 6). Second, there are stochastic bond risk premia. The risk premium on long term

bonds increases with the difference between the long term rate and the short term rate. (Campbell

and Shiller 1991, Cochrane and Piazzesi 2005, Fama and Bliss 1987). These facts are considered to

be puzzles, because they are not generated by the standard macroeconomic models, which generate

risk premia that are too small (Mehra and Prescott 1985).

I propose the following explanation. When a disaster occurs, inflation increases (on average).

Since very short term bills are essentially immune to inflation risk while long term bonds lose value

when inflation is higher, long term bonds are riskier, so they get a higher risk premium. Hence,

the yield curve slopes up. Moreover, the magnitude of the surge in inflation is time-varying, which

generates a time-varying bond premium. If that bond premium is mean-reverting, it generates

the Fama-Bliss puzzle. Note that this explanation does not hinge on the specifics of the disaster

mechanism. The advantage of the disaster framework is that it allows for formalizing and quantifying

the idea in a simple way.

Several authors have models where inflation is higher in bad times, which makes the yield curve

slope up. An earlier unification of several puzzles is provided by Wachter (2006), who studies

a Campbell-Cochrane (1999) model with extra nominal shocks, and concludes that it explains

an upward sloping yield curve and the Campbell-Shiller (1991) findings. The Brandt and Wang

(2003) study is also a Campbell-Cochrane (1999) model, but in which risk-aversion depends directly

on inflation. Bansal and Shaliastovich (2009) build on Bansal and Yaron (2004). In Piazzesi and

Schneider (2007) inflation also rises in bad times, although in a very different model. Finally, Duffee

(2002) and Dai and Singleton (2002) show econometric frameworks that deliver the Fama-Bliss and

Campbell-Shiller results.

However, the process needs to satisfy Ĥit/ (1 +Hi∗) ≥ e−φH − 1, so the process is stable, and also Ĥit ≥ −p−Hi∗ to
ensure Fit ≥ 0. Hence, the variance needs to vanish in a right neighborhood max

((
e−φH − 1

)
(1 +Hi∗) ,−p−Hi∗

)
,

see Gabaix (2009a).
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I decompose trend inflation It as It = I∗+ Ît, where I∗ is its constant part and Ît is its variable

part. The variable part of inflation follows the process:

Ît+1 =
1− I∗
1− It

·
(
e−φI Ît + 1{Disaster at t+1}Jt

)
+ εIt+1 (6)

where εIt+1 has mean 0 and is uncorrelated with the realization of a disaster. This equation means

first, that if there is no disaster, EtÎt+1 = 1−I∗
1−It e

−φIIt, i.e., inflation follows the LG twisted autore-

gressive process (Gabaix 2009a). Inflation mean-reverts at a rate φI , with the LG twist 1−I∗
1−It to

ensure tractability. In addition, in case of a disaster, inflation jumps by an amount Jt, decomposed

into Jt = J∗ + Ĵt, where J∗ is the baseline jump in inflation, Ĵt is the mean-reverting deviation of

the jump size from baseline. This jump in inflation makes long term bonds particularly risky. It

follows a twisted auto-regressive process and, for simplicity, does not jump during crises:

Ĵt+1 =
1− I∗
1− It

e−φJ Ĵt + εJt+1 (7)

where εJt+1 has mean 0. ε
J
t+1 is uncorrelated with disasters but can be correlated with innovations

in It.

A few more concepts are useful. I define H$ = ptEt
[
F$,t+1B

−γ
t+1 − 1

]
, where F$,t+1 is one minus

the default rate on bonds (later, this will be useful to differenciate government from corporate

bonds). For simplicity I assume that H$ is a constant: there will be much economics coming solely

from the variations of It. I call πt the variable part of the bond risk premium:

πt ≡
ptEt

[
B−γt+1F$,t+1

]
1 +H$

Ĵt. (8)

The second notation is only useful when the typical jump in inflation J∗ is not zero, and the reader

is invited to skip it in the first reading. I parametrize J∗ in terms of a variable κ ≤
(
1− e−φI

)
/2,

called the inflation disaster risk premium:9

ptEt
[
B−γt+1F$,t+1

]
J∗

1 +H$

= (1− I∗)κ
(
1− e−φI − κ

)
(9)

i.e., in the continuous time limit: ptEt
[
B−γt+1F$,t+1

]
J∗ = κ (φI − κ). A high κ means a high central

jump in inflation if there is a disaster. For most of the paper it is enough to think that J∗ = κ = 0.

9Calculating bond prices in a Linearity-Generating process sometimes involves calculating the eigenvalues of its
generator. I presolve by parameterizing j∗ by κ. The upper bound on κ implicitly assumes that j∗ is not too large.
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2.4 Expected Returns

I conclude the presentation of the economy by stating a general Lemma about the expected returns.

Lemma 1 (Expected returns) Consider an asset i and call ri,t+1 the asset’s return. Then, the

expected return of the asset at t, conditional on no disasters, is:

reit =
1

1− pt
(
eδ − ptED

t

[
B−γt+1 (1 + ri,t+1)

])
− 1. (10)

In the limit of small time intervals,

reit = δ − ptED
t

[
B−γt+1 (1 + ri,t+1)− 1

]
= rf − ptED

t

[
B−γt+1ri,t+1

]
(11)

where rf is the real risk-free rate in the economy:

rf = δ − ptED
t

[
B−γt+1 − 1

]
. (12)

The unconditional expected return is (1− pt) reit + ptE
D
t [ri,t+1].

Proof. It comes from the Euler equation, 1 = Et [(1 + ri,t+1)Mt+1/Mt], i.e.:

1 = e−δ{(1− pt) · (1 + reit)︸ ︷︷ ︸
No disaster term

+ pt · ED
t

[
B−γt+1 (1 + ri,t+1)

]︸ ︷︷ ︸
Disaster term

}.

Equation 10 indicates that only the behavior in disasters (the ri,t+1 term) creates a risk premium.

It is equal to the risk-adjusted (by B−γt+1) expected capital loss of the asset if there is a disaster.

The unconditional expected return on the asset (i.e., without conditioning on no disasters) in the

continuous time limit is reit − ptED
t [ri,t+1]. Barro (2006) observes that the unconditional expected

return and the expected return conditional on no disasters are very close. The possibility of disaster

affects primarily the risk premium, and much less the expected loss.
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3 Asset Prices and Returns

3.1 Stocks

Theorem 1 (Stock prices) Let hi∗ = ln (1 +Hi∗) and define δi = δ− giD − hi∗, which will be called
the stock’s effective discount rate. The price of stock i is:

Pit =
Dit

1− e−δi

(
1 +

e−δi−hi∗Ĥit

1− e−δi−φH

)
. (13)

In the limit of short time periods, the price is:

Pit =
Dit

δi

(
1 +

Ĥit

δi + φH

)
. (14)

The next proposition links resilience Hit and the equity premium.

Proposition 1 (Expected stock returns) The expected returns on stock i, conditional on no disas-
ters, are:

reit = δ −Hit (15)

The equity premium (conditional on no disasters) is reit − rf = ptEt
[
B−γt+1 (1− Fi,t+1)

]
where rf

is the risk-free rate derived in (12). To obtain the unconditional values of those two quantities,

subtract ptED
t [1− Fi,t+1].

Proof. If a disaster occurs, dividends are multiplied by Fit. As Ĥit does not change, 1 + rit = Fit.

So returns are, by Eq. 11, reit = δ − pt
(
Et
[
B−γt+1Fi,t+1

]
− 1
)

= δ −Hit.

As expected, more resilient stocks (assets that do better in a disaster) have a lower ex ante

risk premium (a higher Hit). When resilience is constant (Ĥit ≡ 0), Equation 14 is Barro (2006)’s

expression. The price-dividend ratio is increasing in the stock’s resiliency of the asset hi∗.

The key advance in Theorem 1 is that it derives the stock price with a stochastic resilience

Ĥit. More resilient stocks (high Ĥit) have a higher valuation. Since resilience Ĥit is volatile, price-

dividend ratios are volatile, in a way that is potentially independent of innovations to dividends.

Hence, the model generates a time-varying equity premium and there is “excess volatility,” i.e.

volatility of the stocks unrelated to cash-flow news. As the P/D ratio is stationary, it mean-reverts.

Thus, the model generates predictability in stock prices. Stocks with a high P/D ratio will have

low returns and stocks with a low P/D ratio will have high returns. Section 4.2 quantifies this

predictability. Proposition 11 extends equation (14) to a world that has variable expected growth

rates of cash-flows in addition to variable risk premia.
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3.2 Nominal Government Bonds

Theorem 2 (Bond prices) In the limit of small time intervals, the nominal short term rate is

rt = δ −H$ + It, and the price of a nominal zero-coupon bond of maturity T is:

Z$t (T ) = e−(δ−H$+I∗∗)T

(
1− 1− e−ψIT

ψI
(It − I∗∗)−KTπt

)
, KT ≡

1−e−ψIT
ψI

− 1−e−ψJT
ψJ

ψJ − ψI
(16)

where It is inflation, πt is the bond risk premium, I∗∗ ≡ I∗ + κ, ψI ≡ φI − 2κ, ψJ ≡ φJ − κ. The
discrete-time expression is in (39).

Theorem 2 gives a closed-form expression for bond prices. As expected, bond prices decrease

with inflation and with the bond risk premium. Indeed, expressions 1−e−ψIT
ψI

and KT are non-

negative and increasing in T . The term 1−e−ψIT
ψI

It simply expresses that inflation depresses nominal

bond prices and mean-reverts at a (risk-neutral) rate ψI . The bond risk premium πt affects all

bonds but not the short-term rate.

When κ > 0 (resp. κ < 0) inflation typically increases (resp. decreases) during disasters. While

φI (resp. φJ) is the speed of mean-reversion of inflation (resp. of the bond risk premium, which is

proportional to Jt) under the physical probability, ψI (resp. ψJ) is the speed of mean-reversion of

inflation (resp. of the bond risk premium) under the risk-neutral probability.

I next calculate expected bond returns, bond forward rates, and yields.

