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Abstract

We incorporate the death risk into a classic two-period overlapping generations model
to investigate its effects on the optimal inheritance taxation. The death risk in absence of
actuarially fair annuities causes accidental bequest as an extra source of inequality, thus
we distinguish different bequest motives. At first we study the competitive equilibrium
in a closed economy and see the effect of death risk on the capital accumulation, and
decentralize the first-best social optimum by tax instruments including inheritance taxation.
In the second-best analysis, we adopt a small open economy and study the optimal
inheritance taxation that maximizes the social welfare in the long run, where the distribution
of inheritance converges to a stationary one. We obtain the result that the optimal
inheritance tax is positively related to the variance of shocks resulted from the death
risk in the accumulative process of inheritance. Besides, for a Rawlsian social welfare
criterion, the optimal tax rate is about 60% for logarithmic utility functions, while it
equals 30% if the intertemporal elasticity of substitution in the CIES utility function is 2,
when the surviving rate to second period of life is 0.8.
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1 Introduction

The taxation on inheritance has been a remarkably controversial topic with a long history.
Historically, inheritance taxation dates back to the days of the Roman Empire, when Augustus
introduced in A.D. 6 the vicesima hereditatium, a 5% death duty on estates above a certain
value provided that they were not inherited from close relatives, in order to support veterans.
The supporters of inheritance taxation argue that it plays an essential role in redistributing the
wealth and reducing inequality, since inheritance accounts for a large share of aggregate wealth,
for instance, the estimation in Kotlikoff and Summers(1981) showed that 80% of total wealth in
the U.S. are inherited1, and its distribution is highly skewed (see Gale and Slemord(2001) and
Piketty(2010)). The opponents of the inheritance taxation not only emphasize its efficiency
cost, such as its effect in capital accumulation because of changed incentive to save and invest
(the sign of this effect depends on the intertemporal elasticity of substitution), but also point
out several moral reasons: it damages the interest of the parents who love their children and
may go against the will of the deceased to bequeath. This controversial debate is reflected
in the work of Mill: Principles and Political Economy(1848), in which he pointed out that
inheritance runs counter to a fair and free competition by creating a different starting point for
different individuals which is not related to their own efforts. Meanwhile, Mill acknowledged
that one should respect the deceased’s will concerning the bequest left to their children. His
attitude can be considered as a balance between the moral reason for respecting the existence
of inheritance and the consideration of equality and fairness that contradicts inheritance. As
a consequence, Mill proposed a limit on the inheritance level to achieve a compromise.

Unlike concerns on inequality and pure moral reasons, the efficiency cost of inheritance tax
depends largely on the bequest motives. In the literature, there are generally four categories
of bequest motives (see Cremer and Pestieau(2006)): pure altruistic bequest or Barro-type
altruism where parents care about the lifetime utility of children and consequently the utilities
of all future generations; paternalistic bequest, where parents derive utility from bequeathing
only through the joy of giving, or “warm glow” giving; strategic bequest where children offer
some “service” or “attention” to their parents in exchange for inheritance as a remuneration,
which consists of a strategic game between parents and children; and bequest without any
motive, which is the accidental bequest or unplanned bequest, resulting from the fact that
wealth of the parents is held on a bequeathable form and in case of premature death or
accidental death with imperfect annuity market, their precautionary saving will be left to
their children. Note that bequest in real life tends to result from some combination of these
motives and cannot be easily distinguished. The three first bequest motives come from the

1This result has been dismissed by Modigliani, who estimates that the life cycle saving constitutes 80% of
the total wealth, while inheritance constitutes only 20%. According to Davies and Shorrocks(1999), a more
reasonable estimated result should be that inheritance makes a contribution of 35% − 45% of the aggregate
wealth.
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voluntary willingness of the parents, and bring utility to them. Thus, inheritance taxation on
these intended bequests will have a distortionary effect on their behavior and damage economic
efficiency. The accidental bequest, however, constitutes a special case where, according to most
of the literature2, inheritance taxation does not cause any distortion since the agents cannot
react to the inheritance tax. Besides, based on the thought of Mill, the accidental bequest
is not written in the will of the deceased. Thus, there is no moral obstacle for implementing
a confiscatory 100% accidental inheritance tax. The optimal inheritance taxation, which
takes into account its implications in terms of equality, efficiency, as well as simplicity and
compliance, is thus largely determined by the relative importance of intended bequest and
accidental bequest. According to Pestieau and Poterba(2001), there is always controversy
about the importance of altruistic as opposed to accidental bequest, leading to uncertainty
in the magnitude of efficiency cost caused by inheritance taxation. But at least qualitatively,
when other things remain constant, a higher share of intended bequest motive would induce
lower inheritance taxation.

In this master thesis, we will analyze the relationship between the optimal inheritance taxation
and the death risk of the individuals, which can be considered as a proxy of the relative
importance of the different bequest motives: a higher death risk provokes more premature
death and more deceased leaving bequest without explicit will. We will see that the optimal
inheritance taxation is affected by the death risk through a comprehensive set of channels
with implications for inequality and efficiency. Apart from the study on taxation, another
interesting part consists of analyzing the theoretical evolution of the inheritance flow from
period to period and the long-term stationary distribution of inheritance. Basic methodological
settings are discussed in the next section, with comparisons in existing literature. The third
section is devoted to the competitive equilibrium without any governmental intervention. The
first-best social optimum and its decentralization will be discussed in the fourth section, while
the fifth section is reserved for discussing the second-best analysis, including the study on the
long-term distribution of normalized inheritance and the optimal inheritance taxation in a
more realistic world. The last section concludes.

2 Methodology

We will address the optimal inheritance taxation problem in a classical two-period overlapping
generations model, in which individuals work and consume in the first period, while they
retire, consume and bequeath in the second, as in the remarkable textbook of De la Croix
and Michel(2002). The parent who survives to the end of the second period leaves intended
bequest at the end of the first period of the kid’s life. If the parent lives only one period,

2Some objections against this commonly held opinion will be briefly presented in Appendix (7.1).
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her first-period saving is left as the total raw bequest at the very beginning of the kid’s life.
As for demographic setting, we assume that the population grows at a constant rate n > −1

and inheritance is equally shared among siblings within a family. As we shall see, a higher
population growth rate is also a factor that mitigates the wealth concentration. There are
two similar ways in the associated literature to incorporate the death risk in the two-period
OLG model: firstly, as in Blumkin and Sadka(2004), Pestieau and Sato(2008),and Fleurbaey
et al.(2017), individual lives for sure until the end of the first period, and there exists a
probability p ∈ (0, 1) to survive for the entire second period. Thus, the individual’s lifespan
is a binary variable whose realization is about living for either one or two periods. Secondly,
each individual lives with certainty the entire first period but lives for a share of θi ∈ [0, 1] in
the second period. That is, the maximum lifespan is two entire periods while the minimum is
one entire period, and the individual’s realized lifespan can take any value between the two
extreme cases. This approach was only used in Michel and Pestieau(2002). To be consistent
with the majority of the authors and to be simple with regard to the distribution of lifespans,
we will adopt the first approach in this paper but compare some of the results with those in
Michel and Pestieau(2002).

Michel and Pestieau(2002) analyze this question in a dynamic OLG model with a closed
economy. They obtain the results of competitive equilibrium but do not provide a formula
of the optimal taxation, as they believe it to be “not analytically tractable even within the
simple model”. Blumkin and Sadka(2004) obtain an explicit and reasonable optimal bequest
tax formula in a particular case where labor supply is fixed. In contrast, they adopt a static
OLG model where there are only two generations for each dynasty, since they focus on the
“short run” that they believe to be the most relevant with practical policy designs. In the
present master thesis, we will study the optimal taxation in a dynamic framework, where
there are an infinite number of generations for every dynasty, and there are a large number
of dynasties such that the law of large number is applied in terms of the distribution of
lifespan and productivity. To make the model analytically tractable, we will switch from a
closed economy where the factor prices are endogenously determined by the domestic capital
accumulation to a small open economy where the wage and interest rate remain the same for
each period, as in Piketty and Saez(2012), in the second-best analysis. As for the competitive
equilibrium and the first-best decentralization, as in Michel and Pestieau(2002), it is totally
tractable with endogenous factor prices, thus we maintain this setting for the first-best part.

In order to concentrate on the inheritance taxation instead of labor income taxation, we
assume that labor supply of the young generation is inelastic, and the inequality in labor
income comes from the heterogeneous productivity which we assume to be drawn i.i.d. from
a given distribution for each individual of each generation. Thus it is not an optimal income
taxation question as in Mirrless(1971), where agents value leisure and choose the labor supply
by themselves, and the government cannot observe their productivity because they cannot
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observe their “true” labor supply. The labor income taxation part is rather similar to that in
Piketty and Saez(2012), where the labor supply is given while productivity is heterogeneous.

