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We define generalized Pareto curves as the curve of inverted Pareto coefficients b(p), where b(p) is the ratio 
between average income above rank p and the p- th quantile Q(p) (i.e., b (p ) = � [X |X > Q (p ) ]∕Q (p ) ). 
We use them to characterize income distributions. We develop a method to flexibly recover a continu-
ous distribution based on tabulated income data as is generally available from tax authorities, which 
produces smooth and realistic shapes of generalized Pareto curves. Using detailed tabulations from 
quasi- exhaustive tax data, we show the precision of our method. It gives better results than the most 
commonly used interpolation techniques for the top half  of the distribution.
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1. inTroducTion

It has long been known that the upper tail of the distribution of income and 
wealth can be approximated by a Pareto distribution, or power law (Pareto, 1896). 
This fact has been widely used in the empirical literature on inequality to over-
come certain limitations of the data. In particular, Pareto interpolation methods 
have been used by Kuznets (1953), Atkinson and Harrison (1978), Piketty (2001, 
2003), Piketty and Saez (2003) and the subsequent literature exploiting histori-
cal tax tabulations to construct long- run series on income and wealth inequality. 
The widespread applicability of this functional form is often justified using mod-
els where income and wealth evolve according to random multiplicative shocks 
(Champernowne, 1953; Simon, 1955; Wold and Whittle, 1957). Recent contribu-
tions have shown how such models can account for both the levels and the changes 
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in inequality (Nirei, 2009; Benhabib et al., 2011; Piketty and Zucman, 2015; Jones 
and Kim, 2018; Jones, 2015; Benhabib and Bisin, 2016; Gabaix et al., 2016).

However, although the Pareto approximation is acceptable for some purposes, 
it is not entirely correct, not even at the top. As a result, empirical methods that 
strictly rely on it can miss important features of the distribution (Atkinson, 2017; 
Jenkins, 2017). If  we want to better exploit the data at our disposal, and also to bet-
ter understand the economic mechanisms giving rise to the observed distributions 
of income and wealth, we need to move beyond standard Pareto distributions.

In this article, we develop the flexible notion of generalized Pareto curve to 
characterize and estimate income and wealth distributions. A generalized Pareto 
curve is defined as the curve of inverted Pareto coefficients b(p), where 0 ≤ p < 1 
is the (normalized) rank, and b(p) is the ratio between average income or wealth 
above rank p and the p- th quantile Q(p) (i.e., b(p ) = � [X |X > Q (p ) ]∕Q (p )). If  
the tail follows a standard Pareto distribution, the coefficient b(p) is constant. For 
example, if  b(p) = 2 at the top of the wealth distribution, then the average wealth of 
individuals above €1 million is €2 million, the average wealth of individuals above 
€10 million is €20 million, and so on. In practice, we find that b(p) does vary within 
the upper tail of observed income and wealth distributions (including within the 
top 10 percent or the top 1 percent), but that the curves b(p) are relatively similar 
(typically U- shaped).

Generalized Pareto curves are a particularly useful tool to describe distribu-
tions with a power- law tail. Looking at them reveals significant deviations of real 
distribution of income and wealth from strict Pareto behavior, even at the very top. 
We exploit this framework to develop an improved methodological approach for 
the estimation of income and wealth distributions using tax data, which is often 
available solely in the form of tabulations with a finite number of inverted Pareto 
coefficients b1,…, bK and thresholds q1,…, qK observed for ranks p1,…, pK. We 
call it generalized Pareto interpolation. Existing methods typically rely on diverse 
Paretian assumptions (or even less realistic ones) that, by construction, blur or 
even erase deviations from the standard Pareto distribution. We show that con-
sidering how the Pareto coefficient b(p) varies can dramatically improve the way 
we produce statistics on income and wealth inequality, especially for the top and 
with few data points. Using quasi- exhaustive (i.e., including the full population, 
at least at the top) annual micro files of income tax returns available in the US 
and France over the 1962– 2014 period (a time of rapid and large transformation 
of the distribution of income, particularly in the US), we show the precision of 
the method. That is, based on the information for a small number of ranks (e.g., 
p1 = 10 percent, p2 = 50 percent, p3 = 90 percent, and p4 = 99 percent), we can 
recover the top half  of the distribution with remarkable precision. The method 
also gives reasonably good results for the bottom (between p = 10 percent and p = 
50 percent) and generates a consistent and smooth distribution with a continuous 
density. In fact, we find that the precision of the method is such that it is often pref-
erable to use tabulations based on exhaustive data rather than microdata from a 
non- exhaustive subsample of the population, even for subsamples considered very 
large by statistical standards. For example, a subsample of 100000 observations 
can typically lead to a mean relative error of about 3 percent on the top 5 percent 
share, whereas a tabulation based on exhaustive data that includes the percentile 
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ranks p = 10 percent, 50 percent, 90 percent, and 99 percent gives a mean relative 
error of less than 0.5 percent. For the top 0.1 percent share, the same error can 
reach 20 percent with the same subsample, whereas the same tabulation yields an 
error below 4 percent.

We believe that the methodology developed in this article can help research-
ers avoid excessive reliance on restrictive assumptions when using tabulated data, 
which is still commonplace in some areas of research. To that end, we developed 
an R (R Core Team, 2016) package, named gpinter, that implements the meth-
ods described in this article and make them easily available to researchers. We also 
provide a web interface built on top of this package (Chang et al., 2017), available 
at http://wid.world/ gpinter, to estimate and manipulate distributions of income 
and wealth on the basis of simple tabulated data files (such as those provided by 
tax administrations and statistical institutes) and generalized Pareto interpolation 
methods. These tools have successfully been used to estimate series of the income 
distribution in the Middle- East (Alvaredo et  al., 2019), Poland (Bukowski and 
Novokmet, 2017), Brazil (Morgan, 2017), India (Chancel and Piketty, 2019), Russia 
(Novokmet et al., 2018), Ivory Coast (Czajka, 2017), China (Piketty et al., 2019), 
France (Garbinti et al., 2018), and India (Chancel and Piketty, 2019). Furthermore, 
we plan to use them to keep expanding the World Inequality Database (wid.world). 
However, the method is not limited to the production of specific inequality statis-
tics: it outputs a continuous and consistent distribution which, depending on what 
is most practical, can be characterized by its density, its cumulative distribution 
function, its quantile function, or its Lorenz curve. As such, it offers readily avail-
able tools for using tabulated data in a variety of contexts (see, e.g., Bierbrauer 
et al. (2021) in the field of optimal taxation).

The rest of the article is organized as follows. In Section 2, we provide the for-
mal definition and the key properties of generalized Pareto curves b(p). In Section 
3, we present our generalized Pareto interpolation method, which is based on a 
transformation of b(p). In Section 4, we test its precision and compare it to other 
interpolation methods using individual income data for the US and France cover-
ing the 1962– 2014 period. In Section 5, we consider extensions of the framework 
that allows us to further discuss the level of precision that we can expect from our 
method in comparison to others.

2. Generalized PareTo curves

2.1. Definition and Properties

We characterize the distribution of income or wealth by a random variable 
X with cumulative distribution function (CDF) F. We assume that X is integra-
ble (i.e., � [ |X | ] < +∞) and that F is differentiable over a domain D = [a, +∞[ 
or D = ℝ. We denote f the probability density function (PDF) and Q the quan-
tile function. Our definition of the inverted Pareto coefficient follows the one first 
given by Fournier (2015).

Definition 1 (Inverted Pareto coefficient)For any income level x > 0, the 
inverted Pareto coefficient is b∗ (x) = � [X |X > x ], or: 

http://wid.world/gpinter
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 We can express it as a function of the fractile p with p = F(x) and b(p ) = b∗ (x ): 

If  X follows a Pareto distribution with coefficient α and lower bound x, so that 
F (x) = 1 − (x∕x )�, then b(p) = α/(α−1) is constant (a property also known as van 
der Wijk’s (1939) law), and the top 100 × (1−p) percent share is an increasing func-
tion of b and is equal to (1 − p)1∕b. Otherwise, b(p) will vary. We can view the 
inverted Pareto coefficient as an indicator of the tail’s fatness, or similarly an indi-
cator inequality at the top. It also naturally appears in some economic contexts, 
such as optimal taxation formulas (Saez, 2001). We favor looking at them as a 
function of the fractile p rather than the income x, because it avoids differences 
because of scaling, and make them more easily comparable over time and between 
countries. We call generalized Pareto curve the function b:p↦b(p) defined over [p, 1 [ 
with p = F (x).1 (Where the notation [x,y[ means the interval containing all real 
numbers t such that x ≤ t < y.)

Proposition 1 If  X satisfies the properties stated above, then b is differentiable and 
for all p ≤ p ∈< 1, 1 − b(p ) + (1 − p )b � (p ) ≤ 0 and b(p) ≥ 1.

The proof of that proposition— as well as all the others in this section— is avail-
able in Section A.3 in appendix. The definition of b(p) directly implies b(p) ≥ 1. The 
fact that the quantile function is increasing implies 1 − b(p ) + (1 − p )b � (p ) ≤ 0. 
Conversely, for 0 ≤ p < 1 and x > 0, any function b: [p, 1 [ → ℝ that satisfies prop-
erty 1 uniquely defines the top (1 − p) fractiles of a distribution with p = F (x).