Proposition 2 (Expected bond returns) Conditional on no disasters, the short-term real return on

a short-term bill is: re$t (0) = δ −H$ and the real excess return on the bond of maturity T is:

re$t (T )− re$t (0) =

1−e−ψIT
ψI

(κ (ψI + κ) + πt)

1− 1−e−ψIT
ψI

(It − I∗∗) +KTπt
(17)

= T (κ (ψI + κ) + πt) +O
(
T 2
)

+O (πt, It, κ)2 (18)

= TptEt
[
B−γt+1F$,t+1

]
Jt +O

(
T 2
)

+O (πt, It, κ)2 . (19)

Proof. After a disaster inflation jumps by Jt and πt by 0. The bond holder suffers a capital

loss equal to e−(δ−H$+I∗∗)T · 1−e−ψIT
ψI

Jt. Lemma 1 gives the risk premia, using ptEt
[
B−γt+1F$,t+1Jt

]
=

κ (φI − κ) + πt = κ (ψI + κ) + πt.

Expression (19) shows the first order value of the bond risk premium for bonds of maturity

T . It is the maturity T of the bond multiplied by an inflation premium, ptEt
[
B−γt+1F$,t+1

]
Jt. The

inflation premium is equal to the risk-neutral probability of disasters (adjusting for the recovery

rate), ptEt
[
B−γt+1F$,t+1

]
, times the expected jump in inflation if there is a disaster, Jt. We note that

a lower recovery rate shrinks risk premia, a general feature we will explore in more detail in Section
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3.4.

Lemma 2 (Bond yields and forward rates) The forward rate, ft (T ) ≡ −∂ lnZ$t (T ) /∂T is:

ft (T ) = δ −H$ + I∗∗ +
e−ψIT (It − I∗∗) + e−ψIT−e−ψJT

ψJ−ψI
πt

1− 1−e−ψIT
ψI

(It − I∗∗)−KTπt
(20)

= δ −H$ + I∗∗ + e−ψIT (It − I∗∗) +
e−ψIT − e−ψJT

ψJ − ψI
πt +O (It − I∗∗, πt)2 (21)

= δ −H$ + I∗∗ +

(
1− ψIT +

ψIT
2

2

)
(It − I∗∗) +

(
T − ψI + ψJ

2
T 2

)
πt (22)

+O
(
T 3
)

+O (It − I∗∗, πt)2 .

The bond yield is yt (T ) = − (lnZ$t (T )) /T with Z$t (T ) given by (16), and its Taylor expansion is

given in Eq. 40-41.

The forward rate increases with inflation and the bond risk premia. The coeffi cient of inflation

decays with the speed of mean-reversion of inflation, ψI , in the “risk-neutral” probability. The

coeffi cient of the bond premium, πt, is e−ψIT−e−ψJT
ψJ−ψI

, hence has value 0 at both very short and very

long maturities and has a positive hump-shape in between. Very short term bills, being safe, do

not command a risk premium, and long term forward rates also are essentially constant (Dybvig,

Ingersoll and Ross 1996). Thus, the time-varying risk premium only affects intermediate maturities

of forwards.

3.3 Options

Let us next study options, which offer a potential way to measure disasters. The price of a

European one-period put on a stock i with strike K expressed as a ratio to the initial price is:

Vt = Et

[
Mt+1

Mt
max (0, K − Pi,t+1/Pit)

]
. Recall that Theorem 1 yielded Pit/Dit = a + bĤit for two

constants a and b. Hence, END
t [Pi,t+1/Pit] = eµit with µit = giD + ln

a+b
e−φH Ĥit

1+e−h∗ Ĥit
a+bĤit

. Therefore I

parametrize the noise according to:

Pi,t+1

Pit
= eµit ×

{
eσui,t+1−σ2/2 if there is no disaster at t+ 1

Fi,t+1 if there is a disaster at t+ 1
(23)

where ui,t+1 is a standard Gaussian variable and Fi,t+1 is as in (). This parametrization ensures that

the option price has a closed form, and at the same time conform to the essence of the economics.

Economically, I assume that in a disaster most of the option value comes from the disaster, not

from “normal times” volatility. In normal times returns are log-normal. However, if there is a
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disaster, stochasticity comes entirely from the disaster (there is no Gaussian ut+1 noise). The above

structure takes advantage of the flexibility in the modelling of the noise in Ĥit and Dit. Rather

than modelling them separately, I assume that their aggregate gives exactly a log normal noise (the

online appendix provides a way to ensure that this is possible). At the same time, (23) is consistent

with the processes and prices in the rest of the paper.

Proposition 3 (Put price) The value of a put with strike K (the fraction of the initial price at

which the put is in the money) and a one-period maturity is Vit = V ND
it + V D

it with V
ND
it and V D

it

corresponding to the events with no disasters and with disasters respectively:

V ND
it = e−δ+µit (1− pt)V BS

Put

(
Ke−µit , σ

)
(24)

V D
it = e−δ+µitptEt

[
B−γt+1 max

(
0, Ke−µit − Fi,t+1

)]
(25)

where V BS
Put (K, σ) is the Black-Scholes value of a put with strike K, volatility σ, initial price 1,

maturity 1, and interest rate 0.

3.4 Corporate Spread, Government Debt and Inflation Risk

Consider the corporate spread, which is the difference between the yield on the corporate bonds

issued by the safest corporations (such as AAA firms) and government bonds. The “corporate

spread puzzle” is that the spread is too high compared to the historical rate of default (Huang

and Huang 2003). It has a very natural explanation under the disaster view. It is mostly during

disasters (in bad states of the world) that very safe corporations will default. Hence, the risk

premia on default risk will be very high. To explore quantitatively this effect, I consider the case

of a constant severity of disasters. The following Proposition summarizes the effects, which are

analyzed quantitatively in the next section.

Proposition 4 (Corporate bond spread, disasters, and expected inflation) Consider a corporation
i, call Fi the recovery rate of its bond,10 and λi the default rate conditional on no disaster, the yield

on debt is yi = δ+λi− pED [B−γF$Fi]. So, calling yG the yield on government bonds, the corporate

spread is:

yi − yG = λi + pED
[
B−γF$ (1− Fi)

]
. (26)

In particular, when inflation is expected to be high during disasters (i.e. F$ is low, perhaps because

current Debt / GDP is high), then (i) the spread |yi − yj| between two nominal assets i, j, is low,
10In the assumptions of Chen, Collin-Dufresne and Goldstein (2009) and Cremers, Driessen and Maenhout (2008),

the loss rate conditional on a default, λd, is the same across firms but only their probability of defaulting in a disater
state, pi varies. Then Fi = 1− piλd, which is a particular case of this paper.
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and (ii) the yield on nominal assets is high.

Proof. The Euler equation is 1 = e−δ (1 + yi) [(1− p) (1− λi) + pE [B−γF$,t+1Fi]], and the Propo-

sition follows by taking the limit of small time intervals.

4 A Calibration

4.1 Calibrated Parameters

I propose the following calibration of the model’s parameters, expressed in annualized units. I

assume that time-variation of disaster risk enters through the recovery rate Fit for stocks and

through the potential jump in inflation Jt for bonds. The calibration’s inputs are summarized in

Table I, while the results from the calibration are in Table II—VI and Figure I.

Section 5.3 will shows that, with the calibration, the variation of realized disaster risk varies

enough compared to the volatility of resilience, so that by that criterion the calibrated numbers are

reasonable.

Macroeconomy
In normal times, consumption grows at rate gc = 2.5%. To keep things parsimonious, the proba-

bility and conditional severity of macroeconomic disasters are taken to be constant over time. This

implies that the real rate is constant. The disaster probability is p = 3.63%, Barro and Ursua

(2008)’s estimate. I take γ = 4, for which Barro and Ursua’s evaluation of the probability distribu-

tion of Bt+1 gives E [B−γ] = 5.29 so that the utility-weighted mean recovery rate of consumption is

B = E [B−γ]
−1/γ

= 0.66. Because of risk aversion, bad events get a high weight: the modal loss is

less severe. There is an active literature centering around the basic disaster parameters: see Barro

and Ursua (2008), and Barro, Nakamura, Steinsson and Ursua (2009) who find estimates consistent

with the initial Barro (2006) numbers.

The key number is the risk-neutral probability of disasters, pE [B−γ] = 19.2. This high risk-

neutral probability allows the model to calibrate a host of high risk premia. Following Barro and

Ursua, I set the rate of time preference to match a risk free rate of 1%, so, in virtue of Eq. 12, the

rate of time preference is ρ = 6.6%.

Stocks
I take a growth rate of dividends giD = gC , consistent with the international evidence (Campbell

2003, Table 3). The volatility of the dividend is σD = 11%, as in Campbell and Cochrane (1999).

The speed of mean-reversion of resilience φH , is the speed of mean-reversion of the price/dividend

ratio. It has been carefully examined in two recent studies based on US data. Lettau and van

Nieuwerburgh (2008) find φH = 9.4%. However, they find φH = 26% when allowing for a structural

break in the time series, which they propose is warranted. Cochrane (1988) finds φH = 6.1%, with

15



Table I: Variables Used in the Calibration.

Variables Values
Time preference, risk aversion ρ = 6.6%, γ = 4
Growth rate of consumption and dividends g = giD = 2.5%
Volatility of dividends σD = 11%
Probability of disaster, Recovery rate of C after disaster p = 3.63%, B = 0.66
Stocks’recovery rate: Typical value, Volatility, Speed of mean-reversion Fi∗ = B, σF = 10%, φH = 13%
Inflation: Typical value, Volatility, Speed of mean-reversion I∗ = 3.7%, σI = 1.5%, φI = 18%
Jump in Inflation: Typical value, Volatility, Speed of mean-reversion J∗ = 2.1%, σJ = 15%, φJ = 92%

an s.e. of 4.7%. I take the mean of those three estimates, which leads to φH = 13%. Given these

ingredients, the online appendix specifies a volatility process for Hit.