In terms of the bequest motives, unlike a Barro-type altruism form (see Barro(1974)) where the
parent takes into account the discounted sum of the life cycle utilities of all her descendants, we
will adopt a joy of giving bequest motives to represent the intended bequest motive. The reason
for not adopting the Barro-type dynamic altruism is that this type of altruism turns the OLG
model equivalent to an infinite-horizon model, where all generations are linked by altruism.
Consequently, a dynasty composed with infinite generations simply behaves like an individual
with an infinite lifespan, which guarantees the validity of Ricardian equivalence where parents
compensate all the governmental intergenerational redistribution such as public borrowing and
pay-as-you-go pension system by smoothing their consumption through bequests. According
to Chamley(1986), the long run optimal inheritance taxation should be zero, since there will be
a much larger distortion on the future consumption than the benefit from redistribution across
heterogeneous individuals. The Barro-type altruism is unrealistic in the sense that individuals
in real life tend to have imperfect altruism without caring about the lifetime utility of the
children, leaving room for a positive optimal inheritance tax rate.

In the first-best analysis, we will assume an omnipotent government who knows every private
information of the individual, and most importantly, has the capability to distinguish the
bequest motives. When switching to the more realistic second-best analysis, the government
is no longer able to distinguish accidental bequest from joy of giving, and thus applies a
unique inheritance tax for both types of bequest. In this master thesis, we will only focus on
the flat rate taxation that is applied to all periods and generations, both for labor income and
inheritance. The final optimal inheritance tax formula requires some numerical simulations,
which we present in Appendix 2.

3 A laissez-faire model and competitive equilibrium

3.1 Consumers

The preference is assumed to be homogeneous and presented by a separable, homothetic, and
strictly concave utility function. The utility of individual i of generation t writes:

Uti = u(cti) + pβu(dt+1i) + γu(xt+1i) (3.1.1)

where cti is the consumption in the first period of live, dt+1i the consumption in the second
period (if the individual survives), and xt+1i the intended bequest that she plans to leave
at the end of the second period. u(·) is a constant intertemporal elasticity of substitution
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(CIES) utility function. p ∈ (0, 1) is the probability of surviving at the end of the first period
which is the same for all individuals. β ∈ (0, 1) is the discount factor and γ > 0 a parameter
measuring the degree of altruism, or more precisely, of the joy of giving. The utility derived
from bequeathing comes from solely the joy of leaving intended bequest, which corresponds
to the opinion of Mill that the deceased does not value the accidental bequest for which there
is no testimony of the deceased’s will. However, this paternalistic altruism is not adopted
by Fleurbaey et al.(2018) where they showed that we should even subsidize the accidental
bequest under ex-post egalitarian criterion. Here we adopt the point of view of Mill, to make
the model more tractable and comparable with existing literature. Besides, the inclusion of
accidental bequest in the utility function can make accidental bequest taxation distortionary,
even though the social planner is capable to perfectly distinguish different bequest motives(see
Appendix (7.1)). There is a coefficient p for the second period consumption as it is expected
to be realized with probability p. Note that the intended bequest xt+1i does not depend on
whether the individual survives: if she survives, she will leave purely intended bequest xt+1i

for each of her children at the end of her life; otherwise she leaves sti which is however not
purely accidental, since the first period saving includes also the intended bequest which she
wished to leave. This setting is similar with the utility function in Michel and Pestieau(2002).

The inheritor knows her first-period resources when she is about to make the decision of
consumption, saving, and bequeathing. Indeed, the possible accidental death of her parent
takes place when the inheritor is born. Thus she is in one of the two cases, instead of an
“expected” inheriting scenario. This setting is also adopted by Blumkin and Sadka(2004) in
their two generations static model, where the inheritor faces one of the two cases.

The heterogeneity in lifespan leads to two kinds of inheritors in terms of the structure of
their inheritance. In the first case where the parent survives to the end of the second period,
the kid receives only the intended bequest. In the second case where the parent dies at
the end of the first period, the orphan will receive the parent’s first-period saving whose
capitalized value includes both the intended bequest (which is to be left in both cases), and
the planned second-period consumption of the parent (which is not realized because of the
sudden death). Importantly, the structure of the inheritance does not necessarily imply the
level of the inheritance. The level of inheritance depends not only on the lifespan of the parent,
but also on the entire lifespan history of all the ancestors, let alone the productivity shocks’
history that makes it possible for some individuals to receive an intended bequest which is
already higher than the sum of intended and accidental bequest received by others. 3

3This complexity of dynamic model has been eliminated in Fleurbaey et al.(2018), where they assumed
a quasi-linear utility function U with u(c) = c, such that the marginal utility in first-period consumption is
1. Consequently, the intended bequest and second-period consumption does not depend on the first-period
resource, and thus are independent of the lifespan of ancestors. For an inheritor, her inheritance only depends
on the characteristics of her parent, instead of the whole history of lifespan and productivity of the dynasty.
We will adopt a more general and realistic preference and handle this complexity.
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The individual i of generation t with productivity hti ’s maximization program writes:

max
cti,dt+1i,xt+1i

Uti = u(cti) + pβu(dt+1i) + γu(xt+1i)

subject to: {
cti + sti = bti + wthti

dt+1i + (n+ 1)xt+1i = sti(1 + rt+1)
(3.1.2)

where wthti is the labor income of the individual with productivity hti, meaning that she has
hti units of efficient labor. To be simple, assume that the average productivity of the young
population is normalized to one. wt and rt+1 are factor prices common for everyone. bti is
the total inheritance received by this individual i, whose distribution depends on the entire
productivity and lifespan history of all ancestors, as well as its initial distribution. As bti is
exogenous for individual i to make her consumption, saving, and bequeathing decision, we will
rather focus on the transition function and the long run evolution of inheritance distribution
in the next sections.

By plugging the budget constraints into the utility function, and maximize w.r.t. sti and xt+1i,
the FOCs give: {

pβu′(dt+1i)(1 + rt+1) = u′(cti)

γu′(xt+1i) = pβu′(dt+1i)(n+ 1)
(3.1.3)

The first equation is the intertemporal trade-off between consuming in the first and second
period. A higher surviving probability leads to a higher second-period consumption. The
second one is the intratemporal trade-off between consuming and leaving intended bequest
in the second period. A higher surviving probability gives individuals the incentive to devote
more saving for the second-period consumption and less for intended bequest, since it becomes
more likely to enjoy a realized second-period consumption.

In the following, assume that u(Z) = ln(Z)(it is an assumption for simplicity, where income
effect and substitution effect offset each other completely), for Z ∈ {cti, dt+1i, xt+1i}.Then the
solution of the program writes:

cti = 1
1+pβ+γ (wthti + bti)

sti = pβ+γ
1+pβ+γ (wthti + bti)

dt+1i = sti(1 + rt+1) pβ
pβ+γ

xt+1i(1 + n) = sti(1 + rt+1) γ
pβ+γ

(3.1.4)

To distinguish the two possible structures of the total inheritance received, we can write bti in
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terms of the planned second-period consumption dti and intended bequest xti of the parent:

bti =


xti with probability p

xti +
dti

1 + n
with probability 1-p

(3.1.5)

All inheritors have the same saving rate s̃ = pβ+γ
1+pβ+γ , the share of savings devoted to the

second period consumption pβ
γ+pβ , and the share devoted to the intended bequest γ

γ+pβ . Thus
the difference among them lays only on the labor productivity and the level of total bequest
received. The binary expression of bti implies that it is determined by the level of xti and dti
depending on the lifespan path history until that of the grandparent (generation t−2), as well
as its structure (whether it includes an accidental part) depending on the lifespan of parent
(generation t−1). This distinction of the parent’s lifespan from other ancestors’ comes from the
fact that her intended bequest and second-period consumption decisions do not hinge on her
own lifespan. Thus, the intended inheritance received by an individual is independent of her
parent’s lifespan. However, the level of the intended inheritance depends on the whole lifespan
history until her grandparent, since it affects the total inheritance received by the parent, so
as the level of the parent’s intended bequest and second-period consumption. The parent’s
lifespan plays a different role which determines the structure of the total inheritance: whether
or not there is an accidental bequest. Appendix (7.2) provides a more clear and formalized
explanation, and shows how the intended inheritance is related to the lifespan history until
the grandparent.

Another observation is that an increase in the surviving rate p leads to a higher s̃, which
increases the planned second-period consumption. As a higher p also means that there is less
accidental bequest inheritors in the economy, there will be less inheritors of accidental bequest
but the level of accidental bequest they receive is higher. This explanation for the concentration
of wealth by increasing life expectancy is also mentioned by Fleurbaey et al.(2018).

3.2 Production

The production is standard: There is a constant return to scale production function Yt =

F (Kt, HtLt), where Lt is the aggregate labor supply, which is equal to the population of the
young generation at t. Ht is the aggregate level of productivity. As mentioned before, Ht is
assumed to be the same in every period and normalized to 1. Thus, the per (young) capita
variable is equivalent to the per efficient labor unit variable. Kt is the aggregate capital stock
at t.

10



At the per capita level, we have:
yt = f(kt)

f ′(kt) = 1 + rt

wt ≡ w(kt) = f(kt)− f ′(kt)kt

(3.2.1)

wt is the average wage level in the economy. With productivity heterogeneity, the individual’s
labor income is equal to the individual marginal productivity wthti, and the average labor
income is wt. During the production process, the capital stock is assumed to depreciate
at rate δ = 1, which is convenient for a length of period measuring 30 ∼ 40 years. The
representative firm produces using capital and efficient labor, and collects savings from the
young population of the current period to build up the capital stock of the next period4: it
receives the “deposits” It from the young population which is equal to the young generation’s
savings St at t and turns it into the capital Kt+1 for production at t+ 1:

It = St = Kt+1 −Kt(1− δ) = Kt+1 (3.2.2)

which constitutes the capital market equilibrium.