Proposition 2 If  X is defined for x > x by F (x) = p and the generalized Pareto 
curve b: [p, 1 [ → ℝ, then for p ≥ p, the p- th quantile is: 

The coefficient defined in 1 is only one of several “local” notion Pareto coef-
ficients that may be defined using a similar logic. In Appendix A, we discuss other 
properties of generalized Pareto curves, how they relate to the theory of power 
laws, and the economics models of the distribution of income and wealth.

b∗ (x ) =
1

(1 − F (x ) )x ∫ +∞
x
zf (z ) dz.

b(p ) =
1

(1 − p)Q(p ) ∫ 1
p
Q(u ) du.

1We solely consider inverted Pareto coefficient above a strictly positive threshold x > 0, because 
they have a singularity at zero and a less clear meaning below that. The threshold must thus correspond 
to a percentile above the share of people with negative or zero income, typically at least p = 10 
percent.

Q (p ) = x
(1 − p)b(p )

(1 − p)b(p )
exp

(

− ∫ p

p

1

(1 − u)b(u )
du

)

.
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2.2. Pareto Curves in Practice

We now consider a sample (X1,…,Xn ) of  n iid. realizations of X. We write X(r) 
the r- th order statistic (i.e., the r- th largest value). Let x↦⌊x⌋ denote the floor func-
tion. The natural estimator of the inverted Pareto coefficient may be written:2 

Figure 1 depicts the empirical Pareto curves for the distribution of 
Distributional National Accounts (DINA) income in France and in the US in 1980 
and 2010, based on quasi- exhaustive income tax data. The curve has changed a lot 
more in the US than in France, which reflects the well- known increase in inequality 
that the US has experienced over the period. In 2010, the inverted Pareto coeffi-
cients are much higher in the US than in France, which means that the tail is fatter, 
and the income distribution more unequal.

In both countries, b(p) does appear to converge toward a value strictly above 
1, which confirms that the distribution of income is an asymptotic power law. 
However, the coefficients vary significantly, even within the top decile group, so 
that the strict Pareto assumption will miss important patterns in the distribution. 
Because b(p) rises within the top 10 percent of the distribution, inequality in both 
France and the US is in fact even more skewed toward the very top than what the 
standard Pareto model suggests, and the amount by which inverted Pareto coeffi-
cients vary is not negligible. For the US, in 2010, at its lowest point (near p = 80 per-
cent, b(p) is around 2.4. If  it were a strict Pareto distribution, it would correspond 
to the top 1 percent owning 15 percent of the income. However, the asymptotic 
value is closer to 3.3, which would mean a top 1 percent share of 25 percent.

2Note that for (n−1)/n ≤ p < 1, we have b̂n (p ) = 1 regardless of the distribution of X. This speaks 
to the impossibility of directly estimating asymptotic quantities from a finite sample. However, with 
fiscal data, for which samples are extremely large, we need not be concerned by the problem until ex-
tremely narrow top income groups.

b̂n (p ) =
1

(n − ⌊np⌋ )X(⌊np⌋+1)

n�

k= ⌊ np ⌋+ 1

X(k).

Figure 1. Generalized Pareto Curves of DINA Income 
Sources: Piketty et al. (2018) (United States), Garbinti et al. (2018) (France).
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Although empirical evidence leads us to reject the strict Pareto assumption, 
we can notice that the generalized Pareto curves are U- shaped. We observe that 
fact for all countries and time periods for which we have sufficient data.

3. Generalized PareTo inTerPolaTion

The tabulations of income or wealth such as those provided by tax 
authorities and national statistical institutes typically take the form of K frac-
tiles 0 ≤ p1 <⋯ < pK < 1 of  the population, alongside their income quantiles 
q1 <⋯ < qK and the income share of each bracket [pk, pk+1 ]. That last element 
may take diverse forms (top income shares, bottom income shares, average income 
in the brackets, average income above the bracket, etc.), all of which are just dif-
ferent ways of presenting the same information. The interpolation method that we 
now present uses the way inverted Pareto coefficients vary smoothly to estimate 
a complete distribution based solely on that information: we call it generalized 
Pareto interpolation. Note that we assume that we know both the thresholds and 
the shares of each bracket. In some cases, only one of these is available. Although 
a similar method could be extended to these settings (especially when we know the 
shares), we leave this for future research.

The first goal of the method is to be as flexible as we are allowed to be: i.e., we 
do not force the estimated distribution into a predetermined shape. We stress that 
a fully nonparametric approach is not possible here because of the lack of a suit-
able asymptotic framework.(The number of brackets would have to go to infinity, 
which is not a good approximation of real- life settings.) But we can still get a lot 
more flexibility than a strict Pareto model by introducing a large enough number 
of parameters. The second goal is to generate a solution with desirable proper-
ties. Indeed the interpolation problem is technically ill- posed as it has an infinite 
number of candidate solutions. Our method overcomes that issue by looking for a 
“regular” curve of Pareto coefficients.

Our method combines three components, which solve different aspects of the 
problem. First, we interpolate the generalized Pareto curve in a way that maximizes 
its smoothness while satisfying two sets of constraints: those related to the quan-
tiles and those related to the means. Second, we enforce if  necessary the constraint 
that the quantile function is increasing by finding an admissible solution that is as 
close as possible to the original one. Finally, we deal separately with last bracket, 
for which the interpolation is not possible because of the lack of an endpoint in 
the interval.

For the exposition of the method, we will set aside sampling- related issues and 
treat empirical quantities as equivalent to their theoretical counterpart. However, 
we come back to that issue in Section 5.

3.1. Interpolation of the Pareto Coefficients

The tabulations let us compute b(p1 ) ,…, b (pK ) directly. However, interpolat-
ing the curve b(p) based solely on those points offers no guarantee that the result-
ing function will be consistent with the input data on quantiles. To that end, the 
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interpolation needs to be constrained. To do so in a computationally efficient and 
analytically tractable way, we start from the following function: 

 which is essentially a transform of the Lorenz curve L(p): 

with p = 1 − e−x. The value of φ at each point xk = − log(1 − pk ) can therefore be 
estimated directly from the data in the tabulation. Moreover: 

which means that the generalized Pareto coefficient b(p) is equal to 1∕� � (x) . 
Therefore, the value of � ′ (xk ) for k ∈ {1,…,K} is also given by the tabulation.

Because of the bijection between (p,b(p),Q(p)) and (x,� (x) ,� ′ (x ) ), the 
problem of interpolating b(p) in a way that is consistent with Q(p) is identical to 
that of interpolating the function φ, whose value and first derivative are known at 
each point xk.

We assume that we know a set of points { (xk, yk, sk ) , 1 ≤ k ≤ K} that cor-
respond to the values of { (xk,� (xk ) ,�

� (xk ) ) , 1 ≤ k ≤ K}, and we seek a suffi-
ciently smooth function �̂ such that: 

By sufficiently smooth, we mean that φ should be at least twice continuously dif-
ferentiable. That requirement is necessary for the estimated Pareto curve (and by 
extension the quantile function) to be once continuously differentiable, or, put dif-
ferently, not to exhibit any asperity at the fractiles included in the tabulation.

To get an appropriate function, we rely on quintic splines— i.e., piecewise 
polynomials of degree 5 defined over each bracket. The quintic spline is fully deter-
mined by three quantities at each boundary: the value of the polynomial and its 
first and second derivatives. The value (xk) and the first derivative (sk) are already 
fixed by the problem. The value of the second derivative (ak) is a free parameter to 
be set. To pick appropriate values for a1,…, ak, we follow the usual approach of 
imposing additional regularity conditions at the boundaries. We have a system of 
K−2 equations, linear in a1,…, ak, defined by: 

 Two additional equations are required for that system to have a unique solution. 
One solution is to use predetermined values for a1 and aK (known as the “clamped 
spline”). Another, known as the “natural spline,” sets: 

Both approaches are equivalent to the minimization of an irregularity criterion 
(e.g., Lyche and M⊘rken, 2002): 

∀x ≥ 0 � (x) = − log � 1
1− e− xQ (p ) dp,

� (x) = − log( (1 − L (p ) )� [X ] ) ,

∀x ≥ 0 � � (x ) = e� (x ) −xQ (1 − e−x ) = 1∕b (1 − e−x ) ,

(1) ∀k ∈ {1,…,K} �̂(xk ) = �(xk ) = yk �̂
�
(xk ) = � � (xk ) = sk.

∀k ∈ {2,…,K − 1} �̂
�

k−1
(xk ) = �̂

�

k
(xk ) .

�̂
�

1
(x1 ) = 0 and �̂

�

K−1
(xK ) = 0.
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subject to fixed values for a1 and aK (clamped spline) or not (natural spline).
We adopt a hybrid approach, in which a1 is determined through �̂�

1
(x1 ) = 0, 

but where aK is estimated separately using the two- point finite difference: 

Because the function is close to linear near xK, it yields results that are generally 
similar to traditional natural splines. However, that estimation of � ′′ (xK ) is also 
more robust, so we get more satisfactory results when the data exhibit potentially 
troublesome features.

Finding the actual value of each parameter amounts to solving a linear system 
of equations. We provide the detailed algebraic expressions in Appendix C.