To specify the volatility of the recovery rate Fit, I specify that it has a baseline value Fi∗ = B,

and support Fit ∈ [Fmin, Fmax] = [0, 1]. That is, if there is a disaster, dividends can do anything

between losing all their value and losing no value. The process for Hit then implies that the

corresponding average volatility for Fit, the expected recovery rate of stocks in a disaster, is 10%.

This may be considered to be a high volatility. Economically, it reflects the fact that it seems easy

for stock market investors to alternatively feel extreme pessimism and optimism (e.g., during the

large turning points around 1980, around 2001 and around 2008). In any case, this perception of

the risk for Fit is not observable directly, so the calibration does not appear to contradict any known

fact about observable quantities.

The disaster model implies a high covariance of stock prices with consumption. Is that true

empirically? First, it is clear that we need multi-country data, as e.g. a purely US-based sample

would not represent the whole distribution of outcomes, as it would contain too few disasters.

Using such multi-country data, Ghosh and Julliard (2008) find a low importance of disaster. On

the other hand, Barro and Ursua (2009) find a high covariance between consumption and stock

returns during a disaster, which warrants the basic disaster model. The methodological debate,

which involves missing observations, for instance due to closed stock markets, price controls, the

measurement of consumption, and the very definition of disasters, is likely to continue for years to

come. My reading of the Barro and Ursua (2009) paper is that the covariance between consumption

and stock returns, once we include disaster returns, is large enough to vindicate the disaster model.

Inflation and Nominal Bonds
For simplicity and parsimony, I consider the case when inflation does not burst during disasters,

F$,t+1 = 1. Bond and inflation data come from CRSP. Bond data are monthly prices of zero-coupon
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Table II: Some Variables Generated by the Calibration.

Variables Values
Ramsey discount rate δ = 16.6%
Risk-adjusted probability of disaster pE

[
B−γt+1

]
= 19.2%

Stocks: Effective discount rate δi = 5%,
Stock resilience: Typical value, volatility Hi∗ = 9%, σH = 1.9%
Stocks: Equity premium, conditional on no disasters, uncond. 6.5%, 5.3%
Real short term rate 1%
Resilience of one nominal dollar H$ = 15.6%
5-year nominal slope yt (5)− yt (1): Mean and volatility 0.57%, 0.92%
Long run − short run yield: Typical value κ = 2.6%
Inflation Parameters I∗∗ = 6.3%, ψI = 12.9%, ψJ = 89.4%
Bond risk premium: Volatility σπ = 2.9%

Notes. The main other objects generated by the model are in Tables III—VI and Figure I.

bonds with maturities of 1 to 5 years, from June 1952 through September 2007. In the same time

sample, I estimate the inflation process as follows. First, I linearize the LG process for inflation,

which becomes: It+1 − I∗ = e−φI∆t (It − I∗) + εIt+1. Next, it is well-known that inflation, observed

at the monthly frequency, contains a substantial high-frequency and transitory component, which

in part is due to measurement error. The model accommodates this. Call Ĩt = It + ηt the measured

inflation (which can be thought of as trend inflation plus mean zero noise), while It is the trend

inflation. I estimate inflation using the Kalman filter, with It+1 = C1 + C2It + εIt+1 for the trend

inflation, and Ĩt = It + ηt for the noisy measurement of inflation. Estimation is at the quarterly

frequency, and yields C2 = 0.954 (s.e. 0.020), i.e. the speed of mean-reversion of inflation is

φI = 0.18 in annualized values. Also, the annualized volatility of innovations in trend inflation is

σI = 1.5%. I have also checked that estimating the process for It on the nominal short rate (as

recently done by Fama 2006) yields substantially the same conclusion. Finally, I set I∗ at the mean

inflation, 3.7%. (The small nonlinearity in the LG term process makes I∗ differ from the mean of

It by only a trivial amount).

To assess the process for Jt, I consider the 5-year slope, st = yt (5)− yt (1). Eq. 41 shows that,

conditional on no disasters, it follows (up to second order terms), st+1 = a + e−φJ∆tst + bIt + εst+1,

where ∆t is the length of “a period”(e.g., a quarter means ∆t = 1/4). I estimate this process at a

quarterly frequency. The coeffi cient on st is 0.795 (s.e. 0.043). This yields φJ = 0.92. The standard

deviation of innovations to the slope is 0.92%.

To calibrate κ I consider the baseline value of the yield, which from (16) is yt (T ) = yt (0) + κ+
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ln
(

1− 1−e−ψIT
ψI

κ
)
/T , with ψI = φI−2κ, and I compute that value of κ that ensures yt (5)−yt (1) =

0.0057, the empirical mean of the 5-year slope. This gives κ = 2.6%. By (9), this implies an inflation

jump during disasters of J∗ = 2.1%.

As a comparison, Barro and Ursua (2008, p.304) find a median increase of inflation during

disasters of 2.4%. They find a median inflation rate of 6.6% during disasters, compared to 4.2%

for long samples taken together. This is heartening, but one must keep in mind that Barro and

Ursua find that the average increase in inflation during disasters is equal to 109% —because of

hyperinflations, inflation is very skewed.11 I conclude that a jump in inflation of 2.1% is consistent

with the historical experience. Investors do not know ex ante if disasters will bring about inflation

or deflation; on average however, they expect more inflation.

As there is considerable variation in the actual jump in inflation, there is much room for varia-

tions in the perceived jump in inflation, Jt = J∗ + Ĵt —something that the calibration indeed will

deliver. We saw that empirically, the standard deviation of the innovations to the 5-year spread is

0.92% (in annualized values), while in the model it is: (K5 −K1)σπ. Hence we calibrate σπ = 2.9%.

As a result, the standard deviation of the 5-year spread is (K5 −K1)σπ/
√

2φJ = 0.68%, while in

the data it is 0.79%. Hence, the model is reasonable in terms of observables.

An important non-observable is the perceived jump of inflation during a disaster, Jt. Its volatility

is σJ = σπ/ (pE [B−γ]) = 15.4%, and its population standard deviation is σJ/
√

2φJ = 11%. This is

arguably high —though it does not violate the constraint that the actual jump in inflation should

be more dispersed than its expectation (section 5.3). One explanation is that the yield spread has

some high-frequency transitory variation that leads to a very high measurement of φJ ; with a lower

value one would obtain a considerably lower value of σJ . Another interpretation is that the demand

for bonds shifts at a high frequency (perhaps for liquidity reasons). While this is captured by the

model as a change in perceived inflation risk, it could be linked to other factors. In any case, we

shall see that the model does well in a series of dimensions explored in Section 4.3.

On the degree of parsimony of this calibration
This paper is chiefly concerned with the value of stocks and government bonds. It uses two latent

measures of riskiness, one for real quantities (the stock resilience Hit), one for nominal quantities

(the bond risk premium πt), that load on just one macro shock, the disaster shock. The model is

agnostic about their correlation —their shocks could be very correlated, or not. This assumption

of at least one nominal factor and one real factors is used by most authors, e.g. Bansal and

Shaliastovich (2009), Lettau and Wachter (2007), Piazzesi and Schneider (2007), Wachter (2006).

11There is a difference between wars and financial disasters: wars very rarely lead to deflations, but financial
disasters often do, especially during the Great Depression. The inflation jump is a bit higher during wars than
financial disasters, by about 1% of 4%, depending on whether one takes the median or the mean of windorized
values. It is useful to note that financial disasters in non-OECD are typically inflationary.
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I think that it is hardly possible to be more parsimonious and still account for the basic facts

of asset prices. Indeed, a tempting, though ultimately inadequate, idea would be the following:

nominal bonds and stocks are driven by just one factor, perhaps the disaster probability. However,

there is much evidence that risk premia are driven by more than one factor. Fama and French (1993)

find that five factors are necessary to account for stocks and bonds.12. Hence, the framework in this

paper using two factors (a nominal, and a real one) is in a sense the minimal framework to make

sense of asset price puzzles on stocks and nominal bonds.

I next turn to the return predictability generated by the model. Sometimes, I use simulations,

which the online appendix details.

4.2 Stocks: Predictability and Options

4.2.1 Average Levels

The equity premium (conditional on no disasters) is reit − rf = p (E [B−γ] (1− Fi∗)) = 6.5%. The

unconditional equity premium is 5.3% (the above value, minus p (1− Fi∗)). So, as in Barro (2006),
the excess returns of stocks mostly reflect a risk premium, not a peso problem.13 The mean value

of the price/dividend ratio is 18.2 (and is close to Eq. 14, evaluated at Ĥit = 0), in line with the

empirical evidence reported in Table III. The central value of the D/P ratio is δi = 5.0%.

4.2.2 Aggregate Stock Market Returns: Excess Volatility and Predictability

“Excess” Volatility The model generates “excess volatility” and predictability. Consider (14),
Pit/Dit =

(
1 + Ĥit/ (δi + φH)

)
/δi. As stock market resilience Ĥit is volatile so are stock market

prices and P/D ratios. Table III reports the numbers. The standard deviation of ln (P/D) is

0.27. Volatile resilience yields a volatility of the log of the price / dividend ratio equal to 10%. For

parsimony, I assume that innovations to dividends and resilience are uncorrelated. The volatility of

equity returns is 15%. I conclude that the model can quantitatively account for an “excess”volatility

of stocks through a stochastic risk-adjusted severity of disasters. In addition, in a sample with rare

disasters, changes in the P/D ratio mean only change in future returns, not future dividends. This

is in line with the empirical findings of Campbell and Cochrane (1999).

Predictability Consider (14) and (15). When Ĥit is high, (15) implies that the risk premium

is low and P/D ratios (14) are high. Hence, the model generates above average subsequent stock

12In addition, the correlation between stocks and nominal bond premia appears to be very small. Viceira (2007)
reports that the correlation between bond returns and stock returns is 3%. The correlation between the change in
the Cochrane-Piazzesi (CP, 2005) factor and stock market returns is also 3%, while the correlation between the level
of CP and the change in stock market returns also 3%. This means that at least two factors are necessary.
13Note that this explanation for the equity premium is very different from the one proposed in Brown, Goetzmann

and Ross (1995), which centers around survivorship bias.
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Table III: Some Stock Market Moments.