3.3 Competitive equilibrium

The individuals of the generation (−1) are the initial old embedded with an initial exogenous
distribution of savings s−1 with a mean of ¯s−1. The capital market equilibrium (3.2.2) is
equivalent to kt+1(n+ 1) = s̄t at a per young inhabitant level, thus ¯s−1 is such that k0 = (n+

1)s−1. The competitive equilibrium in this closed economy is given by the sequences of macro-
variables (Kt, Lt, Yt)t, the sequences of factor prices (wt, rt)t, the sequences of shocks (ht, λt)t,
as well as the sequences of micro-variables (ct, st, dt, xt, bt)t that are chosen by individuals
facing the factor prices of the respective periods.

3.3.1 Micro-variables

The competitive equilibrium of micro-variables can be written as follows according to the
solution set (3.1.4): Denote the distributions of state variables for generation t as st−1, λt−1,
ht, which stand for the distribution of generation t− 1’s saving, the distribution of generation
t − 1’s lifespan indicator (which is Bernoulli), the distribution of generation t’s productivity,
respectively. Given an initial distribution of saving s−1, which is the saving of the initial old
generation, it determines directly x0 and d0. The initial old generation’s lifespan follows

4It is equivalent to having a producing firm who produces from inputs and an investing firm who collects
savings to build capital stock. See De la Croix and Michel(2002), page 10.
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the distribution λ−1, which determines the total bequest distribution b0, the first-period
consumption distribution c0 and saving distribution s0 of generation 0. The distribution of the
planned second-period consumption d1 and that of the intended bequest x1 are determined
directly by s0. So on and so forth, all micro variable distributions are given by the state
variables {st−1, λt−1, ht}.

Imagine the case where productivity is homogeneous, and all individuals live over two entire
periods. Then for the dynasties with a same initial wealth, they will have the same sequence
of all variables. But with different lifespan of the parent, some inherit a larger amount
of total bequest, probably because of accidental death taking place for several generations
consecutively, making the average level of savings higher. It gives an intuition that a shorter
overall lifespan causes higher capital accumulation under some conditions, which we will
investigate afterwards.

3.3.2 Capital Accumulation

In order to see how an uncertain lifespan affects the process of capital accumulation and the
steady state capital stock in the long run, we have the following proposition on the transition
function of capital:

Proposition 3.3.2.1 : The transition function of capital per efficient labor kt = Kt
HtLt

writes:

kt+1 =
1

(1 + pβ + γ)(n+ 1)
[(pβ + γ)f(kt)− p2βf ′(kt)kt] (3.3.2.1)

with t ≥ 0, and k0 = ¯s−1

n+1 . Proof : See Appendix (7.3).

It is obvious in our case that for each kt, there exists one unique kt+1 such that (3.3.2.1) holds.
A direct observation from equation (3.3.2.1) is that if p = γ = 0, we have kt = 0, ∀t ≥ 1,
and k0 = ¯s−1

n+1 . It means that when everyone lives for only one period and there is no motive
to leave intended bequest, there will be no capital accumulation since there is no room for
life-cycle saving.

3.3.3 Steady state capital stock

The competitive stationary state of capital is k∗ such that (n+1)k∗ = 1
1+pβ+γ [(pβ+γ)f(k∗)−

p2βf ′(k∗)k∗]. And the steady state of average intended bequest stock is x∗ = γ
γ+pβ f

′(k∗)k∗.
The steady state of the average planned second-period consumption satisfies d∗ = pβ

γ+pβk
∗f ′(k∗)(1+

12



n). As a result, the steady state total inheritance per inheritor is:

b∗ = x∗ + (1− p) d∗

1 + n
=
γ + pβ(1− p)

γ + pβ
f ′(k∗)k∗ (3.3.3.1)

From now on, assume that f(kt) = kαt , α ∈ (0, 1).

Proposition 3.3.3.1 The unique steady state value of the capital per efficient labor kt writes:

k∗ = (
(n+ 1)(1 + pβ + γ)

pβ(1− pα) + γ
)

1
α−1 (3.3.3.2)

Proof: In equation (3.3.2.1), denote µ(k) = (pβ+γ)f(k)
k −(pβ)f ′(k), and the condition satisfied

by the steady state k is thus (n + 1)(1 + pβ + γ) = µ(k). With f(k) = kα, we have µ(k) =

(pβ+γ−αp2β)kα−1, where pβ+γ−αp2β = pβ(1−αp)+γ is obviously positive. Thus it gives
limk→0 µ(k) =∞, and limk→∞ µ(k) = 0. Furthermore, µ′(k) = (pβ+γ−αp2β)(α−1)kα−2 < 0,
which ensures that k∗ is the unique steady state value of kt. QED.

We can thus study the effect of surviving probability on the steady state capital stock with
this expression of k∗:

Proposition 3.3.3.2 When parameters α, β, γ are such that α(β+ 2(1 +γ)) > 1, the steady
state value k∗ is first increasing and then decreasing in the surviving rate p, with a threshold
value p∗ ∈ (0, 1).

Proof: Denote h(p) = (n+1)(1+pβ+γ)
pβ(1−pα)+γ which affects k∗ negatively, then:

h′(p) =
β(n+ 1)

(pβ(1− pα) + γ)2
(pα(pβ + 2(1 + γ))− 1)

Its sign depends on that of m(p) = pα(pβ+2(1+γ))−1. Set m(p) = 0, it gives a positive root

p∗ =

√
α2(1+γ)2+αβ−α(1+γ)

αβ and another negative root that are symmetric around p = −1+γ
β <

0. Since m(0) = −1, it is straightforward to see that p∗ < 1 if and only if m(1) > 0 ⇐⇒
α(β+2(1+γ)) > 1. In this casem(p) turns from a negative value to become positive, and h(p)

decreases then increases, making k∗ at first increasing and then decreasing in p ∈ (0, 1).QED.

We can interpret Proposition 3.3.3.2 in the following way:

• When p < p∗, k∗ is increasing in p. As mentioned above, when p = γ = 0, kt = 0, ∀t ≥ 1.
When p becomes positive, individuals know that they are more likely to realize a second
period of consumption, which encourages them to save in the first period. It can be seen
from the formula of the saving rate s̃ = pβ+γ

1+pβ+γ that agents tend to have a higher saving

13



rate when the surviving probability increases. Also, one can see from the solution (3.1.4)
that the planned second-period consumption is increasing in p, which makes the relative
level of accidental bequest compared with intended bequest to be higher for those who
receive accidental bequest, even though there are fewer individuals leaving an accidental
bequest.

• When p > p∗, k∗ is decreasing in p. Less accidental death leads to less accidental bequest
because the increase in the level of accidental bequest per death is dominated by the drop
in the number of deceased who leave accidental bequest, i.e., at aggregate level, more
lifetime resources are consumed instead of being left accidentally. Besides, the intended
bequest decreases according to solution (3.1.4). As a result, the total resources in the
first period becomes lower, making both first-period consumption and savings lower, as
is the steady state capital stock.

Hence there is a trade-off between higher saving rate and the ratio of accidental bequest over
intended bequest for accidental bequest receivers, versus less accidental bequest units and
lower intended bequest, when the surviving probability rises. When p < p∗, the effect of
the first two channels dominates, otherwise that of the last two dominates. Imagine a social
planner who is capable to control surviving rate p, e.g., through policies in the health system,
p∗ is thus the surviving rate which maximizes the capital stock at steady state, when other
things remain equal.

4 The first-best analysis

4.1 Social planner’s optimum

In the first-best study, the government will not take into account the paternalistic altruism or
joy of giving, because it is a pure transfer between individuals: it does not make sense to value
a pure transfer, since the joy of giving of the parent is also included in the utility of the kid,
otherwise it would be redundant. Besides, if valuing a pure transfer within individuals, then
people can just transfer resources to each other to increase the social welfare, which seems
absurd. 5

5The question concerning whether or not the social planner ignores the part of joy of giving in the utility
function of individuals when designing the social welfare function has been a controversial issue. Some argue
that including the paternalistic altruism in the SWF causes double counting and we should “exclude all external
preferences, even benevolent ones, from our social utility function” (Harsanyi (1995)), Hammond (1988) is also
in favor of this opinion. The advocates of including joy of giving in the SWF claim that the social planner
cannot modify the individual’s preferences in a paternalistic way. We exclude the joy of giving in the first-best
analysis, also because otherwise it will generate an optimal bequest without upper bound (See Appendix (7.4)).
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The social planner will not care about the lifespan of the ancestors because it cares only about
the own characteristics of the individual, which are their own lifespan and productivity type.
Also, the social planner in the first best question is omnipotent, in the sense that it can observe
all personal characteristics and distinguish perfectly different bequest motives in order to make
optimal decisions in allocating consumption of each life period according to the characteristics
of the individual.