3.2. Enforcing Admissibility Constraints

The interpolation method presented above does not guarantee that the esti-
mated generalized Pareto curve will satisfy property 1— or equivalently that the 
quantile will be an increasing function. In most situations that constraint need not 
be enforced, because it is not binding: the estimated function spontaneously satis-
fies it. However, it may occasionally not be the case, so that estimates of quantiles 
of averages at different points of the distribution may be mutually inconsistent. 
To solve that problem, we present an ex post adjustment procedure that constrains 
appropriately the interpolated function.

We can express the quantile as a function of φ: 

Therefore: 

Therefore, the estimated quantile function is increasing if  and only if: 

The polynomial Φ (of degree 8) needs to be positive. There are no simple necessary 
and sufficient conditions on the parameters of the spline that can ensure such a 
constraint. However, it is possible to derive conditions that are only sufficient, but 
general enough to be used in practice. We use conditions based on the Bernstein 
representation of polynomials, as derived by Cargo and Shisha (1966):

Theorem 1 (Cargo and Shisha (1966))Let P (x) = c0 + c1x1 +⋯ + cnx
n be a 

polynomial of degree n ≥ 0 with real coefficients. Then: 

where: 

min
a1,…,aK ∫

xk
x1
{ �̂

�
(x) }2 dx

aK =
sK − sK−1

xK − xK−1
.

∀x ≥ 0 Q(1 − e−x ) = ex−� (x )� � (x ) .

∀x ≥ 0 Q � (1 − e−x ) = e2x−� (x ) [� �� (x ) + � � (x ) (1 − � � (x ) ) ] .

(2) ∀x ≥ 0 Φ (x ) = �̂
��
(x) + �̂

�
(x) (1 − �̂

�
(x) ) ≥ 0.

∀x ∈ [0, 1] min
0≤ i≤nbi ≤ P (x ) ≤ max

0≤ i≤nbi,
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To ensure that the quantile is increasing over [xk, xk+1 ] (1 ≤ k < K), it is there-
fore enough to enforce the constraint that bi ≥ 0 for all 0 ≤ i ≤ 8, where bi is defined 
as in Theorem 1 with respect to the polynomial x↦ Φ (xk + x(xk+1 − xk ) ). Those 
nine conditions are all explicit quadratic forms in (yk, yk+1, sk, sk+1, ak, ak+1 ), so we 
can compute them and their derivatives easily.

To proceed, we start from the unconstrained estimate from the previous 
section. We set ak = −sk (1 − sk ) for each 1 ≤ k ≤ K if  ak + sk (1 − sk ) < 0, which 
ensures that condition (2) is satisfied at least at the interpolation points. Then, over 
each segment [xk, xk+1 ], we check whether the condition Φ(x) ≥ 0 is satisfied for 
x ∈ [xk, xk+1 ] using the Theorem 1, or more directly by calculating the values of Φ 
over a tight enough grid of [xk, xk+1 ]. If  so, we move on to the next segment. If  not, 
we consider L ≥ 1 additional points (x∗

1
,…, x∗

L
) such that xk < x∗

1
<⋯ < x∗

L
< xk+1, 

and we redefine the function �̂k over [xk, xk+1 ] as: 

where the �∗
�
 (0 ≤ ℓ ≤ L) are quintic splines such that for all 1 ≤ ℓ < L: 

and y∗
�
, s∗

�
, a∗

�
(1 ≤ � ≤ L ) are parameters to be adjusted. In simpler terms, we 

divided the original spline into several smaller ones, thus creating additional 
parameters that can be adjusted to enforce the constraint. We set the parameters 
y∗
�
, s∗

�
, a∗

�
(1 ≤ � ≤ L ) by minimizing the L2 norm between the constrained and 

the unconstrained estimate, subject to the 9 × (L+1) conditions that b�
i
≥ 0 for all 

0 ≤ i ≤ 8 and 0 ≤ ℓ ≤ L: 

where the b�
i
 are defined as in Theorem 1 for each spline ℓ. The objective function 

and the constraints all have explicit analytical expressions, and so does their 

bi =

n∑

r= 0

cr

(
i

r

)/(
n

r

)

.

�̃�k(x) =

⎧
⎪
⎨
⎪
⎩

𝜑∗
0
(x) if xk≤x<x∗1

𝜑∗
�
(x) if x

∗
�
≤x<x∗

�+1

𝜑∗
L
(x) if x

∗
L
≤x<xk+1,

�∗
0
(xk) =yk (�∗

0
)�(xk) = sk (�∗

0
)��(xk) =ak

�∗
L
(xk+1) =yk+1 (�

∗
L
)�(xk+1) = sk+1 (�

∗
L
)��(xk+1) =ak+1

�∗
�
(x∗

�
) =y∗

�
(�∗

�
)�(x∗

�
) = s∗

�
(�∗

�
)��(x∗

�
) =a∗

�

�∗
�
(x∗

�+1
) =y∗

�+1
(�∗

�
)�(x∗

�+1
) = s∗

�+1
(�∗

�
)��(x∗

�+1
) =a∗

�+1

min
y∗
�
, s∗

�
, a∗

�

1≤�≤L
�

xk+1
xk

{ �̂k (x) − �̃k (x) }
2 dx st. b�

i
≥ 0 (0 ≤ i ≤ 8 and 0 ≤ � ≤ L) ,
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gradients. We solve the problem with standard numerical methods for nonlinear 
constrained optimization.3,4

3.3. Extrapolation in the Last Bracket

The interpolation procedure only applies to fractiles between p1 and pK, but 
we generally also want an estimate of the distribution outside of this range, espe-
cially for p > pK.5 Because there is no direct estimate of the asymptotic Pareto 
coefficient limp→1b(p ), it is not possible to interpolate as we did for the rest of the 
distribution: we need to extrapolate it.

The extrapolation in the last bracket should satisfy the constraints imposed by 
the tabulation (on the quantile and the mean). In accordance with the principle of 
a regular Pareto curve, it should also ensure derivability of the quantile function 
at the boundary. To do so, we use the information contained in the four values 
(xK, yK, sK, aK ) of  the interpolation function at the last point. Therefore, we need 
an appropriate functional form for the last bracket with enough degrees of free-
dom to satisfy all the constraints. To that end, we turn to the generalized Pareto 
distribution.

Definition 1 (Generalized Pareto distribution)Let � ∈ ℝ, σ  ∈  ]0,+∞[, and 
� ∈ ℝ. X follows a generalized Pareto distribution if  for all x ≥ μ (ξ ≥ 0) or μ ≤ x ≤ 
μ−σ/ξ (ξ < 0): 

μ is called the location parameter, σ the scale parameter, and ξ the shape 
parameter.

The generalized Pareto distribution is a fairly general family that includes as 
special cases the strict Pareto distribution (ξ > 0 and μ = σ/ξ), the (shifted) expo-
nential distribution (ξ = 0), and the uniform distribution (ξ = −1). It was popu-
larized as a model of the tail of other distributions in extreme value theory by 
Pickands (1975) and Balkema and de Haan (1974), who showed that for a large 
class of distributions, the tail converges toward a generalized Pareto distribution.

If  X∼GPD(μ,σ,ξ), the generalized Pareto curve of X is: 

 We will focus on cases where 0 < ξ < 1, so that the distribution is a power law 
at the limit (ξ > 0), but its mean remains finite (ξ < 1). When ξμ = σ, the generalized 

3For example, standard sequential quadratic programming (Kraft, 1994) or augmented Lagrangian 
methods (Conn et al., 1991; Birgin and Martìnez, 2008). See NLopt for details and open source imple-
mentations of such algorithms: http://ab- initio.mit.edu/wiki/index.php/NLopt_Algor ithms.

4Adding one point at the middle of the interval is usually enough to enforce the constraint, but 
more points may be added if  convergence fails.

5It is always possible to set p1 = 0 if  the distribution has a finite lower bound.

ℙ{X ≤ x} =GPD�,�,� (x) =

⎧
⎪
⎨
⎪
⎩

1−
�

1+�
x−�

�

�−1∕�

for �≠0

1−e−(x−�)∕� for �=0.

b (p ) = 1 +
��

(1 − � ) [� + (1 − p) � (�� − � ) ]
.

http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms
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Pareto curve is constant, and the distribution is a strict power law with Pareto coef-
ficient b = 1/(1−ξ). That value also corresponds in all cases to the asymptotic coef-
ficient limp→1b(p ) = 1∕ (1 − � ). However, there are several ways for the distribution 
to converge toward a power law, depending on the sign of μξ−σ. When μξ−σ > 0, 
b(p) converges from below, increasing as p→1, so that the distribution gets more 
unequal in higher brackets. Conversely, when μξ−σ < 0, b(p) converges from above, 
and decreases as p→1, so that the distribution is more equal in higher brackets.