Data Model
Mean P/D 23 18.2
Stdev lnP/D 0.33 0.30
Stdev of stock returns 0.18 0.15

Explanation: Stock market moments. The data are Campbell (2003, Table 1 and 10)’s calculation
for the USA 1891—1997.

market returns when the market-wide P/D ratio is below average. This is the view held by many

(e.g. Campbell and Shiller 1988, Cochrane 2008) though not all (Goyal and Welch 2008). The

model predicts the following magnitudes for regression coeffi cients.

Proposition 5 (Predicting stock returns via P/D ratios) Consider the predictive regressions of the
return from holding the stock from t to t+T , reit→t+T on the initial price-dividend ratio, ln (Dit/Pit):

reit→t+T = αT + βT ln (Dit/Pit) + noise. (27)

reit→t+T = α′T + β′T (Dit/Pit) + noise (28)

In the model for small holding horizons T the slopes are, to the leading order: βT = (δi + φH)T

and β′T = (1 + φH/δi)T .

This intuition for the value of βT is thus. First, the slope is proportional to T simply because

returns over a horizon T are proportional to T . Second, when the P/D ratio is lower than baseline

by 1%, it increases returns through two channels: the dividend yield is higher by δi% and mean-

reversion of the price-dividend ratio creates capital gains of φ%.

Table IV: Predicting Returns with the Dividend-Price Ratio

Data Model
Horizon Slope s.e. R2 Slope R2

1 0.11 (0.053) 0.04 0.17 0.06
4 0.42 (0.18) 0.12 0.45 0.19
8 0.85 (0.20) 0.29 0.79 0.30

Explanation: Predictive regression for the expected stock return reit→t+T = αT + βT ln (Dit/Pit), at
horizon T (annual frequency). The data are Campbell (2003, Table 10 and 11B)’s calculation for
the US 1891—1997.
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Using the paper’s calibration of δi = 5% and φH = 13%, Proposition 5 predicts a slope coeffi cient

β1 = 0.18 at a one-year horizon. This prediction is in line with the careful estimates of Lettau and

van Nieuwerburgh (2008) who find a β1 value of 0.23 in their preferred specification. Also, Cochrane

(2008) runs regression (28) at the annual horizon and finds β′1 = 3.8 with a standard error of 1.6.

Proposition 5 predicts β
′

1 = 3.6. We note that the approximation in Proposition 5, valid for “small”

T , appears to be valid up to approximately a 1-year holding period.

I conclude that the model is successful not only at matching the level, but also the variation

and predictability of the stock market.

Characteristics vs Covariances In a rare disaster economy, characteristics tend to predict

returns better than covariances, something that a strand of research argues is true (Daniel and Tit-

man 1997), although this is not uncontroversial (Davis, Fama and French 2000). Indeed, in a sample

without disasters, betas will only reflect the covariance during “normal times.”But, risk premia are

only due to the covariance with consumption in disasters. The two can be entirely different. Hence,

the “normal times”betas can have no relation with risk premia. However, “characteristics,” like

the P/D ratio, imbed measures of risk premia (as in 14). Hence, characteristics will predict returns

better than covariances.

However, there could be some spurious links if stocks with low Hi∗ have higher cash-flow betas.

One could conclude that a cash-flow beta commands a risk premium, but this is not because cash-

flow betas cause a risk premium, simply because stocks with high cash-flow beta happen to be

stocks that have a large loading on the disaster risk.

These points may help explain the somewhat contradictory findings in the debate about whether

characteristics or covariances explain returns. When normal-times covariances badly measure the

true risk, as is the case in a disaster model, characteristics will often predict expected returns better

than covariances.

4.3 Bond Premia and Yield Curve Puzzles

4.3.1 Excess Returns and Time-Varying Risk Premia

Bonds carry a time-varying risk premium. Eq. 18 indicates that bond premia are (to a first
order) proportional to bond maturity T . This is the finding of Cochrane and Piazzesi (2005). The

one factor here is the inflation premium πt which is compensation for a jump in inflation if a disaster

happens. The model delivers this because a bond’s loading of inflation risk is proportional to its

maturity T .

The nominal yield curve slopes up on average. Suppose that when the disaster happens,
inflation jumps by J∗ > 0. This leads to a positive parametrization κ of the bond premia (Eq. 9).

21



The typical nominal short term rate (i.e., the one corresponding to It = I∗) is y (0) = δ −H$ + I∗

while the long term rate is y (0) + κ (i.e., − limT→∞ lnZ$t (T ) /T ). Hence, the long term rate is

above the short term rate by κ > 0. The yield curve slopes up. Economically this is because long

maturity bonds are more sensitive than short-term bonds to inflation risk, so they command a risk

premium.

4.3.2 The Forward Spread Predicts Bond Excess Returns (Fama-Bliss)

Fama and Bliss (1987) regress short-term excess bond returns on the forward spread, i.e. the forward

rate minus the short-term rate:

Fama-Bliss regression: Excess return on bond of maturity T = αT +βT ·(ft (T )− rt)+noise. (29)

The expectation hypothesis yields constant bond premia, hence predicts βT = 0. I next derive the

model’s prediction. As in the calibration var (It)ψ
2
I/var (πt) = 0.023, I highlight the case where

this quantity is small, which means that changes in the slope of the yield curve come from changes

in the bond risk premium rather than changes in the drift of the short term rate.

Proposition 6 (Coeffi cient in the Fama-Bliss regression) The slope coeffi cient βT of the Fama-
Bliss regression (29) is given in (42). When var (It)ψ

2
I/var (πt)� 1,

βT = 1 +
ψJ
2
T +O

(
T 2
)
. (30)

When var (πt) = 0 (no risk premium shocks) the expectation hypothesis holds and βT = 0. In all

cases, the slope βT is nonnegative and eventually goes to 0, limT→∞ βT = 0.

To understand the economics of the previous proposition, consider the variable part of the two

sides of the Fama-Bliss regression (29). The excess return on a T−maturity bond is approximately
Tπt (see Eq. 18) while the forward spread is ft (T ) − rt ' Tπt (see Eq. 22). Both sides are

proportional to πtT . Thus, the Fama-Bliss regression (29) has a slope equal to 1 which is the

leading term of (30).

This value βT above 1 is precisely what Fama and Bliss have found, a finding confirmed by

Cochrane and Piazzesi (2005). This is quite heartening for the model. Table V reports the results.

We also see that as maturity increases, coeffi cients initially rise but then fall at long horizons, as

predicted by Proposition 6. Economically, most of the variations in the slope of the yield curve are

due to variations in risk-premium, not to the expected change of inflation.

22



Table V: Fama-Bliss Excess Return Regression

Data Model
Maturity T β (s.e.) R2 β R2

2 0.99 (0.33) 0.16 1.33 0.34
3 1.35 (0.41) 0.17 1.71 0.23
4 1.61 (0.48) 0.18 1.84 0.14
5 1.27 (0.64) 0.09 1.69 0.08

Explanation: The regressions are the excess returns on a zero-coupon bond of maturity T ,
regressed on the spread between the T forward rate and the short term rate: rxt+1 (T ) =
α + β (ft (T )− ft (1)) + εt+1 (T ). The unit of time is one year. The empirical results are from
Cochrane and Piazzesi (2005, Table 2). The expectation hypothesis implies β = 0.

4.3.3 The Slope of the Yield Curve Predicts Future Movements in Long Rates (Camp-
bell Shiller)

Campbell and Shiller (CS, 1991) find that a high slope of the yield curve predicts that future long

term rates will fall. CS regress changes in yields on the spread between the yield and the short-term

rate:

Campbell-Shiller regression:
yt+∆t (T −∆t)− yt (T )

∆t
= a+ βT ·

yt (T )− yt (0)

T
+ noise (31)

The expectation hypothesis predicts βT = 1. However, CS find negative βT’s, with a roughly affi ne

shape as a function of maturity (see Table VI). This empirical result is predicted by the model, as

the next Proposition shows. As in the calibration var (It)φ
2
I/var (πt) = 0.045, I highlight the case

where those quantities are small.

Proposition 7 (Coeffi cient in the Campbell-Shiller regression) The slope coeffi cient βT in the

Campbell-Shiller (1991) regression (31) is given by (43). When φ2
Ivar (It) /var (πt)� 1, κT � 1,

βT = −
(

1 +
2ψj − ψI

3
T

)
+ o (T ) when T → 0 (32)

βT = −ψJT + o (T ) when T � 1

Table VI also contains simulation results of the model’s predictions. They are in line with CS’s

results. To understand the economics better, I use a Taylor expansion in the case where inflation

is minimal. The slope of the yield curve is, to the leading order, (yt (T ) − yt (0))/T = πt
2

+ O (T ).

Hence, to a first order approximation (when inflation changes are not very predictable) the slope of
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Table VI: Campbell-Shiller Yield Change Regression

Data Model
Maturity T β (s.e.) β
3 -0.15 (0.28) -1.03
6 -0.83 (0.44) -1.16
12 -1.43 (0.60) -1.41
24 -1.45 (1.00) -1.92
48 -2.27 (1.46) -2.83

Explanation: The regressions are the change in bond yield on the slope of the yield curve:
yt+1 (T − 1)−yt (T ) = α+ β

T−1
(yt (T )− yt (1))+εt+1 (T ) The time unit is one month. The empirical

results are from Campbell, Lo, MacKinlay (1997, Table 10.3). The expectation hypothesis implies
β = 1.

the yield curve reflects the bond risk premium. The change in yield is (the proof of Proposition 7

justifies this):
yt+∆t (T −∆t)− yt (T )

∆t
' −∂yt (T )

∂T
=
−πt

2
+O (T ) .

Hence, the CS regression yields a coeffi cient of −1, to the leading order. Economically, it means

that a high bond premium increases the slope of the yield curve (by πt/2).