To simplify the presentation, we constrain the labor productivity to be binary (hti ∈ {hlow, hhigh}
such that E(hti) = 1, ∀t ≥ 0), so that there are four types of individuals in total, which are
the combinations of long and short lifespan, along with high and low productivity:

lifespan
productivity

High(q) Low(1− q)

Long(p) LH LL
Short(1− p) SH SL

Table 1: Individual characteristics’ combinations

where q ∈ (0, 1) is the share of high productivity individuals. The first letter of the indicators of
characteristic combinations represents the lifespan and the second represents the productivity.

The utilitarian social welfare function at the steady state writes:

SWF = pqu(cLH) + p(1− q)u(cLL) + βpqu(dLH) + βp(1− q)u(dLL)

+ (1− p)qu(cSH) + (1− p)(1− q)u(cSL) (4.1.1)

subject to the resource constraint:

f(k) = pqcLH +p(1−q)cLL+(1−p)qcSH +(1−p)(1−q)cSL+
pqdLH
n+ 1

+
p(1− q)dLL

n+ 1
+(n+1)k

(4.1.2)

Note that one can interpret the social welfare function (4.1.1) twofold: firstly, it is the average
utility from consumption of all individuals living at a given period in the long run, weighted by
the respective share of the four characteristic combinations in the living population. Secondly,
it is the expected utility of an unborn individual living in the long run, with the respective
probabilities of realizing different characteristic combinations during her coming life. These
two interpretations are equivalent with the law of large number. Beside, equation (4.1.2)
corresponds to the fact that output is used either for consuming or for investing, which gives
no room for bequeathing.

The FOCs give the optimal conditions:

u′(cLL) = u′(cLH) = u′(cSH) = u′(cSL)⇐⇒ cLL = cLH = cSH = cSL = c (4.1.3)
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u′(dLH) = u′(dLL)⇐⇒ dLH = dLL = dL (4.1.4)

β(1 + r)u′(dL) = u′(c) (4.1.5)

f ′(k) = n+ 1 (4.1.6)

Thus, according to conditions (4.1.3) and (4.1.4), all inequalities are eliminated in the first-best
solution: neither the productivity nor the lifespan of the agents plays a role in determining
the optimal consumption. Equation (4.1.5) is the intertemporal condition for individuals who
live for two periods, and (4.1.6) is the “Golden rule” condition which determines the optimal
level of capital accumulation that maximizes the utility from consumption.

4.2 First-best decentralization

Comparing the social planner optimum and the competitive equilibrium, it can be seen that
there is a difference in the intertemporal allocation of consumption (4.1.5) and (3.1.3). The
social planner optimum gives β(1 + r)u′(dL) = u′(c), while the FOCs from the competitive
equilibrium gives u′(c) = pβ(1 + r)u′(d). The ratio of consumption of the first period over
that of the second period therefore tends to be lower in the social planner optimum than
in the competitive equilibrium. This difference of intertemporal allocation of consumption is
determined by the fact that the social planner faces a certain objective function as the death
risk does not lead to aggregate risk, and the lower number of old individuals cannot legitimate
a lower second-period consumption for those survivors. However, for each of the individuals,
she faces an uncertain world where she may die at the end of the first period. Thus she
tends to consume more in the first period to hedge against the risk of not surviving to the
second period. Besides, a lower surviving probability makes the competitive intertemporal
consumption allocation further away from the social optimum. This gap can be filled by a
commodity tax imposed on, for example, the second-period consumption.

The second difference consists of the intratemporal allocation of consumption. In the competitive
equilibrium, individuals whose parents live for one period enjoy higher consumption in both
periods than those whose parents live for two periods, as long as they receive the same amount
of intended bequest. However, the social planner do not care about the lifespan of their parents,
and implies the same consumption level for all types of individuals in the same life period.6

From the competitive equilibrium result, it implies that a 100% taxation on the accidental
bequest is necessary to achieve the social planner optimum. Similarly, the higher productivity
should be totally neutralized by a labor income taxation specialized for each type.

6It is easy to show that, even if the social planner considers the parent’s lifespan as a characteristic together
with productivity and the individual’s own lifespan, the first order conditions still eliminate all inequalities and
suggest a same consumption level for parented individuals and orphans. In fact, we obtain always the result
such that all inequalities are eliminated in the first-best solution.
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In terms of the inheritance taxation, as the social planner does not take into account the joy
of giving, it is used indirectly to achieve the golden rule level of capital accumulation, via the
saving of the individuals. Thus, to achieve the first-best solution, the social planner should
apply a commodity tax on the second-period consumption τd, a set of labor income tax (τL),
and an intended inheritance tax τx. Of course, as accidental bequest tax is non-distortionary
in our model, i.e., individuals cannot preview the accidental death and change their behavior,
it is optimal to set it to be 100%. Indeed, the 100% accidental bequest taxation allows to
eliminate the inequalities coming from the lifespan of all ancestors.

Proposition 4.2.1 The first-best optimum can be decentralized by the set of tax instruments:
{τL, τd, τx, τA}, with τL = {τLhigh, τLlow} such that hhigh(1−τLhigh) = hlow(1−τLlow) = H = 1

that eliminate productivity heterogeneity, 1+τd = p that eliminates the effect of death risk on
intertemporal consumption decision, τx such that 1− τx = α(1+pβ+γ)−(1−α)(pβ+γ)

αγ that ensures
the “Golden rule” level of capital accumulation, as well as τA = 100% that eliminates all
heterogeneity coming from lifespan of ancestors.

Proof: As mentioned above, it is optimal to apply τA = 100% in our framework (See more
detail in Appendix (7.1)). After taxing all accidental bequest, the maximization program of
individual i at period t writes:

max
cti,dt+1i,xt+1i

Uti = u(cti) + pβu(dt+1i) + γu(xt+1i(1− τx))

subject to: {
cti + sti = xti(1− τx) + wthti(1− τLi)
dt+1i + (n+ 1)xt+1i = sti(1 + rt+1)

(4.2.1)

By assuming a logarithmic utility function7, the optimal decisions made by an individual in a
competitive equilibrium writes:

cti = 1
pβ+γ+1(xti(1− τx) + wthti(1− τLi))

sti = pβ+γ
pβ+γ+1(xti(1− τx) + wthti(1− τLi))

(1 + τd)dt+1i = pβ
pβ+γ sti(1 + rt+1)

xt+1i(n+ 1) = γ
pβ+γ sti(1 + rt+1)

(4.2.2)

The labor income tax τLi is productivity-specified to keep the overall productivity H = 1. So
the omnipotent government can impose a labor income tax τLhigh > 0 to the higher type, and
τLlow < 0 to the lower type such that: hhigh(1− τLhigh) = hlow(1− τLlow) = H = 1.

7This simplification is for obtaining a tax formula in a more tractable way, but it makes the behaviors of
agents unaffected by the intended bequest taxation, since the substitution effect and income effect cancel out
each other. One may consider a more general CIES utility function as in the second-best analysis to see the
distortionary effect on the individual’s bequeathing behaviors. See Michel and Pestieau(2002).
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The expressions for cti and dt+1i give at steady state:

d = c(1 + r)βp
1

1 + τd
(4.2.3)

The commodity tax τd is such that:
1 + τd = p (4.2.4)

in order to realize the social planner’s intertemporal allocation of consumption (4.1.5) by
decentralization. When p decreases, the individuals face a higher death rate, and they tend to
reduce their consumption in the second-period. With a negative commodity tax τd (a subsidy
for the second-period consumption), individuals will consume more in the second period: the
commodity tax can restore the social optimum for those who live two periods.

To deduce the optimal tax on the intended bequest, it is useful to write the capital accumulation
function, when all the available tax instruments have already been applied. It consists of
a classical capital accumulation process with a representative agent. We have the saving
equation:

s̄t =
pβ + γ

1 + pβ + γ
(wt +

¯st−1(1 + rt)

n+ 1

γ

γ + pβ
(1− τx)) (4.2.5)

With the capital market equilibrium (3.3.1), it can be written as:

(n+ 1)kt+1 =
pβ + γ

1 + pβ + γ
(f(kt)− f ′(kt)kt) + ktf

′(kt)(1− τx)
γ

1 + pβ + γ
(4.2.6)

Take f(kt) = kαt :

(n+ 1)kt+1 =
pβ + γ

1 + pβ + γ
(1− α)kαt +

αγ

1 + pβ + γ
(1− τx)kαt (4.2.7)

This relation is obviously monotonic, and the steady state capital per capita k satisfies:

(n+ 1)k1−α =
(pβ + γ)(1− α) + αγ(1− τx)

1 + pβ + γ
(4.2.8)

It can be seen that a higher intended inheritance tax rate will reduce the steady state capital
level, since individuals have less first-period resources to save. Knowing that the golden rule
(4.1.6) gives the optimal per capita capital level k̄ which satisfies:

(n+ 1)k̄1−α = α (4.2.9)

When k = k̄, the optimal tax on the intended inheritance satisfies:

1− τx =
α(1 + pβ + γ)− (1− α)(pβ + γ)

αγ
QED.(4.2.10)
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This formula is computed in order to avoid over-accumulation or under-accumulation of capital,
which do not maximize the overall consumption in the economy.