The generalized Pareto distribution can match a wide diversity of profiles for 
the behavior of b(p), while offering the right number of degrees of freedom for our 
purpose. It has been shown to provide a better fit to the top income distribution 
than the standard Pareto distribution (Jenkins, 2017; Charpentier and Flachaire, 
2019). In the context of our method, however, the value of its parameters is not of 
direct interest. In particular, the setting does not allow for a particularly accurate 
estimation of the asymptotic Pareto coefficient, and we do not focus on providing 
such an estimate. However, we can use it to find a reasonable functional form that 
makes an efficient use of the information at our disposal on the mean, the quantile, 
and its derivative at the last threshold. The generalized Pareto distribution offers a 
way to extrapolate the coefficients b(p) in a way that is consistent with all the input 
data and preserves the regularity of the Pareto curve.

We assume that, for p > pK, the distribution follows a generalized Pareto dis-
tribution with parameters (μ,σ,ξ), which means that for q > qK the CDF is: 

For the CDF to remain continuous and differentiable, we need � = qK and 
� = (1 − pK )∕F

� (qK ), where F ′ (qK ) comes from the interpolation method of 
Section 3.1. Finally, for the Pareto curve to remain continuous, we need b(pK ) 
equal to 1+σ/(μ(1−ξ)), which gives the value of ξ. That is, if  we set the parameters 
(μ,σ,ξ) equal to: 

then the resulting distribution will have a continuously differentiable quantile func-
tion and will match the quantiles and the means in the tabulation.

4. TesTs usinG income daTa From The us and France, 1962– 2014

We test the quality of our interpolation method using data for the US (1962, 
1954, and 1966– 2014) and France (1994– 2012). They correspond to cases for which 
we have detailed tabulations of the distribution of yearly pretax income based on 
quasi- exhaustive individual tax data (Garbinti et al., 2018; Piketty et al., 2018), so 
that we can know quantiles or shares exactly.

We call “DINA income” the income concept that we use as our benchmark, 
as it was defined and calculated in the context of the DINA project (Alvaredo 

F (q ) = pK + (1 − pK )GPD�,�,� (q ) .

�= sKe
xK−yK

�= (1−pK)(aK+sK(1−sK))e
2xK−yK

�=1−
(1−pK)�

e−yK − (1−pK)�
,
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et al., 2020). The income that we consider includes all labor and capital income 
received by individuals. It also includes pension and unemployment insurance ben-
efits and removes the corresponding social contributions. On the contrary, it does 
not remove income taxes and does not include other benefits (classified as social 
assistance benefits, rather than social insurance). These estimates are primarily 
based on administrative tax data and also use surveys to account for non- filers 
and tax- exempt income. See Piketty et al. (2018) and Garbinti et al. (2018) for a 
detailed definition and methodology. The inclusion of tax- exempt income is the 
main difference with the concept of “fiscal income” that was originally used in the 
top income literature (Atkinson and Piketty, 2007). It avoids having an income 
concept that is overly dependent on the local legislation of countries, making esti-
mates more comparable. We also report comparisons using fiscal income directly 
in Appendix D. The statistical unit in both cases in the individual adult (age 20 or 
more), and income is split equally between adult household members. We compare 
the size of the error in generalized Pareto interpolation with alternatives most com-
monly found in the literature.

4.1. Overview of Other Common Interpolation Methods

We compare our interpolation method with the three main interpolation 
methods used in the top income literature (Atkinson, 2007). We designed our 
method primarily to improve the quality of estimates for the top of the distribu-
tion obtained from tax data, which explains our focus on these methods, and on 
the top half  of the distribution. However, we also report results for the middle and 
the bottom of the distributions, which show that our method also works relatively 
well there.

There is a wide range of alternative interpolation approaches that are suited 
to various contexts. Some, like Jargowsky and Wheeler (2018), focus on cases 
where only the bracket thresholds and population share are available— while we 
consider cases in which the mean income in each bracket is also known. Other 
approaches seek to directly estimate a parametric model for the whole distribution: 
e.g., Villaseñor and Arnold (1989) and Kakwani and Podder (1976) fit a paramet-
ric model for Lorenz curves, and Chotikapanich et al. (2012) use the tabulation as 
moment conditions to fit a Beta II distribution. Our approach is less parametric 
and seeks to reproduce the statistics provided in the tabulation in input perfectly.

In Appendix D, we extend our comparison to some of these methods: one 
additional method based on the Pareto distribution method suggested by Cowell 
(2000, p. 158) and two methods that are fully parametric (Kakwani and Podder, 
1976; Villaseñor and Arnold, 1989). The method of Cowell (2000, p. 158) is not 
widely used, in part because it does not lead to closed- form analytical expressions. 
The methods of Villaseñor and Arnold (1989) and Kakwani and Podder (1976) 
have been notably used by the World Bank in its PovcalNet database, but are less 
directly comparable to ours because they do not focus on the top of the distribu-
tion, and indeed perform relatively poorly in that part of the distribution. Overall, 
the generalized Pareto interpolation also compares quite favorably to them, though 
its primary strength is for the top of the distribution.
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Method 1: Constant Pareto coefficient

That method was used by Piketty (2001) and Piketty and Saez (2003), and 
relies on the property that, for a Pareto distribution, the inverted Pareto coeffi-
cient b(p) remains constant. We set b(p ) = b = � [X |X > qk ]∕qk for all p ≥ pk. 

The p- th quantile becomes q = qk

(
1−p

1−pk

)−1∕�

 with α = b/(b−1). By definition, 

� [X |X > q ] = bq, which gives the p- th top average and top share.

Method 2: log- linear interpolation

The log- linear interpolation method was introduced by Pareto (1896), Kuznets 
(1953), and Feenberg and Poterba (1993). It uses solely threshold information and 
relies on the property of Pareto distributions that  log (1−F(x)) =  log (c)−α log (x). 
We assume that this relation holds exactly within the bracket [pk, pk+1 ], and set 

�k = −
log ( ( 1−pk+1 )∕ ( 1−pk ) )

log ( qk+1∕qk )
. The value of the p- th quantile is again q = qk

(
1−p

1−pk

)−1∕�k
 , 

and the top averages and top shares can be obtained by integration of the quantile 
function. For p > pK, we extrapolate using the value �K of  the Pareto coefficient in 
the last bracket.

Method 3: mean- split histogram

The mean- split histogram uses information on both the means and the thresh-
olds, but uses a very simple functional form, so that the solution can be expressed 
analytically. Inside the bracket [qk, qk+1 ], the density takes two values: 

 where �k is the mean inside the bracket. This method is a special case of the split- 
histogram (Cowell and Mehta, 1982), with the breakpoint parameter inside each 
bracket set equal to the mean, which is the most common choice in the literature.6 
To meet the requirement on the mean and the thresholds, we set: 

 The mean- split histogram does not apply beyond the last threshold of the 
tabulation.

Comparison

Methods 1 and 2 make a fairly inefficient use of the information included in 
the original tabulation: method 1 discards the data on quantiles and averages at the 

f(x ) =

{
f−
k

if qk≤x<𝜇k
f+
k
if 𝜇k≤x<qk+1,

6That is, as noted by (Cowell and Mehta, 1982), the breakpoint of the interval [qk, qk+1 ] could be 
different from �k, but not all values between qk and qk+1 will work if  we want to make sure that f−

k
> 0 

and f+
k

> 0. The breakpoint q ∗ must be between qk and 2�k − qk if  𝜇k < (qk + qk+1 )∕2, and between 
2�k − qk+1 and qk+1 otherwise. Choosing q ∗ = �k ensures that the condition is always satisfied.

f−
k
=

(pk+1 − pk ) (qk+1 − �k )

(qk+1 − qk ) (�k − qk )
and f+

k
=

(pk+1 − pk ) (�k − qk )

(qk+1 − qk ) (qk+1 − �k )
.
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higher end of the bracket, whereas method 2 discards the information on averages. 
As a consequence, none of these methods can guarantee that the output will be 
consistent with the input. Method 3 does offer such a guarantee, but with a fairly 
unrealistic functional form: the density of the resulting distribution is piecewise 
uniform, exhibiting discontinuities at arbitrary points, as emphasized by Cowell 
and Mehta (1982).

Our generalized Pareto interpolation method makes use of all the information 
in the tabulation, so that its output is guaranteed to be consistent with its input. 
Moreover, contrary to all other methods, it leads a continuous density, hence a 
smooth quantile and a smooth Pareto curve. None of the other methods can sat-
isfy this requirement, and their output exhibits stark irregularities at the beginning 
and the end of the brackets in the tabulation in input.

Application to France and the US

Using the individual income tax data, we compute our own tabulations in 
each year. We include four percentiles in the tabulation: p1 = 0.1, p2 = 0.5, p3 = 0.9 , 
and p4 = 0.99.

We interpolate each of those tabulations with the three methods above, labeled 
“M1,” “M2,” and “M3” in what follows. We also interpolate them with our new 
generalized Pareto interpolation approach (labeled “M0”). We compare the values 
that we get with each method for the top shares and the quantiles at percentiles 
30 percent, 75 percent, and 95 percent with the value that we get directly from the 
individual data. (We divide all quantiles by the average to get rid of scaling effects 
because of inflation and average income growth.) We report the mean relative error 
in Table 1: 

 where y is the quantity of interest (income threshold or top share), and ŷ is its 
estimate using one of the interpolation methods.

The two standard Pareto interpolation methods (M1 and M2) are the ones 
that perform worst. M1 is better at estimating shares, whereas M2 is somewhat 
better at estimating quantiles. That shows the importance not to dismiss any infor-
mation included in the tabulation, as exhibited by the good performance of the 
mean- split histogram (M3), particularly at the bottom of the distribution.