As bond maturity increases, Proposition 7 predicts that the coeffi cient in the CS regression

becomes more and more negative. The economic reason is the following. For long maturities, yields

have vanishing sensitivity to the risk premium (as in Dybvig, Ingersoll and Ross 1996) which the

model says has the shape yt (T ) = a+ bπt/T + o (1/T ) for some constants a, b. So the slope of the

yield curve varies as bπt/T 2, and the expected change in the yield is −bφJπt/T . So the slope in
the CS regression (31) is βT ∼ −φJT . On the other hand, the expression for βT shows that when
the predictability due to inflation is non-negligible, the CS coeffi cient should go to 1 for very large

maturities.

In Table VI we see that the fit between theory and evidence is rather good. The only poor fit

is at small maturity. The CS coeffi cient is closer to 0 than in the model. The short term rate has

a larger predictable component at short term horizons than in the model. For instance, this could

reflect a short-term forecastability in Fed Funds rate changes. That feature could be added to the

model as in the online appendix. Given the small errors in fit, it is arguably better not to change

the baseline model which broadly accounts for the CS finding. Economically, the CS finding reflects

the existence of a stochastic one-factor bond risk premium.

24



4.3.4 Explaining Cochrane and Piazzesi (2005)

Cochrane and Piazzesi (CP, 2005) establish that (i) a parsimonious description of bond premia

is given by a stochastic one-factor risk premium, (ii) (zero-coupon) bond premia are proportional

to bond maturity, and (iii) this risk premium is well proxied empirically by a “tent-shape” linear

combination of forward rates. Eq. 18 delivers their first two findings: there is a single bond risk

factor πt, and the loading on it is proportional to bond maturity. Economically, it is because a bond

of maturity T has a sensitivity to inflation risk approximately proportional to T .

To understand CP’s third finding, rewrite (21) as:

ft (T ) = F (T ) + e−ψIT It + Λ (T ) πt, Λ (T ) ≡ e−ψIT − e−ψJT
ψJ − ψI

.

The economic intuition for the CP “tent shape”effect is as follows. The forward rate of maturity

T has a loading Λ (T ) on the bond risk premium πt. Λ (T ) has a tent-shape: Λ (0) = Λ (∞) = 0,

and Λ (T ) > 0 for T > 0. We saw earlier (after Lemma 2) that the economic reason for this tent-

shape of Λ (T ) is that short term bonds have no inflation risk premium, and long term forwards

are constant (in this model, ft (∞) = δ − H$ + I∗∗), so that only intermediate maturity forwards

have a loading on the bond risk premium. So, to capture the bond risk premium, a tent-shape∑5
T=1wTft (T ) combination for forwards predicts the bond risk premium. The simple (

∑5
T=1 wT )

and maturity-weighted (
∑5

T=1 TwT ) sum of the weights should be roughly 0, so as to eliminate

e−ψIT It up to second order terms.

This reasoning leads one to ask if there is a simple combination of forward rates which one might

expect to robustly proxy for the risk premia. The next Proposition gives an answer.14

Proposition 8 (Estimation-free combinations of forwards to proxy the bond risk premium) Given
time horizons a and b, consider the following “estimation-free”combinations of forwards:

CPEF
t (a, b) ≡ [−ft (a) + 2ft (a+ b)− ft (a+ 2b)] /b2

where ft (T ) are the forwards of maturity T . Then, up to third order terms, for small a and b,

CPEF
t (a, b) = (ψI + ψJ) πt is proportional the bond risk premium.

Proof. From (21) and (40) up to third order terms CPEF
t = (ψI + ψJ) πt. The leading inflation

term is −ψ2
IIt, a third order term.

For instance, CPEF
t (1, 2) = (−ft (1) + 2ft (3)− ft (5)) /4, uses the forwards up to maturity 5

years. Proposition 8 suggests that CPEF
t could be used in practice to proxy for the bond risk premia,

14Lettau andWachter (2007) proposed earlier another combination of theoretical factors to obtain the risk premium,
but it is not estimation-free.
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Figure I: This Figure shows the Black-Scholes annualized implied volatility of a 1-month put on the
stock market. The solid line is from the model’s calibration. The dots are the empirical average
(January 2001 - February 2006) for the options on the S&P 500 index, calculated as in Figlewski
(2008). The initial value of the market is normalized to 1. The implied volatility on deep out-
of-the-money puts is higher than the implied volatility on at-the-money puts, which reflects the
probability of rare disasters.

without requiring a preliminary estimation.15 Over the 1964-2008, repeating the CP analysis gives

an average R2 of 28% to predict excess bond return, while the estimation-free CPEF
t (1, 2) yields a

R2 of 23%. This is arguably a good performance, given the CP analysis uses five regressors, and

the estimation-free CPEF
t uses just one. In addition, consider a country with a short dataset: the

estimate of the CP coeffi cients will be very noisy. Researchers could use the estimation-free CPEF
t

to evaluate risk-premia.

I conclude that the model explains all three CP findings, and proposes new combinations of

factors to predict the bond premium. These are “estimation-free”and might be useful empirically.

4.4 Options

I now ask whether the model’s calibration (which did not target any option-specific value) yields

good values for options. I calculate the model’s Black-Scholes implied volatility of puts with a

1 month maturity. I am very grateful to Stephen Figlewski for providing the empirical implied

volatility of 1-month options on the S&P 500, from January 2001 to February 2006, obtained with

the interpolation method described in Figlewski (2008).

Figure I reports the implied volatility, from the data, as well as the in the calibration. The

correspondence is quite good, despite the fact that no extra parameter was tuned to match options

15Another interesting combination is 8CPEFt (1, 2)− 1
2CP

EF
t (2, 1), which is −2f (1)+0.5f (2)+3f (3)+0.5f (4)−

2f (5), and is very close to what CP estimate.
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prices. Hence, I conclude that in a first pass and for the maturity presented here, the variable rare

disasters model gets options prices correct. Du (forth.) finds other parametrizations of jumps that

match option prices. Of course, a more systematic study would be desirable. Farhi et al. (2009)

and Jurek (2009) investigate the link between currency option prices and currency levels, finding

support for the existence of a disaster risk premium.

Backus, Chernov and Martin (2009) study a specification that equity dividends are Dt = Cλ
t

for some λ > 0, and cannot fit options prices in a disaster framework with constant disaster risk.

They mention that a model such as the present one can work better. In their Dt = Cλ
t framework,

a high λ (about four) is necessary to get a high volatility of equity. But then, equity are immensely

risky during disasters, and put prices are too high. In contrast, in the present framework, equity

volatility comes from resilience volatility, and put prices can be moderate and calibrate naturally.

Proposition 3 suggests a way to extract key structural parameters of disasters from options data.

Stocks with a higher put price (controlling for “normal times”volatility) should have a higher risk

premium, because they have higher future expected returns. Evaluating this prediction would be

most interesting. Supportive evidence comes from Bollerslev, Tauchen and Zhou (forth.). They

find that when put prices are high, subsequent stock market returns are high. This is exactly what

a disaster-based model predicts.

To be more quantitative, consider the “variance premium”V Pt, which is the risk-neutral ex-

pected variance, minus the expected variance (conditional on no disasters). It is easy to derive

V Pt = ptE
[
B−γt+1 (1− Fi,t+1)2], as the jump size in a disaster is 1 − Fi,t+1. Regressing returns at

horizon H on the variance premium gives a mean coeffi cient

This model cannot account for all the patterns in the variance premium, as it is a one-factor

model and the VIX index clearly shows some high-frequency transient dynamics. More elaborations

are in Bollerslev, Tauchen and Zhou (forth.) and Drechsler and Yaron (2009). The disaster model

does appear competitive.

4.5 Corporate Bonds

The calibration allows us to evaluate Proposition 4. The disaster risk premium is πDi = yi−yG−λi,
the difference between the yield on corporate bonds and governance bonds minus the historical

default rate of corporate bonds. The rare disaster model gives a macroeconomic foundation for

Almeida and Philippon (2007)’s view that the corporate spread reflects the existence of bad states

of the world, and for reduced-form models of credit risk.

Almeida and Philippon (2007) allow an estimate of πDi as the difference between this risk-

adjusted annualized probability of default and the historical one.16 For instance, it yields πDi to be

16I take Almeida and Philippon’s Table III, which is the 10-year risk-neutral and historical probability, and apply
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about 4.05% for a bond rated B (resp., 0.60% for a AAA bond). With pE [B−γ] = 19.2%, it means

that the expected loss in a disaster is 4.05%/0.192 = 21% (resp. 0.60%/0.192 = 3.2% for a AAA

bond). This is a moderate loss. We see how easily, though, a disaster model can rationalize the

corporate spread.

Prediction (i) of Proposition 4 seems quite new. The intuition for it is the following. Suppose

agents know that there will be hyperinflation in disasters, so that the real value of all nominal assets

will be zero (F$ = 0). Then, there is no difference in the risk premium between government bonds,

AAA bonds or any nominal bond: their value will be wiped out during disasters. So, the part

of their spread due to inflation risk is 0. More generally, a higher inflation risk lowers the spread

between nominal bonds, because it reduces the values of all nominal bonds.

Prediction (i) provides an explanation for Krishnamurthy and Vissing-Jorgensen (2008)’s find-

ing that when the Debt/GDP ratio is high the AAA-Treasury and the BAA-AAA spreads are

low: in their 1925-2005 USA sample, regressing the AAA-Treasury and BAA-AAA spreads on the

Debt/GDP ratio yields significant coeffi cients of resp. −1.5 and −1.2. The first AAA-Treasury can

be explained by their favored interpretation of a liquidity demand for treasuries, but the BAA-AAA

spread may be harder to explain via liquidity. The disaster hypothesis offers an explanation for

both, hence it is complementary to the liquidity explanation. When Debt/GDP is high the temp-

tation to default via inflation (should a risk occur) is high,17 so F$ is low, thus nominal spreads are

low.