It would be interesting to study how the optimal intended tax rate is affected by the surviving
rate p. The numerator of the RHS of (4.2.10) can be rearranged as:

(2α− 1)pβ + α(1 + 2γ)− γ

If 2α − 1 < 0 ⇐⇒ α < 1
2 , when p increases, 1 − τx decreases, and τx increases. In contrast,

when α > 1
2 , a higher p means a lower optimal tax on intended bequest. To see the mechanism

behind this result, we can rewrite the transition function of the saving in the decentralized
first-best solution:

s̄t =
pβ + γ

pβ + γ + 1
wt +

γ

pβ + γ + 1
¯st−1

1 + rt
n+ 1

(1− τx) (4.2.5′)

• The first term of RHS is the saving from labor income, which consists of a new resource
contributing to the savings’ accumulation. When the surviving rate p increases, this
part increases because individuals expect a higher probability to enjoy the second-period
consumption, and they save from the labor income.

• The second term of RHS, however, is the savings from the inheritance, which comes from
the saving of the parent. This part, as a share of the parent’s savings, is decreasing in p:
the savings of the parent was used to finance more second-period consumption related
to bequest.

Hence, the overall relationship between p and savings depends on the relative importance of
the two parts. Knowing that, 1 + rt = f ′(kt) = αkα−1

t , and wt = f(kt)− f ′(kt)kt = (1−α)kαt .
So we have 1+rt

wt
= α

(1−α)kt
, which is increasing in α. Thus, when α is relatively low, the

first part of s̄t coming from labor income dominates, and since this part increases in p, the
social planner needs to reduce savings by increasing the tax τx. When α is relatively high,
the second part from inheritance dominates, and since it is decreasing in p, a higher p tends
to under-accumulation of capital, thus the social planner will decrease the tax τx to increase
savings. τx can also be a subsidy in some cases, if there is a large risk of under-accumulation
of capital.

However, this first-best study is not for real world policy recommendations. The government
in the first-case is somewhat too omnipotent: it knows everything about the characteristics of
individuals: productivity, lifespan, and bequest motives. In real world, the real productivity
of individuals can be cached by them, in order to masquerade and benefice a more favorable
tax policy. Besides, the government has no way to know the lifespan of an individual when
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allocating a consumption to her, and actually even this person herself has no idea about a
possible premature death. Moreover, it is difficult for the government to know the bequest
motives of individuals, they often observe the total bequest without knowing its share of
different bequest motives.

In the following, we will turn to the second-best case, where the government will be much
less powerful, for example, it can only apply one single inheritance tax, on both intended and
accidental bequest, which means that it cannot eliminate all inequalities. To study the optimal
overall inheritance taxation, it is firstly useful to analyze the transition of the overall bequest
bt in this economy and its steady state.

5 The second-best analysis

Several features of the first-best solution and its model setting are quite questionable in a more
realistic framework, where we have tax instruments limitations, endogenous and probably
heterogeneous preferences, and imperfect observations of individual characteristics by the
social planner. In this section we will begin with a study on the transition function of
individual inheritance which depends on random processes, as well as its long term distribution
in normalized value. As said in section 2, it would be analytically unfeasible without some
compromises in the model setting to obtain a proper and tractable tax formula in the second-
best analysis. Thus we will switch to a small open economy whose factor prices are given
exogenously. After studying the dynamics of inheritance, we will focus on the second-best
optimal tax formula.

5.1 Total inheritance dynamics

For an individual i of generation t+ 1, the intended bequest she receives is given by:

xt+1i =
γ(1 + r)

(1 + pβ + γ)(n+ 1)
(bti + whti)

which comes directly from the solutions (3.1.4) except that we have now exogenous factor prices
w and r. The total inheritance bt+1i includes this intended inheritance xt+1i for sure, along
with a possible accidental part which equals to the second-period consumption of her parent of
generation t with probability (1−p). Thanks to the intertemporal condition dti = xti(n+1)pβγ ,
the total inheritance she receives can be written as:

bt+1i = xt+1i + 1ti
dt+1i

n+ 1
= (1 + 1ti

pβ

γ
)xt+1i
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with 1ti following a Bernoulli distribution: its realized value is 1 with probability (1− p) and
0 with probability p. Thus, we have the transition function of bti:

bt+1i = [
γ(1 + r)

(1 + pβ + γ)(n+ 1)
bti +

γ(1 + r)

γ + pβ + 1

whti
n+ 1

]︸ ︷︷ ︸
xt+1i

(1 + 1ti
pβ

γ
) (5.1.1)

where bti can be written as bti = (1 + 1t−1i
pβ
γ )xti. This implies that generation t receives an

intended bequest xti from generation t − 1 for sure, and an accidental bequest pβ
γ xti if the

generation t−1 died young. The generation t uses this amount to bequeath for the generation
t + 1 voluntarily, as a result, the intended bequest xt+1i does not depend on the lifespan of
generation t, but depends on the lifespans of older ancestors.

We assume that the government has access to a flat rate labor income taxation τL unique
for everyone and a flat rate inheritance taxation τB applied to all inheritance, regardless of
their bequest motives. With these tax instruments the second-best competitive equilibrium
satisfies: 

cti = 1
1+pβ+γ (whti(1− τL) + bti(1− τB))

sti = pβ+γ
1+pβ+γ (whti(1− τL) + bti(1− τB))

dt+1i = sti(1 + r) pβ
pβ+γ

xt+1i(1 + n) = sti(1 + r) γ
γ+pβ

(5.1.2)

Thus, the individual total bequest transition function with tax instruments writes:

bt+1i = [
γ(1 + r)

(1 + pβ + γ)(n+ 1)
bti(1−τB)+

γ(1 + r)

(γ + pβ + 1)(n+ 1)
whti(1−τL)](1+1ti

pβ

γ
) (5.1.1′)

It is useful to observe the sources of inequalities from the individual bequest transition equation,
as in Piketty and Saez(2012). In our case, if an individual receives a different inheritance bt+1i

compared with her contemporaries, it is because:

• Her parent receives a different bequest bti.

• Her parent’s labor productivity, or labor income is different. In our case the labor
productivity is independent of generations and dynasties, i.e., every individual draws
i.i.d. her productivity from a given distribution, as a result one’s labor productivity is
independent of the inheritance received. In contrast, if assuming a positive correlation
between the productivity throughout generations for each dynasty, there will be a positive
correlation between one’s inheritance and her own productivity, since she tends to have
ancestors with high productivity who were capable to bequeath more.

• The lifespan of her parent plays a role here. It determines the structure of the kid’s total
inheritance, namely, whether there is an accidental part. It is equivalent to consider it
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as a binary random variable drawn i.i.d. from a given Bernoulli distribution by every
individual.

Denote bt+1 ≡ E(bt+1i) as the average inheritance received by individuals of generation t+ 1,
bt ≡ E(bti) as the average bequest received by individuals of generation t. With E(hti) = 1

and the fact that one’s inheritance and productivity are both independent of her lifespan, the
average inheritance’s transition function writes:

bt+1 = [
γ(1 + r)

(1 + pβ + γ)(n+ 1)
bt(1−τB)+

γ(1 + r)

(γ + pβ + 1)(n+ 1)
w(1−τL)](1+(1−p)pβ

γ
) (5.1.3)

Equation (5.1.3) gives the steady state total inheritance b (if the interest rate is not too much
high and the non-explosive steady state exists)8:

b =
w(1− τL)

(1+pβ+γ)(n+1)
(1+r)(γ+pβ(1−p)) − 1 + τB

(5.1.4)

Obviously, stationary per capita inheritance is linear and increasing in the wage level, as
individuals have more resource for leaving bequest. It is decreasing in population growth: the
wealth will be distributed into more parts if there are more kids. b increases in r since there
will be a higher capitalized saving for both intended and accidental bequest. A higher τB
clearly causes a lower b, as for the moment we do not introduce the relationship between τB
and τL.

However, it makes more sense to study the relative importance of inheritance in comparison
with the aggregate output, rather than simply focusing on the absolute level of inheritance.
It allows for a historical comprehension of the inheritance share’s evolution, as empirical data
about the inheritance flow-output share exist and the so-called "sufficient statistics" approach
can be adopted. Besides, by focusing on the inheritance-output ratio, the bequest transition
function can be more comparable with the relevant study in Piketty-Saez(2012).

5.2 Inheritance-output ratio: r and g

We can apply the “r and g” narrative from Piketty and Saez(2012) in the present two period
OLG model with uncertainty in lifespan. To do that, we should first introduce a driving force
for economic growth at the per capita level: the population growth only amplify the total

8Alternatively, the steady state of inheritance b can be computed from the variables at steady state we
obtained in section (3.3.3) according to which b∗ = γ+pβ(1−p))

γ+pβ
k∗f ′(k∗). Substituting f ′(kt) with 1 + r and k∗

with steady state saving which can be further written as a function of b∗, we can obtain the same expression
of (5.1.4) with taxation absent.
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output but does not affect the per capita output. Thus, we assume in the following that the
labor-augmenting productivity Ht grows at a constant rate g per generation.