Our generalized Pareto interpolation method vastly outperforms the standard 
Pareto interpolation methods (M1 and M2). It is also better than the mean- split 
histogram (M3), except in the bottom of the distribution where both methods 
work well (but standard Pareto methods M1 and M2 fail badly).

Figure 2 shows how the use of different interpolation methods affects the esti-
mation of the top 25 percent share and associated income threshold. Although all 
methods roughly respect the overall trend, they can miss the level by a significant 
margin. The generalized Pareto interpolation estimates the threshold much better 
than M1, M2, or M3.

MRE =
1

number of years

last year∑

t= first year

|
|
|
|
|

ŷt − yt

yt

|
|
|
|
|
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For the estimation of the top 25 percent share, M3 performs fairly well, unlike 
M1 and M2. To get a more detailed view, we therefore focus on a more recent 
period (2000– 2014) and display only M0 and M3, as in Figure 3. We can see that 
M3 has, in that case, a tendency to overestimate the top 25 percent by a small yet 

TABLE 1  
mean relaTive error For diFFerenT inTerPolaTion meThods

Mean Relative Gap Between Estimated and 
Observed Values

M0 M1 M2 M3

US (1962– 2014) Top 80% share 0.044% 0.54% 7.2% 0.03%
(ref.) (×12) (×164) (×0.7)

Top 70% share 0.059% 2.3% 6.4% 0.054%
(ref.) (×38) (×109) (×0.92)

Top 25% share 0.093% 3% 3.8% 0.54%
(ref.) (×32) (×41) (×5.8)

Top 5% share 0.059% 0.84% 4.4% 0.83%
(ref.) (×14) (×76) (×14)

P20/average 1.4% 39% 25% 2.1%
(ref.) (×28) (×18) (×1.5)

P30/average 0.43% 55% 29% 1.4%
(ref.) (×126) (×67) (×3.3)

P75/average 0.32% 11% 9.9% 5.8%
(ref.) (×35) (×31) (×18)

P95/average 0.3% 4.4% 3.6% 1.3%
(ref.) (×15) (×12) (×4.5)

France (1994– 2012) Top 80% share 0.16% 0.51% 7.3% 0.21%
(ref.) (×3.1) (×45) (×1.3)

Top 70% share 0.24% 2.4% 6.5% 0.21%
(ref.) (×10) (×27) (×0.88)

Top 25% share 0.25% 1.9% 5.8% 0.28%
(ref.) (×7.9) (×24) (×1.1)

Top 5% share 0.29% 0.68% 11% 0.28%
(ref.) (×2.3) (×36) (×0.95)

P20/average 4.9% 29% 19% 4.3%
(ref.) (×5.9) (×4) (×0.87)

P30/average 2.4% 44% 25% 2.4%
(ref.) (×19) (×10) (×1)

P75/average 0.83% 6.1% 4.6% 4.7%
(ref.) (×7.4) (×5.6) (×5.7)

P95/average 0.89% 4% 1.9% 2.2%
(ref.) (×4.5) (×2.1) (×2.5)

DINA income. Sources: author’s calculation from Piketty et al. (2018) (US) and Garbinti et al. 
(2018) (France). The different interpolation methods are labeled as follows. M0: generalized Pareto 
interpolation. M1: constant Pareto coefficient. M2: log- linear interpolation. M3: mean- split histogram. 
We applied them to a tabulation that includes the percentiles p = 10 percent, p = 50 percent, p = 90 per-
cent, and p = 99 percent. We included the relative increase in the error compared to generalized Pareto 
interpolation in parentheses. We report the mean relative error, namely: 

where y is the quantity of interest (income threshold or top share), and ŷ is its estimate using one of the 
interpolation methods. We calculated the results over the years 1962, 1964, and 1966– 2014 in the US 
and years 1994– 2012 in France.
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persistent amount. In comparison, M4 produces a curve almost identical to the 
real one.

We can also directly compare the generalized Pareto curves generated by each 
method, as in Figure 4. Our method, M0, reproduces the inverted Pareto coeffi-
cients b(p) very faithfully, including above the last threshold (see Section 4.2). All 
the other methods give much worse results. Method M1 leads to discontinuous 
curve, which in fact may not even define a consistent probability distribution. The 
M2 method fails to account for the rise of b(p) at the top. Finally, the M3 leads to 
an extremely irregular shape because of the use of a piecewise uniform distribution 
to approximate power law behavior.

Figure 2. P75 Threshold and Top 25 Percent Share in the US (1962– 2014), Estimated Using All 
Interpolation Methods and a Tabulation with p = 10 percent, 50 percent, 90 percent, and 99 percent 

DINA Income 
Sources: author’s computation from Piketty et al. (2018). M0: generalized Pareto interpolation. 

M1: constant Pareto coefficient. M2: log- linear interpolation. M3: mean- split histogram.

Figure 3. P75 Threshold and Top 25 Percent Share in the US (2000– 2014), Estimated Using 
Interpolation Methods M0 and M3, and a Tabulation with p = 10 Percent, 50 Percent, 90 Percent, and 

99 Percent DINA Income 
Sources: author’s computation from Piketty et al. (2018). M0: generalized Pareto interpolation. 

M3: mean- split histogram.
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Overall, the generalized Pareto interpolation method performs well. In most 
cases, it gives results that are several times better than methods commonly used in 
the literature, and it does so while ensuring a smoothness of the resulting estimate 
that no other method can provide. Moreover, it works well for the whole distribu-
tion, not just the top (like M1 and M2) or the bottom (like M3).

4.2. Extrapolation methods

Of the interpolation methods previously described, only M1 and M2 can be 
used to extrapolate the tabulation beyond the last threshold. Both assume a stan-
dard Pareto distribution. Method M1 estimates b(p) at the last fractile pK, and 
assumes a Pareto law with � = b(pK )∕ (b(pK ) − 1) after that. Method M2 esti-
mates a Pareto coefficient based on the last two thresholds, so in effect it assumes a 
standard Pareto distribution immediately after the second to last threshold.

The assumption that b(p) becomes approximately constant for p close to 1, 
however, is not confirmed by the data. Figure 5 shows this for France and the US 
in 2010. The profile of b(p) is not constant for p≈1. On the contrary, it increases 
faster than for the rest of the distribution.

In Section 3.3 we presented an extrapolation method based on the generalized 
Pareto distribution that had the advantage of preserving the smoothness of the 
Pareto curve, use all the information from the tabulation, and allow for a noncon-
stant profile of generalized Pareto coefficients near the top. As Figure 5 shows, this 
method leads to a more realistic shape of the Pareto curve.

Figure 4. Generalized Pareto Curves Implied by the Different Interpolation Methods for the US 
Distribution of Income in 2010 DINA Income 

Sources: author’s computation from Piketty et al. (2018). M0: generalized Pareto interpolation. 
M1: constant Pareto coefficient. M2: log- linear interpolation. M3: mean- split histogram.
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Table 2 compares the performance of the new method with the other ones, as 
we did in the previous section. Here, the tabulation in input includes p = 90 percent 
but stops at p = 95 percent, and we seek estimates for p = 99 percent.7,8 Method M2 

7Here, we use fiscal income instead of DINA income to avoid disturbances created at the top by the 
imputation of some sources of income in DINA income.

8We provide in appendix an alternative tabulation that stops at the top 1 percent and where we seek 
the top 0.1 percent. The performances of M0 and M1 are closer but M0 remains preferable.

Figure 5. Extrapolation with Generalized Pareto Distribution Fiscal Income 
Sources: author’s computation from Piketty et al. (2018) (for the US) and Garbinti et al. (2018) 

(for France). Included points (hollow dots) come from the data but were not used in the estimation, 
while included points black dots were.

TABLE 2  
mean relaTive error on The ToP 1 PercenT For diFFerenT exTraPolaTion meThods, knowinG 

The ToP 10 PercenT and The ToP 5 PercenT

Mean Relative Gap Between Estimated and 
Observed Values

M0 M1 M2

US (1962– 2014) Top 1% share 0.78% 5.2% 40%
(ref.) (×6.7) (×52)

P99/average 1.8% 8.4% 13%
(ref.) (×4.7) (×7.2)

France (1994– 2012) Top 1% share 0.44% 2% 11%
(ref.) (×4.6) (×25)

P99/average 0.98% 2.5% 2.4%
(ref.) (×2.5) (×2.4)

Fiscal income. Sources: author’s calculation from Piketty et al. (2018) (US) and Garbinti et al. 
(2018) (France). The different extrapolation methods are labeled as follows. M0: generalized Pareto 
distribution. M1: constant Pareto coefficient. M2: log- linear interpolation. We applied them to a tabu-
lation that includes the percentiles p = 90 percent, and p = 95 percent. We included the relative increase 
in the error compared to generalized Pareto interpolation in parentheses. We report the mean relative 
error, namely: 

where y is the quantity of interest (income threshold or top share), and ŷ is its estimate using one of the 
interpolation methods. We calculated the results over the years 1962, 1964, and 1966– 2014 in the US, 
and years 1994– 2012 in France.