Prediction (ii) of Proposition 4 allows one to think about the impact of the government Debt/GDP

ratio. It is plausible that if the Debt/GDP ratio is high then if there is a disaster the government

will sacrifice monetary rectitude so that Jt is high (that effect could be microfounded). This implies

that when the Debt/GDP ratio (or the deficit/GDP) is high then long-term rates are high and the

slope of the yield curve is steep (controlling for inflation and expectations about future inflation

in normal times). In addition, in the Krishnamurthy and Vissing-Jorgensen data, regressing bond

rates minus the bill rate on the Debt/GDP ratio yields a significant coeffi cient of 1.8, consistent

with the disaster hypothesis: when Debt/GDP ratio is high, the bond risk premium is high, so the

slope of the yield curve is high .

Likewise, say that an independent central bank has a more credible commitment not to increase

inflation during disasters (Jt smaller). Then, real long term rates (e.g. nominal rates minus expected

inflation) are lower and the yield curve is less steep. This effect works in an economy where Ricardian

the transformation − ln (1− x) /10 to obtain the annualized probability of default. I also add back the AAA-Treasury
spread of 0.51%, to get the actual AAA-Treasury spread. This yields a disaster premium of: 0.60% (AAA bonds),
1.11% (AA), 1.71% (A), 2.57% (BBB), 3.06% (BB), and 4.05% (B). Almeida and Philippon do not report standard
errors.
17Catao and Terrones (2005) provide evidence for the view that high Debt/GDP leads, on average, to an increase

of inflation.
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equivalence holds. Higher deficits increase long term rates not because they “crowd out”investment,

but instead because they increase the government’s temptation to inflate away the debt if there is

a disaster. In such a case there is an inflation risk premium on nominal bonds.

5 Discussion and Extensions

5.1 Epstein-Zin-Weil Preferences

For reasons that will be clear soon, I develop here the model with the preferences introduced by

Epstein and Zin (EZ, 1989) and Weil (1990). Much of the previous analysis will be preserved,

with the use of an enriched notion of resilience. Call ψ the intertemporal elasticity of substitution

and θ = (1− γ) / (1− 1/ψ), which is equal to 1 in the case of CRRA preferences. EZ show

that the stochastic discount factor (SDF) evolves as Mt+1/Mt = e−ρθ (Ct+1/Ct)
−θ/ψ Rθ−1

c,t+1, where

Rc,t+1 = Pc,t+1/ (Pct − Ct) is the gross return of a consumption claim — the asset that gives a

consumption Ct as a dividend, and whose price we call PCt.

The resilience of a consumption claim, Hct = ptE
[
B1−γ
t+1 − 1

]
, and is assumed to follow the LG

twisted process, Ĥc,t+1 = 1+Hc∗
1+Hct

e−φHĤc,t + εHc,t+1 to the leading order. In what follows I consider

only the leading terms; in particular, I neglect the variance terms (e.g., var
(
εHc,t+1

)
to concentrate

on disaster terms). The main tool is the value of the SDF.

Theorem 3 (SDF with EZ preferences) In the Epstein-Zin setup, the stochastic discount factor is:

Mt+1

Mt

= e−δ
(

1 +
1− θ
θ

Hct + εM,t+1

)
×
{

1 if there is no disaster at t+ 1

B−γt+1 if there is a disaster at t+ 1
(33)

where δ = ρ+ gc/ψ, Hct = ptE
[
B1−γ
t+1 − 1

]
, δc = δ − gc − 1

θ
Hc∗ and εM,t+1 = θ−1

θ

εHc,t+1

δc+φH
.

The key impact of disaster is in B−γt+1 as in the CRRA. However, it is now modulated by the Hct

term, which cancel out in the CRRA case, θ = 1. This SDF causes expected returns formalized in

the next Lemma.

Lemma 3 (Expected returns with EZ preferences) Consider an asset i in the limit of small time
intervals. Its normal-times expected return is:

rei,t = δ +
θ − 1

θ
Hct − ptED

t

[
B−γt+1 (1 + ri,t+1)− 1

]
− covNDt (ri,t+1, εM,t+1) (34)

where covNDt is the covariance conditional on no disaster. The risk-free rate is: rf = δ + θ−1
θ
Hct −

ptEt
[
B−γt+1 − 1

]
.
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Assets receive a risk premia because of their behavior in disasters (the ED
t

[
B−γt+1 (1 + ri,t+1)− 1

]
term), but also because of their normal-times covariance with the SDF, as shown in the last term

in (34).

Next, consider a stock i. I define its Epstein—Zin—enriched resilience as:

HEZ
it = Hit + covNDt (εM,t+1, εi,t+1) +

1− θ
θ

Hct (35)

= ptE
D
t

[
B−γt+1Fi,t+1 − 1

]
+ covNDt (εM,t+1, εi,t+1) +

1− θ
θ

ptE
D
t

[
B1−γ
t+1 − 1

]
The first term is as in the CRRA case. The other two terms are zero in the CRRA case. The

second term is a classic compensation for normal-times covariance with the stochastic discount

factor. The third term is an asset-independent adjustment for the overall riskiness of the economy,

which makes the riskless rate fluctuate. In the cross-section, a stock i has high resilience if it does

well during disasters (Fi,t+1 is high) or if its dividends have high covariance with the SDF, so that

the asset is a hedge.

I assume that the EZ-enriched resilience follows, up to second order terms, a LG process, with

HEZ
it = HEZ

i∗ + ĤEZ
it and Et

[
ĤEZ
i,t+1

]
=

1+HEZ
i∗

1+HEZ
i∗
e−φHĤEZ

it . The following Proposition shows that the

above results on stocks (e.g. Theorem 1, Proposition 1) follow, provided one uses the enriched

notion of resilience.

Proposition 9 (Stock price with EZ preferences) With EZ preferences, the price of a stock i is the
same expression (14) as in the CRRA case, but with the EZ-enriched resilience (35):

Pit
Dit

=
1

δi

(
1 +

ĤEZ
it

δi + φH

)
, δi ≡ δ − gi −HEZ

i∗ (36)

We see that when Ĥct = 0, we have the same predictions as in the CRRA case, up to a change

in the value of δi.

The interesting case is γ, ψ > 1, so that θ < 0 (Barro 2009. Gourio 2008b, Wachter 2009). Then,

when disaster probability pt goes up, the stock price goes down (this is true as long as Fit ≤ Bt,

i.e. the asset is riskier than consumption, and comes from (35)), which avoids the counterintuitive

opposite prediction in the CRRA model.

In terms of calibration, the model of the aggregate stock market would calibrate as in the

CRRA case, provided that the volatility of resilience is as in the CRRA case. For instance, one could

hypothesize, as Wachter (2009), that all volatility comes from changes in pt. The model has just one

stochastic factor then. For instance, the risk-free rate and the P/D ratio are perfectly correlated.

The formulation via resiliences allows one to have asset-specific shocks as well as economy-wide
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shocks, and imperfect correlations between assets. In my view, this is a plus.

The case of bonds is identical to the CRRA case under the maintained assumption that HEZ
$t is

constant. Relaxing this assumption would be easy, and would generate fluctuations in the real rate

independent of the nominal factors, very analogous to the ones developed in Proposition 13.

In one case (with constant pt and distribution of Bt+1), almost no parameter needs to change,

except the subjective rate of time preference. This and other calibrations are discussed in the online

appendix.

One conclusion is that most of the paper’s derivations do not change with EZ preferences,

provided one uses an enriched definition of resilience. An EZ model with stochastic probability of

disaster is isomorphic to a CRRA model with stochastic recovery rate —increasing the probability

of disaster in the EZ model is isomorphic to lowering the recovery rate Fit in the CRRA model.

The joint impact is simply through resilience. Given this isomorphism, it is perhaps good to keep

the CRRA model as a useful benchmark, as it is most tractable, can be solved exactly, and meshes

well with traditional macroeconomics.

5.2 Other Interpretation of the Model

Some derivations on stocks and bonds do not depend finely on the disaster hypothesis. On the

other hand, for some predictions about “tail assets”(e.g. options, high-grade corporate bonds) the

disaster model is crucial. This is formalized in the next Proposition:

Proposition 10 (Models generating the same stock and government bond prices as a disaster econ-
omy, but not the same options and corporate bond prices) Consider a model with stochastic discount

factor Mt+1/Mt = e−rf
(
1 + εMt+1

)
, and a stock with dividend following Di,t+1/Dit = egiD

(
1 + εDi,t+1

)
,

where all εHi,t+1’s have expected value 0 at time t. Call Hit = Et
[
εMt+1ε

D
i,t+1

]
= Hi∗ + Ĥi,t+1, so that

−Hit is the risk premium on the dividend, and assume Ĥi,t+1 = 1+Hi∗
1+Hit

e−φHĤit + εHi,t+1 with ε
H
i,t+1

uncorrelated with the innovations toMt+1Di,t+1/ (MtDit). Then, Theorem 1 and Proposition 1 hold,

except that the equity premium is −Hit, and the interest rate is rf .

Furthermore, suppose that inflation is It = I∗+ Ît, and follows Ît+1 = 1−I∗
1−It

(
e−φI Ît + εIt+1

)
. Call

Et
[
εMt+1ε

I
t+1

]
= π∗ + πt, the inflation risk premium, and assume πt+1 = 1−I∗

1−It e
−φJπt + επt+1, with

Et
[
εMt+1ε

π
t+1

]
= 0. Also, use the notation π∗ = (1− I∗)κ

(
1− e−φI − κ

)
. Then, Theorem 2 on bond

values (with H$ = 0), and Propositions 2, 6-8 on bond predictability hold (except Eq. 19).

However, such a model generically has different prices for options and corporate bonds (which

are more tail-sensitive).

Proposition 10 shows that in many models stocks and bonds will behave exactly as in a disaster

economy (however, options or defaultable bonds will be different), so that disaster analytics shed
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light on many models. On the other hand, disaster models make clearly distinctive predictions

for tail-sensitive assets such as options and high-grade corporate bonds (and gold, which could be

modelled similarly to a stock, but with a very high resilience). Those assets are naturally the object

of scrutiny of the growing literature that examines disaster risk empirically, and to which I now

turn.

5.3 A Provisional Empirical Assessment

This section provides an assessment of empirical evidence on the link between disasters and asset

price movements, such as they have been worked out in the present model.