Modified setting of production side in a small open economy: The production side is
modified in the small open economy: the firm sets the capital input to achieve the exogenous
interest rate: F ′(K) = 1 + r = R. Assume that the production is Cobb-Douglas F (Kt) =

Kα
t (HtLt)

1−α = Kα
t (H0(1 + g)tL0(1 + n)t)1−α. The marginal product of capital F ′(Kt) =

αKα−1
t (HtLt)

1−α = R. Thus, we have Kt = (Rα )
1

α−1HtLt, then the output writes: Yt =

((Rα )
1

α−1HtLt)
α(HtLt)

1−α = (Rα )
α
α−1HtLt = (Rα )

α
α−1L0(1 + n)tH0(1 + g)t. Since R, α, L0,

H0 are exogenously given, the growth of the total output Yt is completely driven by the
population growth n and the overall productivity growth g. As a result, the per capita output
yt = Yt

Lt
= (Rα )

α
α−1H0(1 + g)t’s growth is only driven by the productivity growth g. Besides,

the wage per efficient labor writes w = (1− α)(Rα )
α
α−1 and the labor income per capita writes

yLt = wHt = wH0(1 + g)t = (1 − α)yt. Note that the per capita variables bt, yt,yLt are
computed on the young population, which makes sense because only the young population
works and inherits. Therefore, the economy is on a balanced growth path where all per capita
variables grow at rate g per generation. In this case, we have a modified version of (5.1.3):

bt+1 = [
γ(1 + r)

(1 + pβ + γ)(n+ 1)
bt(1− τB) +

γ(1 + r)

(γ + pβ + 1)(n+ 1)
wHt(1− τL)](1 + (1− p)pβ

γ
)

(5.1.3′)

Denote byt = bt
yt

as the inheritance-output ratio at period t. Note that bt is not exactly the
average of purely raw bequest left at period t, it is instead a combination of raw intended
bequest xt and capitalized bequest st−1(1 + r) which comprises an intended part and an
accidental part. By dividing both sides of (5.1.5′) by yt, we have the transition function of
this ratio:

(1 + g)byt+1 = [
γ(1 + r)(1− τB)

(1 + pβ + γ)(1 + n)
byt +

γ(1 + r)(1− τL)

(1 + pβ + γ)(1 + n)
(1− α)](1 +

pβ

γ
(1− p)) (5.2.1)

where byt+1 = bt+1

yt+1
. To ensure the existence of a non-explosive steady state, we need the

coefficient of byt to be less than 1:

Assumption 5.2.1:

γ(1 + r)

1 + pβ + γ
(1− τB)(1 +

pβ

γ
(1− p)) < (1 + g)(1 + n)

which means that, the after-tax marginal propensity to bequeath for all children out of the
first-period resource, augmented by the magnitude of accidental bequest, must be lower than
(1 + g)(1 + n), which captures the relative importance of r and g: the relative importance
between existing wealth and new income. For example, if the capital return r is sufficiently
high that the marginal propensity to bequeath out of the first-period resource is higher than
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the growth rate of total output, then the inheritance-output ratio’s path will be explosive.

If Assumption 5.2.1 is satisfied, the non-explosive steady state of inheritance-output ratio
writes:

by =
(1− τL)(1− α)

(1+g)(1+n)
1+r

1+pβ+γ
γ+pβ(1−p) − 1 + τB

(5.2.2)

Observations on (5.2.2):

• A higher overall bequest tax τB lowers by when we do not consider the relationship
between τB and τL.

• The inheritance-output ratio by is a decreasing function in the per capita growth rate
and interest rate ratio 1+g

1+r . When the importance of new income is relatively larger
than that of the existing wealth, the inheritance-output ratio will decrease. It can be
reflected by the reduction in the share of annual inheritance flow in national income
during the world wars. With the large destruction of the existing wealth by the war,
the new income is emphasized, and the inheritance flow share dropped from 20%− 25%

around 1900-1910 to 10% in the 1920s-1930s, and fell to less than 5% in the 1950s (see
Piketty (2010)).

• The term 1+pβ+γ
(γ+pβ(1−p))(1+r) associated with p can be rewritten as:

ν(p) =

1+pβ+γ
γ(1+r)

1 + pβ
γ (1− p)

where the numerator is the inverse of the marginal propensity to voluntary bequeathing
γ(1+r)

1+pβ+γ , which is also the share of first-period resource used for intended bequest. As
for the denominator, pβγ (1−p) is the aggregate accidental bequest magnitude relative to
the intended bequest. When p increases, the propensity for voluntary bequest is lower,
and the share of accidental bequest units (1 − p) decreases as there is less accidental
death, these two effects lead to a higher ν(p) and thus a lower by. However, a higher p
also means a higher ratio of accidental bequest over intended bequest pβ

γ for those who
still receive it, since the planned second-period consumption of their parents is higher,
which has a positive impact on by.

Proposition 5.2.1 When γ < 1
2 , there exists a threshold value p∗ ∈ (0, 1) such that by

increases in p when 0 < p < p∗ and decreases in p when p∗ < p < 1. Otherwise, by is always
decreasing in p when p ∈ (0, 1).

Proof: Denote υ(p) = 1+pβ+γ
γ+pβ(1−p) , then υ

′(p) = β(βp2+2p+2γ−1)
(γ+pβ(1−p))2 . Setting υ′(p∗) = 0, when γ is

high enough such that β(2γ − 1) > 1, p∗ does not exist, and υ′(p) > 0,∀p ∈ (0, 1), meaning
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that by is always decreasing in p. Otherwise, it gives a root p∗ =
−1+
√

1−β(2γ−1)

β with another
root which is surely negative. If p∗ < 0, meaning that 2γ − 1 > 0⇐⇒ γ > 1

2 , it also ends up
with a by always decreasing in p. To ensure that p∗ < 1, we need γ > −β2−β

2β , which always
holds. Thus, when γ < 1

2 , we have p∗ ∈ (0, 1). We see that υ′(0) < 0 when γ < 1
2 , thus

υ′(p) < 0 when p < p∗ and υ′(p) > 0 when p > p∗, and consequently by increases and then
decreases in p, with p∗ as the threshold. QED.

When γ > 1
2 , the monotonic and negative relationship between by and p comes from the fact

that the negative effect of a higher surviving rate on the marginal propensity for bequeathing,
together with a less number of parents who leave accidental bequest, overweighs its positive
effect on the accidental-intended bequest ratio for those who still receive accidental bequest.
When γ < 1

2 , the ratio pβ
γ becomes more important and the positive effect on the accidental

bequest-intended bequest ratio of accidental bequest receivers can dominate on the two negative
effects when p is relatively low, making by increasing in p. When p increases and surpasses
p∗, this ratio’s increment is again overshadowed by the decrease in bequeathing incentive and
number of accidental bequest receivers, and by decreases in p.

5.3 A more general preference

The second-best taxation should be related to the elasticity of individual decision, e.g., the
elasticity of leaving intended bequest with regard to the net-of-tax rate, which measures the
sensibility of the individual’s reaction to taxation and the ensuing distortion. It is useful
to generalize the utility function of a certain individual i to incorporate the influence of tax
instruments on its decision. In the previous study on the competitive equilibrium and first-
best social planner, it was assumed that individuals were endowed with a logarithm utility
function, which simplified the computations and allowed cleaner expressions but made the
elasticity of bequeathing with regard to inheritance tax always equal to 0, since the income
effect and substitution effect cancel out. The logarithmic utility function can be viewed as a
particular case of a general constant intertemporal elasticity of substitution utility function:

u(Z) =
Z1− 1

σ

1− 1
σ

where Z ∈ {c, d, x}, and σ > 0, σ 6= 1. σ is the intertemporal elasticity of substitution. The
special case where σ = 1 leads to the logarithmic utility function. Since empirical estimates
such as Kopczuk and Slemrod(2001) suggest that the elasticity of inheritance-output ratio with
regard to net-of-tax rate is slightly positive (0.2 using US data), meaning that the substitution
effect dominates the income effect ⇐⇒ σ > 1.
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For an individual i of generation t, her maximization program writes:

max
cti,dt+1i,xt+1i

u(cti) + pβu(dt+1i) + γ(xt+1i(1− τB))

subject to: {
cti + sti = bti(1− τB) + whti(1− τL)

dt+1i + (n+ 1)xt+1i = sti(1 + r)
(5.3.1)

where bti is formed by the process (5.1.1) and the initial wealth of i’s dynasty. Solving this
program with the general constant inter temporal elasticity of substitution utility function, we
obtain: 

cti = c̃(bti(1− τB) + whti(1− τL))

sti = s̃(bti(1− τB) + whti(1− τL))

dt+1i = d̃(bti(1− τB) + whti(1− τL))

xt+1i = x̃(bti(1− τB) + whti(1− τL))

(5.3.2)

where: 

c̃ = 1

1+(1+r)σ−1(γ(1−τB)1−
1
σ )σ(1+n)1−σ+(pβ)σ(1+r)σ−1

s̃ = (1+r)σ−1(γ(1−τB)1−
1
σ )σ(1+n)1−σ+(pβ)σ(1+r)σ−1

1+(1+r)σ−1(γ(1−τB)1−
1
σ )σ(1+n)1−σ+(pβ)σ(1+r)σ−1

d̃ = (pβ)σ(1+r)σ

1+(1+r)σ−1(γ(1−τB)1−
1
σ )σ(1+n)1−σ+(pβ)σ(1+r)σ−1

x̃ = (1+r)σ(γ(1−τB)1−
1
σ )σ(1+n)−σ

1+(1+r)σ−1(γ(1−τB)1−
1
σ )σ(1+n)1−σ+(pβ)σ(1+r)σ−1

(5.3.3)