1

number of years

last year∑

t= first year

|
|
|
|
|
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is the most imprecise. Method M1 works quite well in comparison. However, our 
new method M0 gives even more precise results. This is because it can correctly 
capture the tendency of b(p) to keep on rising at the top of the distribution.

Figure 6 compares the extrapolation methods over time in the US. We can 
see M1 overestimates the threshold by about as much as M2 underestimates it, 
whereas M0 is much closer to reality and makes no systematic error. For the top 
share, M1 is much better than M2. However, it slightly underestimates the top 
share because it fails to account for the rising profile of inverted Pareto coefficients 
at the top, which is why our method M0 works even better.

5. Precision

We now discuss a few extensions of the framework presented in this article, 
which allow us to analyze in greater detail the level of precision one can expect 
from the different ways of estimating the distribution of top incomes.

5.1. Estimation of the Error

When attempting to assess the error term associated with an interpolation 
method, the main difficulty is that most of the errors are not because of mere sam-
pling variability (although part of it is), which we can assess using standard meth-
ods. It comes mostly from the discrepancy between the functional forms used in the 
interpolation and the true form of the distribution. Put differently, it corresponds 
to a “model misspecification” error, which is harder to evaluate. However, the gen-
eralized Pareto interpolation method does offer some solutions to that problem. 
We can isolate the features of the distribution that determine the error, and based 
on that provide approximations of it.

In this section, we remain concerned with the same definition of the error as 
in the previous one. Namely, we consider the difference between the estimate of a 
quantity by interpolation (e.g., shares or thresholds) and the same quantity defined 

Figure 6. Comparison of Extrapolation Methods in the US for the Top 1 Percent, Knowing the Top 
10 Percent and the Top 5 Percent Fiscal income. 

Sources: author’s computation from Piketty et al. (2018).
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over the true population of interest. This is in contrast with a different notion of 
error common in statistics: the difference between an empirical estimate and the 
value of an underlying statistical model. If  sample size was infinite— so that sam-
pling variability would vanish— both errors would be identical. However, despite 
the large samples that characterize tax data, sampling issues cannot be entirely 
discarded. Indeed, because income and wealth distributions are fat- tailed, the law 
of large numbers may operate very slowly, so that both types of errors remain dif-
ferent even with millions of observations (Taleb and Douady, 2015).

We consider our notion of the error to be more appropriate in the context of the 
methods we are studying. Indeed, concerns for the distribution of income and wealth 
only arise to the extent that it affects the actual population, not a model of it. Moreover, 
this allows us to remain agnostic as to the “true” model for the distribution of income.

To get tractable analytical results, we also focus on the unconstrained interpo-
lation procedure of Section 3.1, and thus leave aside the monotonicity constraint 
of the quantile. That has very little impact on the results in practice since the con-
straint is rarely binding, and when it is, the adjustments are small. For example, the 
monotonicity constraint is not binding in any of the tabulations interpolated in the 
previous section.

Let n be the size of the population (from which the tabulated data come). 
Recall that x = − log (1−p). Let en (x ) be the estimation error on �n (x), and sim-
ilarly e ′

n
(x ) the estimation error on � ′

n
(x). If  we know both those errors, then we 

can retrieve the error on any quantity of interest (quantiles, top shares, Pareto coef-
ficients, etc.) by applying the appropriate transforms. Our first result decomposes 
the error between two components. Like all the theorems of this section, we give 
only the main results. Details and proofs are in Appendix E.

Theorem 3 We can write en (x ) = u (x) + vn (x) and e �
n
(x ) = u � (x) + v �

n
(x) 

where u(x ) , u ′ (x ) are deterministic, and vn (x ) , v
′
n
(x ) are random variables that 

converge almost surely to zero when n→+∞.

We call the first terms u(x) and u ′ (x ) the “misspecification” error. They cor-
respond to the difference between the functional forms that we use in the interpo-
lation, and the true functional forms of the underlying distribution. Even if  the 
population size was infinite, so that sampling variability was absent, they would 
still remain nonzero. We can give the following representation for that error.

Theorem 4 u(x) and u ′ (x ) can be written as a scalar product between two functions 
ɛ and �‴: 

 where ɛ(x,t) is entirely determined by x1,…, xK.

The function ɛ(x,t) is entirely determined by the known values x1,…, xK, so 
we can calculate it directly. Its precise definition is given in appendix. The other 
function, �‴, depends on the quantity we are trying to estimate, so we do not know 
it exactly. The issue is common in nonparametric statistics and complicates the 

u (x) = ∫
xK
x1
�(x, t )�� ( t ) dt and u � (x ) = ∫

xK
x1

��

�x
(x, t )�� ( t ) dt,
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application of the formula.9 However, if  we look at the value of �‴ in situations 
where we have enough data to estimate it directly, we can still derive good approx-
imations and rules of thumb that apply more generally.

We call vn (x ) and v ′
n
(x ) the “sampling error.” Even if  the true underlying 

distribution matched the functional used for the interpolation, so that there would 
be no misspecification error, they would remain nonzero. We can give asymptotic 
approximation of their distribution for large n. We do not only cover the finite vari-
ance case (� [X2 ] < +∞), but also cover the infinite variance case (� [X2 ] = +∞), 
which leads to results that are less standard. Infinite variance is very common when 
dealing with distributions of income and wealth.

Theorem 5 vn (x ) and v ′
n
(x ) converge jointly in distribution at speed 1∕rn: 

If  � [X2 ] < +∞, then rn =
√
n and � is a bivariate normal distribution. If  

� [X2 ] = +∞ and 1 − F (x ) ∼ Cx−2, then rn = (n∕logn )1∕2 and � is a bivariate 
normal distribution. If  � [X2 ] = +∞ and 1 − F (x ) ∼ Cx−𝛼 (1 < 𝛼 < 2), then 
rn = n1−1∕� and �

�
= (�1Y, �2Y), where Y follows a maximally skewed stable distri-

bution with stability parameter α.

Again, we provide more detailed expressions of the asymptotic distributions 
in Appendix E alongside the proof of the result. More importantly, we also show 
that in practice, we always have vn (x ) ≪ u(x ) and v ′

n
(x ) ≪ u ′ (x ), regardless of 

the precise characteristics of the underlying distribution. This means that sampling 
variability is negligible compared to the misspecification error. Therefore, we will 
from now on assume that en (x ) ≈ u (x) and e �

n
(x ) ≈ u � (x).

5.2. Optimal Choice of Brackets

How many brackets do we need to achieve a given precision level, and how 
should they be placed? Based on Theorem 4, we can answer that question for any 
given �‴ by solving an optimization program. Therefore, if  we pick a functional 
form for �‴ which is typical of what we observe, we get the solution of the problem 
for the typical income distribution.

We assume that we want our tabulation to span from the 10 percent to the 
99.9 percent percentiles, so we set p1 = 0.1 and pK = 0.999. We pick the median 
profile of �‴ estimated over all available years for France and the US (see Figure 7 
in appendix). For a given number K of  thresholds, and using the derivative- free 
Nelder- Mead algorithm, we solve the optimization problem: 

9For example, the asymptotic mean integrated squared error of a kernel estimator depends on the 
second derivative of the density (Scott, 1992, p. 131).

rn

[
vn(x)

v′
n
(x)

]
�
→�.

min
p2,…,pK−1

{

max
t∈ [x1,xK ] ∫

xK
x1
𝜀 (x, t )𝜑� ( t ) dt

}

st. p1 < p2 <⋯ < pK−1 < pK,
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where as usual xk = − log(1 − pk ) for 1 ≤ k ≤ K.
Table 3 shows that an important concentration of brackets near the top is desir-

able, but that we also need quite a few to cover the bottom. Half of the brackets should 
cover the top 20 percent, most of which should be within just the top 10 percent. The 
rest should be used to cover the bottom 80 percent of the distribution. We can also see 
that a relatively small number of well- placed brackets can achieve remarkable preci-
sion: only six are necessary to achieve a maximal relative error of less than 0.1 percent.

Davies and Shorrocks (1989) studied a similar question and we can compare 
our results to theirs. Unlike this article, they focus on the estimation of a specific 
inequality indicator (the Gini coefficient) directly from grouped data, without an 
interpolation step. Our approach interpolates the grouped data and then seeks to 
minimize the maximum error on top over the whole distribution. Yet both sets of 
result provide similar recommendations: grouped data can achieve great accuracy 
in measuring inequality, and the optimal grouping somewhat concentrates groups 
at the top of the distribution.

5.3. Comparison with Partial Subsamples

We have seen that generalized Pareto interpolation can be quite precise, but 
how does it compare to the use of a subsample of individual data? The question 
may be of practical interest when researchers have access to both exhaustive data in 
tabulated form and a partial sample of individual data. Such a sample could either 
be a survey or a subsample of administrative data.

We may address that question using an example and Monte- Carlo simula-
tions. Take the 2010 distribution of DINA income in the US. We can estimate 
that distribution and use it to simulate a sample of size N = 108 (the same order of 
magnitude as the population of the US).

Then, we create subsamples of size n ≤ N by drawing without replacement from 
the large population previously generated.10 In the case of surveys, we ignore nonre-
sponse and no misreporting, a simplification that favors the survey in the comparison. 
For each of those subsamples, we estimate the quantiles and top shares at different 
points of the distribution, and compare it to the same values in the original sample of 
size N. Table 4 shows the results for different values of n. We see that even for large 

10This survey design is called simple random sampling.