Are the movements of asset prices correlated to the movements in objective disaster
risk?
Political measures of disaster risk.

A question very high on the empirical agenda is to find “objective”measures of disaster risk,

ideally that do not come from asset prices. A few papers attempt to do this. Using a database of

447 major international political crises during the period 1918—2006, Berkman, Jacobsen and Lee

(2009) show that high war risk leads to a fall in asset prices: returns are low when a crisis starts, and

are high when it ends. Other papers measure (on shorter data sets) the impact of the probability

of war on asset prices. Bittlingmayer (1998) and Frey and Kucher (2000) finds that political risk

was an important factor of volatility between 1880 and World War II. Amihud and Wohl (2004),

and Rigobon and Sack (2005) document the link between the probability of the second Iraq War

(obtained from prediction markets) and the stock market. All in all, a growing number of studies

are documenting a link between political risk and the volatility and level of asset prices, in a way

consistent with the disaster hypothesis. A full structural empirical analysis has still to be carried

out, probably enriched with new data, but the extant evidence is encouraging.

Disaster risk measured by tail behavior of asset prices.

Alternatively, we may detect disaster risk in asset prices. Bollerslev, Tauchen and Zhou (forth.)

show that when put prices are high, future stock returns are low, like in this paper. In addition,

the high price of put prices is consistent with disaster risk. Bollerslev and Todorov (2009) find

large jumps in options prices that are much harder to detect than in the physical probability. In the

currency markets, Farhi et al. (2009) find that when put prices on currencies are high, the return on

investing in “risky”currencies (by measure of the price on their puts) yields high returns. Burnside

et al. (2009) also calibrate that disaster risk might account for the violations of uncovered interest

rate parity. Farhi et al. (2009), find that when a currency falls in value, its put prices increase,

with a correlation of −0.4. This is also nicely consistent with the disaster view.

In conclusion, put prices are high, and they predict future returns, as in the disaster hypothesis.
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Hence, the evidence, though not systematic, is supportive of the disaster hypothesis.

Finally, a recent paper by Kelly (2009) proposes another way to measure tail risk: every day,

he measures the Pareto exponent of the tail of the cross—section of realized returns. He calculates

the moving average of this measure. It appears to be a nice proxy for tail risk: it predicts equity

returns, and loading on this measure generates a high cross-section of returns. Hence, Kelly’s

indirect measure may be a promising way to move forward in the measurement of tail risk.

Do high yield assets do particularly poorly during disasters?
Barro and Ursua (2009) find that indeed stocks do particularly poorly during disasters. Farhi

et al. (2009) find that high-yield currencies do particularly poorly during currency market crashes,

consistent with a rare-event risk premia. A systematic investigation of this issue (including corporate

bonds) would be good. Ongoing work with Joachim Voth investigates Russia and Germany around

1917 and investigates Russia and Germany around 1917, and finds that high-yield stocks did do

particularly badly during disasters.

Does the variation of disaster risk vary enough, compared to resilience?
In the model, we need a large enough variation of resilience. One indirect test is to compare

the volatility of the needed resilience, to the dispersion of actual outcomes in the asset markets. So

I define and perform the disaster counterpart of the Shiller (1982) excess volatility test. Consider

indeed the asset-to-disaster dispersion ratio for a variable X that pays off during disasters:

DRX ≡
Dispersion of prediction of X from asset markets

Dispersion of realized values of X

It should be less than 1. Indeed, call VX the standard deviation of the variable Xt. Then DRX ≡
VE[X|G]

VX
≤ 1 for any information set G.

To evaluate the dispersion of stock resiliences, I considerX = B−γt+1 (1 + ri,t+1). As the calibration

has pt constant we have VH = pVED[B−γt+1(1+ri,t+1)]. As (14) gives VlnP/D = VH/ (δi + φH), we obtain:

DRStocks =

δi+φH
p

VlnP/D

VB−γt+1(1+ri,t+1)|disaster
.

To evaluate this dispersion ratio, I use the Barro and Ursua (2009) data, which report series of

Bt+1 and stock market returns during disasters. Note that they use a flexible window, to circumvent

a variety of econometric problems, including missing data. I find: VB−γt+1(1+ri,t+1)|disaster = 5.05. Using

also δi+φH
p

VlnP/D = 0.18
0.0363

0.33 = 1.63, I obtain a dispersion ratio DRStocks = 0.32. It is less than

1, so I conclude that the stocks pass the dispersion ratio test. This is a success for the disaster

hypothesis. Economically, the test means that the P/D ratio is volatile, but its is less volatile than

the dispersion of (marginal-utility adjusted) actual returns of the stocks during disasters.
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For inflation, I use the similar reason for the change in inflation during a disaster, X = ∆It. As

Vπ = pVB−γt+1∆It+1
, the dispersion ratio is: DRInflation = Vπ/

(
pVB−γt+1(∆It+1)|disaster

)
.

The calibration gave: Vπ = 2.1%, and the empirical value is VB−γt+1(∆It+1)|disaster = 6.36, So

DRInflation = 0.09. The dispersion ratio is less than 1, consistent with the disaster hypothesis.

I conclude that the rare disaster model passes the dispersion ratio test. There is enough disper-

sion in the realized outcomes during disasters to warrant the volatility of prices in samples without

disasters.

6 Conclusion

This paper presents a tractable way to handle a time-varying severity of rare disasters, demonstrates

its impact on stock and bond prices, and shows its implications for time-varying risk premia and

asset predictability. Many finance puzzles can be understood through the lens of the variable rare

disasters model. On the other hand, the model does suffer from several limitations and suggests

several questions for future research.

First of all, it would be useful to empirically examine the model’s joint expression of the values

of stocks, bonds and options. In this paper, I have only examined their behavior separately, relying

on robust stylized facts from many decades of research. The present study suggests specifications

for the joined, cross-asset patterns of predictability.

It would be useful to understand how investors update their estimates of resiliences. Risk premia

seem to decrease after good news for the economy (Campbell and Cochrane 1999) and for individual

firms (the growth firms effect). So, it seems that updating will involve resiliences increasing after

good news about the fundamental values of the economy or about individual stocks. Modeling that

would lead to a link between recent events, risk premia, and future predictability. Preliminary notes

suggest that this modelling is easy, given the analytics put forth in this paper.

This model is a step toward a unified framework for various puzzles in economics and finance. A

companion paper (Farhi and Gabaix 2009) suggests that various puzzles in international macroeco-

nomics (including the forward premium puzzle and the excess volatility puzzle on exchange rates)

can be accounted for in an international version of the variable rare disasters framework. Further-

more, ongoing work (Gabaix 2009b, Gourio 2009) shows how to embed the rare disasters idea in

a production economy in a way that does not change its business cycle properties, but changes its

asset pricing properties, which lead to good empirical results. Thus, variable rare disaster modelling

may bring us closer to the long-sought goal of a joint, tractable framework for macroeconomics and

finance.
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Appendix

6.1 Notations

The paper often uses a decomposition of a generic variable Xt as follows: Xt = X∗+X̂t, where X∗ is

a constant part (or “typical value”) and X̂t a variable part centered around 0. εXt+1 is an innovation

to X, and σX , its standard deviation, is the volatility of variable Xt. The other notations are as

follows.

Bt+1 : recovery rate of consumption in a disaster

B = E
[
B−γt+1

]−1/γ
: risk-adjusted average B.

βT : slope in a predictive regression with horizon T

Dit : dividend of stock i

δ : “Ramsey”discount rate

δi : stock i’s effective discount rate

ED
t [Xt+1] (resp. END

t [Xt+1]): expected value conditional on a disaster (resp. on no disaster) at

t+ 1.

ft (T ) : nominal forward rate of maturity T

F$t : recovery rate of a nominal dollar

Fit : recovery rate of stock i

gC : growth rate of consumption

giD : growth rate of stock i’s dividend

γ : coeffi cient of relative risk aversion

Hit : resilience of stock i

HEZ
it : Epstein-Zin-enriched resilience of stock i

H$ : resilience of a nominal dollar

It : inflation

I∗∗ : risk-adjusted central part of inflation

Jt : jump in inflation in a disaster

κ : inflation disaster risk premium

KT : loading on bond risk premium.

Mt : pricing kernel

µit : expected growth of the stock price, conditional on no disasters (only used for options)

Ω : generator of a LG process

pt : probability of disaster

Pit : price of stock i

πt : variable part of the bond risk premium
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φX : rate of mean-reversion of variable Xt

ψ : intertemporal elasticity of substitution

ψX : rate of mean-reversion of variable Xt under the risk-adjusted measure

Qt : real value of one unit of one nominal dollar

rf : risk-free rate

reit : stock i’s expected stock return, over a one-period horizon

reit→t+T : stock i’s expected stock return, over a horizon T

re$t (T ) : expected return on a nominal bond of maturity T

ρ : subjective rate of time preference

t : calendar time

T : maturity (for a bond) or horizon (for a regression)

VX : dispersion (standard deviation of the distribution) of variable Xt

yi : yield on the debt of corporation yi
yt (T ) : nominal yield of maturity T

Z$t (T ) : price of a nominal zero-coupon bond of maturity T .

6.2 Proofs

Proof of Theorem 1 Following the general procedure for LG processes, I use (2), (3) and

form:

Mt+1Di,t+1

MtDit

= e−δ+giD
(
1 + εDt+1

)
×
{

1 if there is no disaster at t+ 1

B−γt+1Fi,t+1 if there is a disaster at t+ 1

As the probability of disaster at t+ 1 is pt, and Hit ≡ pt
(
Et
[
B−γt+1Fi,t+1

]
− 1
)
,

Et

[
Mt+1Di,t+1

MtDit

]
= e−δ+giD{ (1− pt) · 1︸ ︷︷ ︸

No disaster term

+ pt · Et
[
B−γt+1Fi,t+1

]︸ ︷︷ ︸
Disaster term

}

= e−δ+giD (1 +Hit) = e−δ+giD
(

1 +Hi∗ + Ĥit

)
= e−δ+giD+hi∗

(
1 + e−hi∗Ĥit

)
= e−δi

(
1 + e−hi∗Ĥit

)
(37)

where I use the notations hi∗ = ln (1 +Hi∗) and δi = δ − giD − hi∗. Next, as Ĥi,t+1 is independent

of whether there is a disaster, and is uncorrelated with εDt+1,

Et

[
Mt+1Di,t+1

MtDit

Ĥi,t+1

]
= Et

[
Mt+1Di,t+1

MtDit

]
Et

[
Ĥi,t+1

]
= e−δ+giD (1 +Hit) ·

1 +Hi∗

1 +Hit

e−φHĤit

= e−δ+giD+hi∗−φHĤit = e−δi−φHĤit (38)
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We see that in (5), the reason for the 1 +Hit term in the denominator was to ensure that the above

expression would remain linear in Ĥit.