When σ = 1, these coefficients are: 
c̃ = 1

1+γ+pβ

s̃ = γ+pβ
1+γ+pβ

d̃ = pβ(1+r)
1+γ+pβ

x̃ = (1+r)γ
(n+1)(1+γ+pβ)

which are what we obtained in the previous case with a logarithmic utility function. It can be
seen from (5.3.3) that the share of the first-period consumption c̃ is increasing in τB while that
of saving s̃ is decreasing in τB when σ > 1, which implies that individuals whose substitute
effect dominates income effect prefer to consume the resource instead of smoothing them to
the next period where she will have to pay extra tax when bequeathing. d̃ is increasing in τB
while x̃ is decreasing in τB when σ > 1, since individuals are reluctant to bequeath when τB is
higher. The ratio between the accidental bequest and intended bequest for an inheritor who
receives the both, which captures the magnitude of the effects of premature death on the total
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bequest level, writes:

M ≡ dti
(n+ 1)xti

=
(n+ 1)σ−1(pβ)σ

(γ(1− τB)1− 1
σ )σ

(5.3.4)

Obviously, this ratio is equal to pβ
γ when σ = 1, corresponding to the logarithm case. M

decreases in γ because individuals favor more intended bequest. The opposite is true for higher
pβ. When σ > 1, a higher τB leads to a higher M since individuals with higher substitution
effect than income effect will give less bequest and plan more second-period consumption.
Similarly, as in our model the parent only values the intended bequest given to one of her
children, although there is no heterogeneity among the siblings, this valuation based on the
per-inheritor rather than total intended bequest lets σ play a role: when σ > 1, having more
children to share the bequest reduces the incentive of the parent to leave intended bequest,
thus she switches to consume more in the second period of life, which increases the relative
magnitude of accidental bequest in case of sudden death.

Thus, with σ > 1, a higher τB increases M but decreases x̃. The effect of τB on the total
bequest level is ambiguous and requires an investigation to determine its overall signal. A way
to see the overall impact of τB on total bequest magnitude is to study its impact on the steady
state inheritance-output ratio by.

5.4 Inheritance-output ratio and taxation

The total bequest transition function, similar as equation (5.1.5’), writes:

bt+1 = x̃(yLt(1− τL) + bt(1− τB))(1 + (1− p)M) (5.4.1)

which can be transformed into the transition function of the inheritance-output ratio byt:

byt+1 =
x̃

1 + g
((1− α)(1− τL) + byt(1− τB))(1 + (1− p)M) (5.4.2)

When the parameter (1− τB)(1 + (1− p)M) x̃
1+g < 1, the steady state by is:

by =
x̃(1− α)(1− τL)(1 + (1− p)M)

1 + g − x̃(1− τB)(1 + (1− p)M)
(5.4.3)

This expression has two ambiguities when considering the impact of τB on by. In the first
place, a higher τB may imply a softer tax burden for labor income taxation if the government
uses the two taxations to finance a certain public expenditure; we see that a higher τB leads
to a lower by, while a lower τL leads to a higher by. Additionally, x̃ and M also depends on
τB in different directions, although by hinges positively on the product x̃(1 + (1− p)M).
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One approach to incorporate the relationship between the two tax instruments is to consider
the government’s budget constraint. Assume that the government can only raise revenue
from the two tax instruments, and it uses this revenue to finance a public expenditure which
constitutes τ as a share of yt at each period. Assume that taxes and expenditures are executed
at the end of the period, when all the labor income and inheritance of the current generation
are formed. The government’s budget constraint writes:

btτB + yLtτL = τyt ⇐⇒ bytτB + (1− α)τL = τ (5.4.4)

Assumption 5.4.1: τ < 1−α, meaning that the government expenditure can be totally covered
by a labor income tax τL < 1.

Note that here τB not only applies to the raw inheritance received at middle age for those
whose parent lived for two periods, but also to the capitalized bequest which comprises both
an intended and an accidental part for those whose parent lived for only one period, since the
tax base bt at the end of period t is also a hybrid of raw bequest and capitalized bequest.
When there is no risk on the return to capital, for example in our model with a constant
and exogenous r faced by everyone, it is equivalent to tax the unlucky short-lived parent’s
first-period saving at the beginning of the kid’s life or to tax its capitalized value at the end
of the kid’s first period of life. In other words, τB is a unique rate taxation imposed on raw
bequest and on the capital return generated by the raw bequest. 9

Plugging τB = τ−(1−α)τL
byt

, the expression of by rewrites:

by =
x̃(1 + (1− p)M)(1− α− τ)

1 + g − x̃(1 + (1− p)M)
(5.4.5)

Obviously, by > 0 whenAssumption 5.4.1 is satisfied. It can be seen that when the combination
of τB and τL is such that a fixed share of output τyt as public expenditure is financed, the
steady state of inheritance-output ratio does not depend explicitly on τB or on τL. The only
channels through which the inheritance taxation can affect the inheritance-output ratio are
its effect on the ratio x̃ and on the relative magnitude of accidental bequest compared with
intended bequest M . As shown before, these two channels have opposite directions, and to
see the overall effect of τB, we need to compute the product x̃(1 + (1− p)M):

x̃(1 + (1− p)M) =
1 + r

1 + n
(1− p(n+ 1)σ−1(pβ)σ + (n+ 1)σ−1(1 + r)1−σ

(n+ 1)σ−1(1 + r)1−σ + (γ(1− τB)1− 1
σ )σ + (pβ)σ(n+ 1)σ−1

)

(5.4.6)

9When there is no risk on the capital return, the government can divide the tax burden into a taxation on
the raw bequest and another on the capital return on it, in a very flexible way. For instance, the government
can choose not to tax raw bequest and only tax capital return at a higher rate.
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Obviously, if σ > 1, a lower τB (a higher net-of-tax rate) leads to a higher x̃(1+(1−p)M), which
in turns results in a higher by, if everything else remains the same. As a consequence, when
substitution effect dominates income effect, even if there is a reversed effect from accidental
bequest, the overall effect is still dominated by the voluntary bequeathing rate x̃: a higher
inheritance tax brings about a lower steady state inheritance-output ratio. And we obtain:
when σ > 1, the elasticity of by with regard to the net-of-tax rate 1− τB is positive:

eB =
dby
by

1− τB
d(1− τB)

> 0 (5.4.7)

5.5 Long run distribution of normalized inheritance

Each individual’s resource in our model is characterized by her labor productivity which is
drawn i.i.d. from a given distribution, as well as the total inheritance she receives, which
relies on more complex conditions: the realization of the lifespan and productivity of all
her ancestors, together with the position in the initial old generation’s wealth distribution.
However, we can show that its distribution in the long run will converge to a stationary one
which has implications for inequality. To begin with, we can rewrite the individual transition
function of inheritance:

bt+1i = x̃[bti(1− τB) + htiwt(1− τL)]ξti (5.5.1)

where ξti = (1 + 1tiM), meaning that generation t + 1 may receive an accidental part of the
inheritance, depending on the lifespan of generation t. Besides, wt is the average wage level
at t: wt = (1− α)yt.

To analyze the transition function, we need to formalize some assumptions as follows:

• Assumption 5.5.1 : The lifespan indicator (which indicates the existence of accidental
bequest) ξti is drawn i.i.d. from an exogenous distribution ϕt(ξ) = ϕ(ξ), ∀t ≥ 0 where
ξti = (1 +M) with probability 1− p, and ξti = 1 with probability p.

• Assumption 5.5.2 : The labor productivity hti is drawn i.i.d. from an exogenous distribution
φt(h) = φ(h),∀t ≥ 0, with E(hti) = 1.

• Assumption 5.5.3 : As in the previous section, to ensure the existence of a steady state
of by, we need (1− τB)(1 + (1− p)M) x̃

1+g < 1.

In order to concentrate on the relative position of individuals in the inheritance distribution,
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denote zti = bti
bt

the normalized bequest received by individual i of generation t.10 Then given
an initial distribution of normalized inheritance θ0(z), the random process for lifespan and
productivity ϕ(ξ), φ(h), and the individual transition equation of bequest, entirely determine
the law of motion of the distribution of normalized inheritance θt(z), and the joint distribution
of normalized inheritance and productivity Φt(z, h) = θt(z)φ(h), because inheritance and
productivity are assumed to be independent for a given individual.

Proposition 5.5.1 : Under assumptions 5.5.1 ∼ 5.5.3, there is a unique steady state for the
average inheritance-output ratio by, the normalized inheritance distribution θ(z), the joint
inheritance-productivity distribution Φ(z, h). For any initial conditions, as t → ∞ , byt →
by, θt → θ, and Φt → Φ.

Proof : The three dimensional discrete time stochastic process Sti = (zti, ξti, hti) is a Markovian
process with a state variable byt. In my model, the lifespan indicator ξti and labor productivity
hti are drawn i.i.d. from the exogenous distributions ϕ(ξ) and φ(hi) for every generation, so
that we can concentrate on the convergence of the Markovian process of zti.