TABLE 3  
oPTimal brackeT choice For a TyPical disTribuTion oF income

3 Brackets 4 Brackets 5 Brackets 6 Brackets 7 Brackets

Optimal placement of 
thresholds

10.0% 10.0% 10.0% 10.0% 10.0%
68.7% 53.4% 43.0% 36.8% 32.6%
95.2% 83.4% 70.4% 60.7% 53.3%
99.9% 97.1% 89.3% 80.2% 71.8%

99.9% 98.0% 93.1% 86.2%
99.9% 98.6% 95.4%

99.9% 98.9%
99.9%

Maximum relative 
error on top shares

0.91% 0.32% 0.14% 0.08% 0.05%
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samples (n = 105, n = 106, n = 107), the case for using tabulations of exhaustive data 
rather than subsamples to estimates quantities such as the top 1 percent or 0.1 percent 
share remains strong. Indeed, even with n = 106 observations, the typical error on the 
top 1 percent share is larger than what we get in Table 3, even with few thresholds. In 
practice, the thresholds may not be positioned in an optimal way as in Table 3, so may 
also want to compare the results with Table 1. The differences in the orders of magni-
tude are large enough, so that the implications of that comparison hold.

6. concludinG commenTs

In this article, we introduce the concept of generalized Pareto curve to char-
acterize, visualize, and estimate distributions of income or wealth. Based on quasi- 
exhaustive individual tax data, we reveal some stylized facts about the distribution 
of income that lets us move beyond the standard Pareto assumption. We find that 
although generalized Pareto curves can vary a lot over time and between countries, 
they tend to stay U- shaped.

Then we develop a method to interpolate tabulated data on income— as is 
typically available from tax authorities and statistical institutes— that can correctly 
reproduce the subtleties of generalized Pareto curves. In particular, the method 
guarantees the smoothness of the estimated distribution. It works especially well 
for the top half  of the distribution. We show that method to be several times more 
precise than the alternatives most commonly used in the literature. In fact, it can 
often be more precise than using non- exhaustive individual data. Moreover, we can 
derive formulas for the error term that let us approximately bound the error of our 
estimates, and determine the number of optimally placed brackets that is necessary 
to achieve a given precision. The method could also be applied to wealth in cases 
where data under a similar form are available, which is much rarer.

TABLE 4  
mean relaTive error usinG subsamPles oF The Full PoPulaTion

Mean Percentage Gap Between Estimated and Observed Values for 
a Survey with Simple Random Sampling and Sample Size n

n = 103 n = 104 n = 105 n = 106 n = 107 n = 108

Top 70% share 0.42% 0.20% 0.10% 0.04% 0.01% 0.00%
Top 50% share 1.26% 0.63% 0.32% 0.13% 0.04% 0.00%
Top 25% share 4.00% 2.04% 1.05% 0.44% 0.15% 0.00%
Top 10% share 9.29% 4.80% 2.50% 1.05% 0.35% 0.00%
Top 5% share 14.32% 7.48% 3.94% 1.65% 0.55% 0.00%
Top 1% share 29.13% 16.01% 8.57% 3.61% 1.21% 0.00%
Top 0.1% share 52.94% 35.23% 19.91% 8.57% 2.89% 0.00%
P30 threshold 4.67% 1.44% 0.45% 0.15% 0.04% 0.00%
P50 threshold 3.29% 1.03% 0.33% 0.10% 0.03% 0.00%
P75 threshold 2.92% 0.91% 0.31% 0.10% 0.03% 0.00%
P90 threshold 3.91% 1.21% 0.39% 0.12% 0.04% 0.00%
P95 threshold 5.86% 1.76% 0.59% 0.18% 0.06% 0.00%
P99 threshold 14.39% 4.79% 1.42% 0.46% 0.14% 0.00%
P99.9 threshold 44.31% 16.29% 5.47% 1.70% 0.49% 0.00%

Original sample of size N = 108 simulated using the distribution of 2010 DINA income in the US. 
Source: author’s computations from Piketty et al. (2018).
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We believe that more empirical work— especially a careful use of administra-
tive data sources— is necessary to study those dynamics in a fully satisfying way. 
We hope that the interpolation method presented in this article will allow future 
researchers make progress in that direction. To that end, we made the methods 
presented in this article available as a R package named gpinter, and also in the 
form of an online interface that can be used without any installation or knowledge 
of any programming language. Both are available at http://wid.world/ gpinter.

reFerences

Alvaredo, F., L. Assouad, and T. Piketty, “Measuring Inequality in the Middle East 1990– 2016: The 
World’s Most Unequal Region?,” Review of Income and Wealth, 65(4), 685– 711, 2019.

Alvaredo, F., A. B. Atkinson, et al., Distributional National Accounts Guidelines Methods and Concepts 
Used in the World Inequality Database. Available at https://wid.world/ docum ent/distr ibuti onal- 
natio nal- accou nts- guide lines - 2020- conce pts- and- metho ds- used- in- the- world - inequ ality - datab 
ase/. 2020.

Atkinson, A. B., “Measuring Top Incomes: Methodological Issues,” Top Incomes over the Twentieth 
Century: A Contrast Between Continental European and English- Speaking Countries, Oxford 
University Press, Oxford, 2007.

   , “Pareto and the Upper Tail of the Income Distribution in the UK: 1799 to the Present,” 
Economica, 84(334), 129– 156, 2017.

Atkinson, A. B., and A. J. Harrison, Distribution of Personal Wealth in Britain, Cambridge University 
Press, Cambridge, 1978.

Atkinson, A. B., and T. Piketty, Top Incomes Over the Twentieth Century: a Contrast Between Continental 
European and English- Speaking Countries, Oxford University Press, 2007.

Balkema, A. A., and L. de Haan, “Residual Life Time at Great Age,” Annals of Probability, 2(5), 792– 
804, 1974.

Benhabib, J., and A. Bisin, “Skewed Wealth Distributions: Theory and Empirics,” NBER Working 
Paper Series, 21924, 37, 2016.

Benhabib, J., A. Bisin, and S. Zhu, “The Distribution of Wealth and Fiscal Policy in Economies With 
Finitely Lived Agents,” Econometrica, 79(1), 123– 157, 2011.

Bierbrauer, F. J., P. C. Boyer, and A. Peichl, “Politically Feasible Reforms of Nonlinear Tax Systems,” 
American Economic Review, 111(1), 153– 191, 2021.

Birgin, E. G., and J. M. Martìnez, “Improving Ultimate Convergence of an Augmented Lagrangian 
Method,” Optimization Methods Software, 23(2), 177– 195, 2008.

Bukowski, P., and F. Novokmet, “Inequality in Poland: Estimating the Whole Distribution by g- Percen-
tile, 1983– 2015,” WID.world Working Paper Series 2017/21. Available at http://wid.world/ wp- conte 
nt/uploa ds/2017/11/Bukow ski_Novok met_WP_WIDwo rld_2017_21.pdf, 2017.

Cargo, G. T., and O. Shisha, “The Bernstein Form of a Polynomial,” Journal of Research of the National 
Bureau of Standards, 60(B.1), 79– 81, 1966.

Champernowne, D. G., “A Model of Income Distribution,” The Economic Journal, 63(250), 318– 351, 1953.
Chancel, L., and T. Piketty, “Indian Income Inequality, 1922– 2015: From British Raj to Billionaire 

Raj?,” Review of Income and Wealth, 65(S1), S33– S62, 2019.
Chang, W. et al., Shiny: Web Application Framework for R. R Package Version 1.0.3, 2017.
Charpentier, A., and E. Flachaire, Pareto Models for Top Incomes. Available at https://sites.google.

com/site/emman uelfl achai re/publi cations, 2019.
Chotikapanich, D. et al., “Global Income Distributions and Inequality, 1993 and 2000: Incorporating 

Country- level Inequality Modeled with Beta Distributions,” Review of Economics and Statistics, 
94(1), 52– 73, 2012.

Conn, A. R., N. I. M. Gould, and P. L. Toint, “A Globally Convergent Augmented Langrangian 
Algorithm for Optimization with General Constraints and Simple Bounds,” SIAM Journal on 
Numerical Analysis, 28(2), 545– 572, 1991.

Cowell, F. A., Measuring Inequality. LSE Economic Series, Oxford University Press, Oxford, 2000.
Cowell, F. A., and F. Mehta, “The Estimation and Interpolation of Inequality Measures,” Review of 

Economic Studies, 49(2), 273– 290, 1982.
Czajka, L., “Income Inequality in Côte d’Ivoire: 1985– 2014.” WID.world Working Paper 2017/8. 