There are two ways to conclude. The first way uses the results from LG processes: Eq. 37 and

38 ensure that MtDit

(
1, Ĥit

)
is a LG process with generator

(
e−δi e−δi−hi∗

0 e−δi−φH

)
. Eq. 57 gives the

stock price (13). The second way (which is less rigorous, but does not require a knowledge of the

results on LG processes) is to look for a solution of the type Pit = Dit

(
a+ bĤit

)
for some constants

a and b. The price must satisfy: Pit = Dit + E [Mt+1Pi,t+1/Mt], i.e., for all Ĥit,

a+ bĤit = 1 + Et

[
Mt+1Di,t+1

MtDit

(
a+ bĤi,t+1

)]
= 1 + aEt

[
Mt+1Di,t+1

MtDit

]
+ bEt

[
Mt+1Di,t+1

MtDit

Ĥi,t+1

]
= 1 + ae−δi

(
1 + e−hi∗Ĥit

)
+ be−δi−φĤit =

(
1 + ae−δi

)
+
(
ae−δi−hi∗ + be−δi−φH

)
Ĥit.

Solving for a and b, we get a = 1 + ae−δi , b = ae−δi−hi∗ + be−δi−φH , and (13).

Proof of Theorem 2 The proof is simpler when J∗ = κ = 0 and this is the best case to keep

in mind in a first reading. I call ρI = e−φI and ρJ = e−φJ , use the inflation-adjusted (i.e., real) face

value of the bond, Qt:

Qt+1

Qt

= (1− It)×
{

1 if there is no disaster at t+ 1

F$,t+1 if there is a disaster at t+ 1

and calculate the LG moments.

Et

[
Mt+1Qt+1

MtQt

]
= e−δ (1− It) {(1− pt) · 1 + pt · Et

[
B−γt+1F$,t+1

]
} = e−δ (1 +H$)

(
1− I∗ − Ît

)
.

Et

[
Mt+1Qt+1

MtQt

Ît+1

]
= e−δ (1− It) {(1− pt)END

t

[
Ît+1

]
+ pt · ED

t

[
B−γt+1F$,t+1Ît+1

]
}

= e−δ (1− It)
1− I∗
1− It

{
(
1− pt + ptEt

[
B−γt+1F$,t+1

])
ρI Ît + ptEt

[
B−γt+1F$,t+1

] (
J∗ + Ĵt

)
}

= e−δ (1 +H$) (1− I∗)
(
ρI Ît +

ptEt
[
B−γt+1F$,t+1

]
1 +H$

(
J∗ + Ĵt

))
= Ψ

(
ρI Ît + (1− I∗)κ (1− ρI − κ) + πt

)
, Ψ ≡ e−δ (1 +H$) (1− I∗)
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using (8) and (9). This gives:

Et

[
Mt+1Qt+1

MtQt

Ît+1

1− I∗

]
= Ψ

(
κ (1− ρI − κ) + ρI

Ît
1− I∗

+
πt

1− I∗

)
.

Et

[
Mt+1Qt+1

MtQt

Ĵt+1

]
= Et

[
Mt+1Qt+1

MtQt

]
Et

[
Ĵt+1

]
= Ψ

1− I∗
1− It

ρJ Ĵt+1 = ΨρJ Ĵt+1

so that, as πt/ (1− I∗) is proportional to Ĵt (Eq. 8),

Et

[
Mt+1Qt+1

MtQt

πt+1

1− I∗

]
= ΨρJ

πt+1

1− I∗
.

Hence MtQt

(
1, Ît

1−I∗ ,
πt

1−I∗

)
is a LG process, with generator Ω = Ψ

 1 −1 0

κ (1− ρI − κ) ρI 1

0 0 ρπ

.
Eq. 58 gives the bond price, Z$t (T ) = (1, 0, 0) ΩT

(
1, Ît

1−I∗ ,
πt

1−I∗

)′
, which concludes the deriva-

tion of (16) when κ = 0. When κ 6= 0, one more step is needed. The eigenvalues of Ω are

Ψ {1− κ, ρI + κ, ρπ}. It is convenient to factorize by 1− κ, hence to define: ρ̃i = (ρI + κ) / (1− κ)

and ρ̃π = ρπ/ (1− κ), which are the discrete time analogues of the continuous time mean reversion

speeds ψI ≡ φI − 2κ and ψJ ≡ φJ − κ. Calculating ΩT (by hand or via Mathematica) gives the

bond price:

Z$t (T ) = (Ψ (1− κ))T × {1− 1

1− κ
1− ρ̃Ti
1− ρ̃i

(
Ît

1− I∗
− κ
)
− 1

(1− κ)2

1−ρ̃Ti
1−ρ̃i
− 1−ρ̃Tπ

1−ρ̃π
ρ̃i − ρ̃π

πt
1− I∗

} (39)

Taking the continuous time limit yields (16). The corresponding value of the yield yt (T ) =

− (lnZ$t (T )) /T is:

yt (T ) = δ −H$ + I∗∗ +
1− e−ψIT
ψIT

(It − I∗∗) +

1−e−ψIT
ψI

− 1−e−ψJT
ψI

(ψJ − ψI)T
πt +O (It − I∗∗, πt)2 (40)

= δ −H$ + I∗∗ +

(
1− ψIT

2
+
ψIT

2

6

)
(It − I∗∗) +

(
T

2
− ψI + ψJ

6
T 2

)
πt

+O
(
T 3
)

+O (It − I∗∗, πt)2

= δ −H$ + It + (κ (φI − κ) + πt − φI (It − I∗))
T

2
. (41)
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Proof of Proposition 3 We have Vt = V ND
t + V D

t with:

V ND
t = (1− pt)END

t [e−δ(K − Pi,t+1

Pit
)+] = (1− pt) e−δEt[(K − eµ+σut+1−σ2/2)+]

V D
t = ptE

D
t [e−δ(B−γt+1K −

Pi,t+1

Pit
)+] = pte

−δEt
[
B−γt+1 (K − eµFi,t+1)+]

where x+ = max (0, x). Recall that the Black-Scholes value of a put with maturity 1 is: Et[e−r(K−
er+σut+1−σ2/2)+] = V BS

Put (Ke−r, σ). Hence, the first term is (1− pt) times:

e−δEt[(K − eµ+σut+1−σ2/2)+] = e−δ+µEt[(Ke
−µ − eµ+σut+1−σ2/2)+] = e−δ+µV BS

Put

(
Ke−µ, σ

)
.

Proof of Proposition 5 Proposition 1 gives the expected returns over a short horizon T

to be reit→t+T = (δ −Hit)T . Eq. 14 implies that the right-hand side of (27) is to the lead-

ing order ln (D/P )t = − ln δi − Ĥit/ (δi + φH). So the regression is to a first order, reit→t+T =(
δ −Hi∗ − Ĥit

)
T = αT − βT Ĥit

δi+φH
. Equating the Ĥit terms, βT = (δi + φH)T . The same reason-

ing gives β′T .

Proof of Proposition 6 The Fama-Bliss regression (29) yields βT =
cov(re$t(T )−re

$t
(0),ft(T )−ft(0))

var(ft(T )−ft(0))
.

Eq. 17 and 21 give re$t (T )− re$t (0) = 1−e−ψIT
ψI

πt +O (It, πt)
2 and

ft (T )− ft (0) =
(
e−ψIT − 1

)
It +

e−ψIT − e−ψJT
ψJ − ψI

πt + aT +O (It, πt)
2

where aT is a constant. So to the leading order,

βT =

e−ψIT−e−ψJT
ψJ−ψI

1−e−ψIT
ψI

var (πt)

var
(

(e−ψIT − 1) It + e−ψIT−e−ψJT
ψJ−ψI

πt

) , (42)

which implies that: limT→∞ βT = 0, limT→0 βT = var (πt) /var (ψIIt + πt), and (30).

Proof of Proposition 7 This proof is in the limit of σI → 0, It = 0, κ → 0, and ∆t → 0.

Eq. 40 gives: yt (T ) = a+ b (T ) πt, with b (T ) =
1−e−ψIT

ψI
− 1−e−ψJT

ψI

(ψJ−ψI)T
= T

2
− ψI+ψJ

6
T 2 +O (T 3). Hence:

yt+∆t (T −∆t)− yt (T )

∆t
= Et [dyt (T )] /dt− ∂yt (T ) /∂T = (−φJb (T )− b′ (T ))πt
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As (yt (T )− rt) /T = b (T ) πt/T , −β = φJb(T )+b′(T )
b(T )/T

, i.e.

β =
−Tb′ (T )

b (T )
− φJT, (43)

so that β = −1 − 2ψj−ψI
3

T + O (T 2) when T → 0 and β = −ψJT + o (T ) when T → ∞. The
reasoning in the text of the paper comes from the fact that, for small T , Et [dyt (T )] /dt = −φJT

2
πt,

−∂yt (T ) /∂T =
(
−1

2
+O (T )

)
πt, so

yt+∆t(T−∆t)−yt(T )

∆t
' −∂yt(T )

∂T
.

Proof of Proposition 10 With Qt+1/Qt = 1 − It, MtDit

(
1, Ĥit

)
and MtQt

(
1, Ît

1−I∗ ,
πt

1−I∗

)
are both LG processes, with the same moments as in the disaster economy.
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