Available at https://wid.world/ docum ent/incom e- inequ ality - cote- divoi re- 1985- 2014- wid- world- 
worki ng- paper - 20170 8/, 2017.

http://wid.world/gpinter
https://wid.world/document/distributional-national-accounts-guidelines-2020-concepts-and-methods-used-in-the-world-inequality-database/
https://wid.world/document/distributional-national-accounts-guidelines-2020-concepts-and-methods-used-in-the-world-inequality-database/
https://wid.world/document/distributional-national-accounts-guidelines-2020-concepts-and-methods-used-in-the-world-inequality-database/
http://wid.world/wp-content/uploads/2017/11/Bukowski_Novokmet_WP_WIDworld_2017_21.pdf
http://wid.world/wp-content/uploads/2017/11/Bukowski_Novokmet_WP_WIDworld_2017_21.pdf
https://sites.google.com/site/emmanuelflachaire/publications
https://sites.google.com/site/emmanuelflachaire/publications
https://wid.world/document/income-inequality-cote-divoire-1985-2014-wid-world-working-paper-201708/
https://wid.world/document/income-inequality-cote-divoire-1985-2014-wid-world-working-paper-201708/


Review of Income and Wealth, Series 0, Number 0, Month 2021

25

© 2021 International Association for Research in Income and Wealth

Davies, J. B., and A. F. Shorrocks, “Optimal Grouping of Income and Wealth Data,” Journal of 
Econometrics, 42(1), 97– 108, 1989.

Feenberg, D. R., J. M. Poterba, “Income inequality and the incomes of very high- income taxpayers: 
Evidence from tax returns,” Tax Policy and the Economy, 7, 145– 177, 1993.

Fournier, J., “Generalized Pareto Curves: Theory and Application Using Income and Inheritance 
Tabulations for France 1901– 2012.” MA Thesis. Paris School of Economics, 2015.

Gabaix, X. et al., “The Dynamics of Inequality,” Econometrica, 84(6), 2071– 2111, 2016.
Garbinti, B., J. Goupille- Lebret, and T. Piketty, “Income Inequality in France, 1900– 2014: Evidence from 

Distributional National Accounts (DINA),” Journal of Public Economics, 162(June), 63– 77, 2018.
Jargowsky, P. A. and C. A. Wheeler, “Estimating Income Statistics from Grouped Data: Mean- 

Constrained Integration over Brackets,” Sociological Methodology, 48(1), 337– 374, 2018.
Jenkins, S. P., “Pareto Models, Top Incomes and Recent Trends in UK Income Inequality,” Economica, 

84(334), 261– 289, 2017.
Jones, C. I., “Pareto and Piketty: The Macroeconomics of Top Income and Wealth Inequality,” Journal 

of Economic Perspectives, 29(1), 29– 46, 2015.
Jones, C. I., and J. Kim, “A Schumpeterian Model of Top Income Inequality,” Journal of Political 

Economy, 126(5), 1785– 1826, 2018.
Kakwani, N. C., and N. Podder, “Efficient Estimation of the Lorenz Curve and Associated Inequality 

Measures from Grouped Observations,” Econometrica, 44(3), 630, 1976.
Kraft, D., “Algorithm 733: TOMP– Fortran Modules for Optimal Control Calculations,” ACM 

Transactions on Mathematical Software, 20(3), 262– 281, 1994.
Kuznets, S., Shares of Upper Income Groups in Income and Savings. National Bureau of Economic 

Research, Cambridge MA, 1953.
Lyche, T., and K. M⊘rken, “Spline Methods,” Available at https://www.uio.no/studi er/emner/ matna t/

math/MAT41 70/v18/pensu mlist e/splin ebook - 2018.pdf, 2002.
Morgan, M., “Extreme and Persistent Inequality: New Evidence for Brazil Combining National 

Accounts, Surveys and Fiscal Data, 2001– 2015,” WID.world Working Paper Series 2017/12. 
Available at https://wid.world/ docum ent/extre me- persi stent - inequ ality - new- evide nce- brazi l- combi 
ning- natio nal- accou nts- surve ys- fisca l- data- 2001- 2015- wid- world - worki ng- paper - 20171 2/, 2017.

Nirei, M., “Pareto Distributions in Economic Growth Models IIR Working Paper 09- 05. Available at 
http://herme s- ir.lib.hit- u.ac.jp/herme s/ir/re/17503/ 070ii rWP09_05.pdf, 2009.

Novokmet, F., T. Piketty, and G. Zucman, “From Soviets to Oligarchs: Inequality and Property in 
Russia 1905– 2016,” Journal of Economic Inequality, 16(2), 189– 223, 2018.

Pareto, V., Cours d’économie Politique. Available at https://www.cairn.info/cours - d- econo mie- polit 
ique- tomes - 1- et- 2- - 97826 00040 143.htm, 1896.

Pickands, J., “Statistical Inference Using Extreme Order Statistics,” Annals of Statistics, 3(1), 119– 131, 
1975.

Piketty, T., “Income Inequality in France, 1901– 1998,” Journal of Political Economy, 111(5), 1004– 1042, 
2003.

   , Les hauts revenus en France au XXème siècle, Grasset, Paris, 2001.
Piketty, T., and E. Saez, “Income Inequality in the United States, 1913– 1998,” Quarterly Journal of 

Economics, 118(1), 1– 39, 2003.
Piketty, T., E. Saez, and G. Zucman, “Distributional National Accounts: Methods and Estimates for 

the United States,” Quarterly Journal of Economics, 133(5), 553– 609, 2018.
Piketty, T., L. Yang, and G. Zucman, “Capital Accumulation, Private Property, and Rising Inequality 

in China, 1978– 2015,” American Economic Review, 109(7), 2469– 2496, 2019.
Piketty, T., and G. Zucman, “Wealth and Inheritance in the Long Run,” Handbook of Income 

Distribution, Vol. 2. Handbook of Income Distribution, Elsevier, Amsterdam, 1303– 1368, 2015.
R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical 

Computing. Vienna, Austria, 2016.
Saez, E., “Using Elasticities to Derive Optimal Income Tax Rates,” Review of Economic Studies, 68(1), 

205– 229, 2001.
Scott, D. W., Multivariate Density Estimation, John Wiley & Sons, Inc., New York City, 1992.
Simon, H., “On a Class of Skew Distribution Functions,” Biometrika, 42(3– 4), 425– 440, 1955.
Taleb, N. N., and R. Douady, “On the Super- additivity and Estimation Biases of Quantile Contributions,” 

Physica A Statistical Mechanics and its Applications, 429, 252– 260, 2015.
van der Wijk, J., Inkomens-  En Vermogensverdeling. Nederlands economisch instituut, De Erven F. 

Bohn, Haarlem, 1939.
Villaseñor, J. A., and B. C. Arnold, “Elliptical Lorenz Curves,” Journal of Econometrics, 40(2), 327– 338, 

1989.
Wold, H. O. A., and P. Whittle, “A Model Explaining the Pareto Distribution of Wealth,” Econometrica, 

25(4), 591– 595, 1957.

https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://wid.world/document/extreme-persistent-inequality-new-evidence-brazil-combining-national-accounts-surveys-fiscal-data-2001-2015-wid-world-working-paper-201712/
https://wid.world/document/extreme-persistent-inequality-new-evidence-brazil-combining-national-accounts-surveys-fiscal-data-2001-2015-wid-world-working-paper-201712/
http://hermes-ir.lib.hit-u.ac.jp/hermes/ir/re/17503/070iirWP09_05.pdf
https://www.cairn.info/cours-d-economie-politique-tomes-1-et-2--9782600040143.htm
https://www.cairn.info/cours-d-economie-politique-tomes-1-et-2--9782600040143.htm


Review of Income and Wealth, Series 0, Number 0, Month 2021

26

© 2021 International Association for Research in Income and Wealth

Supporting information

Additional supporting information may be found in the online version of this 
article at the publisher’s web site:

A Generalized Pareto Curves: Additional Details
A.1: Pareto Curves and Power Laws
A.2: Other Concepts of Local Pareto Coefficients
Figure 1: Different concepts of local Pareto exponent
A.3: Proofs
A.3.1: Proof of Proposition 1
A.3.2: Proof of Proposition 2
A.3.3: Proof of Proposition A.1
A.3.4: Proof of Proposition A.2
B Processes Generating Nonconstant Pareto Curves
B.1: Main Examples
Figure 2: Calibration of σ (x) on the US Distribution of Labor Income
B.2: Alternative Calibrations
Figure 3: Calibration of μ (x) on the US distribution of labor income
Figure 4: Calibration of σ (x) on the US distribution of personal wealth
Figure 5: Calibration of μ (x) on the US distribution of personal wealth
B.3: Proofs
C: Detailed Interpolation Method
C.1: Full Algebraic Formulas
D: Comparisons with Other Interpolation Methods
Table I: Mean relative error for different interpolation methods (fiscal income)
Table II: Mean relative error for different interpolation methods (DINA 

income)
Table III: Mean relative error on the top 0.1% for different extrapolation 

methods, knowing the top 10% and the top 1%
E: Error estimation
E.1: Decomposition of the error
E.2: Misspecification error
Figure 6: Bounds on the misspecification error term for φ and φʹ
Figure 7: Estimations of φ‴ (x)
E.3: Sampling error
E.3.1: The finite variance case
E.3.2: The infinite variance case
E.3.3: Comparison
Figure 8: Asymptotic mean absolute value of the sampling error with finite 

variance
Figure 9: Asymptotic mean absolute value of the sampling error with infinite 

variance
E.4: Comparing Misspecification with Sampling Error
Figure 10: Actual error and estimated misspecification error
E.5: Estimation of Error Bounds