From equation (5.5.1), we can deduce the individual transition function of zti:

zt+1i =
x̃ξti[(1− τB)ztibyt + (1− α)hti(1− τL)]

(1 + g)byt+1
(5.5.2)

Plugging (5.4.3) for by, the transition function of zti when t→∞ can be written as:

zt+1i =
ξti

1 + g
[(1− τB)x̃zti +

hti(1 + g − x̃(1− τB)(1 + (1− p)M))

1 + (1− p)M
] (5.5.3)

Denote (1−τB)x̃
1+g = Q, assume that 0 < Q < 1

1+(1−p)M
11. The transition function (5.5.3)

rewrites:
zt+1i = ξti[Qzti + (

1

1 + (1− p)M
−Q)hti] (5.5.3′)

Knowing that the minimum labor productivity is h0 < 1, and the maximum is h1 > 1, the
minimum outcome of steady state z0 satisfies z0 = Qz0 + ( 1

1+(1−p)A −Q)h0, meaning that all
the ancestors had lived two periods and never left an accidental bequest, and they all had the
lowest labor productivity, thus we have:

z0 =
1−Q(1 + (1− p)M)

(1−Q)(1 + (1− p)M)
h0 (5.5.4)

Similarly, the highest normalized inheritance at steady state (when the coefficient in this case
10It is easy to transform the normalized inheritance distribution into the distribution of absolute levels of

inheritance in the long run: bti = ztibt = ztibyyt, with by the constant steady state value, yt grows at a constant
rate g for each period.

11It is a natural assumption since a positive productivity shock of the parent has a positive impact on the
kid’s normalized inheritance position, other things remaining equal.
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(1 +M)Q < 1), when all ancestors had the highest productivity but only lived for one period,
is:

z1 =
(1 +M)(1− (1 + (1− p)M)Q)

(1− (1 +M)Q)(1 + (1− p)M)
h1 (5.5.5)

It can be easily shown that z0 < 1 whilst z1 > 1. In addition, when (1+M)Q > 1, the highest
normalized inheritance tends toward infinity z1 →∞, since a non-explosive steady state does
not exist.

Thanks to assumption 5.5.1 and assumption 5.5.2, the Markovian process for zti verifies the
following property over the interval [z0, z1]. For any relative inheritance positions z0 ≤ z <

z′ < z′′ ≤ z1, there exists T ≥ 1 and ε > 0 such that proba(zt+T i > z′|zti = z) > ε, and
proba(zt+T i < z′|zti = z′′) ≥ ε. In words, for a given relative position of inheritance, it is always
possible to reach another relative position of inheritance in some finite number of generations.
For example, to reach a relatively higher position, one needs to have consecutively several
periods of high productivity and shorter lifespan, while for a lower position of inheritance,
one needs to have consecutively several periods’ low productivity and longer lifespan. Besides,
the transition function is monotonic, in the sense that zt+1i(zti) has a first-order stochastic
dominance over zt+1i(z

′
ti) if zti > z′ti: For all outcome values z of zt+1i, the probability of

having a higher outcome value than z when the current outcome is zti is at least equal to
the probability when the current outcome is z′ti < zti, and for some outcome values z, the
probability of having a higher outcome value than z when the current outcome is zti is strictly
higher than when it is z′ti. Hence, according to the standard ergodic convergence theorem,
there exists a unique stationary distribution θ(z) towards which θt(z) converges, independently
of the initial distribution θ0(z). QED.

The transition function (5.5.3’) is in fact a so-called Kesten process which is a stochastic process
with a multiplicative shock and an additive shock (See Kesten(1973) and Fournier(2015)).
According to Piketty and Zucman(2015), one can show that all accumulation processes with
multiplicative random shocks engender distributions with Pareto tails. The transition function
of this kind writes as: mt+1i = ωtimti + εti, where ωti is an i.i.d. multiplicative shock with
mean ω = E(ωti) < 1, and εti an additive random shock. Our transition function of normalized
bequest (5.5.3’) verifies these conditions, with particularly E(ξtiQ) = Q(1+M)(1−p)+Qp =

Q(1 +M(1− p)) < 1 because we have Q < 1
1+(1−p)M (see footnote 11). More importantly, the

stationary distribution of mi has a Pareto upper tail with a Pareto coefficient a which solves
the Champernowne’s equation: E(ωati) = 1.12 When wti > 1 with positive probability, there
exists a unique a > 1 satisfying E(ωati) = 1. In such case, it would be interesting to study
the relationship between the inheritance taxation and the inverted Pareto coefficient b = a

a−1

which measures the inequality of distribution θ(z) of our model13.
12See Appendix (7.5.1) for a brief demonstration.
13It can be shown that, for a certain level of normalized inheritance z, the average normalized inheritance
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5.6 Optimal inheritance tax

In this section we will take the optimal inheritance taxation study from Piketty and Saez(2012)
as a reference. Define the general social welfare function as follows:

SWF =

∫ ∫
z,h
ωz,h

V 1−Γ
zh

1− Γ
dΦ(z, h) (5.6.1)

where Vzh = E(Vi|zi = z, hi = h) is the average steady state utility of individuals with a
normalized inheritance z and productivity h. ωz,h is the (subjective) social welfare weight
associated with the utility of these individuals of productivity h and normalized inheritance
z. Besides, Γ measures the concavity of the social welfare function: when Γ = 0, the
social welfare function is linear: the government does not have much intention to redistribute
income from high productivity individuals to low productivity individuals, which consists of a
“meritocratic SWF” since the government considers that individuals are responsible for their
own productivity. If Γ→∞, the concavity of the SWF is high, and the government considers
that the productivity is by sheer luck, and it consists in a “radical” version of SWF. As we
know, the productivity and normalized inheritance are independently distributed, which makes
the joint distribution Φ(z, h) two dimensional: for any z, the distribution of h is the same.
In the following, we assume that the government will take the “meritocratic approach” by
setting Γ = 0, as Vzh itself is concave, there should still be some redistribution in productivity.
Take the most general case where the social planner gives every citizen an equal social welfare
weight, then the social welfare function can be simplified as:

SWF =

∫ ∫
z,h
VzhdΦ(z, h) (5.6.1′)

It is direct to modify (5.6.1’) into a “Rawlsian” one, by eliminating all other individuals than
those who receive z0: SWFz0 =

∫
h Vz0hdφ(h).

Proposition 5.6.1 When we consider a linear social welfare function (Γ = 0) with welfare
weight ωz,h = 1 for each individual regardless of her position in the stationary joint distribution
Φ(z, h), the optimal inheritance tax rate τ∗B written in statistics that can be observed or
estimated is:

τ∗B = 1−
x̃(n+1)

1+r
1−α−τ
by

+ eB + x̃(n+1)
1+r

(1 + eB + x̃(n+1)
1+r )(1− Zh)

(5.6.2)

and the corresponding labor income tax rate is τ∗L =
τ−τBby

1−α , where Zh = E(Vcizi)
E(Vcihi)

is the ratio
between average normalized inheritance and average productivity, weighted by the marginal

of those who receive at least z is E(zi|zi ≥ z) = bz. For instance, when we focus on the average normalized
inheritance of top inheritors who receive zi ≥ 10, if b = 2, then these top inheritors have an average of
20 for their normalized inheritance. A brief proof of this key property of Pareto upper tail is provided in
Appendix(7.5.2).
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utility of first-period consumption.

Proof: Imagine that the government implements a tax reform in which dτB > 0 and the budget
balance τBbyt + (1 − α)τL = τ still holds. The total differentiation of the budget constraint
writes (with regard to (τB, τL)):

0 = (1− α)dτL + (by + τB
dby
dτB

)dτB

Given that eB = 1−τB
by

dby
d(1−τB) , we have:

dτL = −dτBby
1− α

(1− τBeB
1− τB

)

We see from this expression of dτL that labor income tax rate will not necessarily decrease
when the inheritance tax rate increases, namely, dτL is not always negative when dτB > 0.
There are two possible cases where dτL can be positive: firstly, eB is large enough, meaning
that an increase in τB causes a huge loss in the tax base, namely, the inheritance that can be
taxed, and the government has to resort to labor income taxation to re-balance the budget.
Secondly, the existent inheritance tax rate τB is already very high such that a little erosion in
the tax base of inheritance tax makes the loss in tax revenue

dby
dτB

τB considerable.

The utility function of individual i who receives normalized inheritance zi = z and possesses
productivity hi = h in the stationary joint distribution Φ(z, h), expressed in the budget
constraint, writes:

Vi = u(yLti(1−τL)+bti(1−τB)−sti)+pβu(sti(1+r)−xt+1i(n+1))+γu(xt+1i(1−τB)) (5.6.3)

where bti = zibt = zbt = zbyyt when t → ∞. yLti = wHthi = (1 − α)yth. To calculate the
total differentiation of Vi with respect to τB and τL, it is necessary to take into account the
fact that the received inheritance bti is also a function of τB in the sense that, to maintain a
constant z = bti

bt
= bti

byyt
, as by changes with τB, bti should also change.

dVi = −VciyLtidτL − VcibtidτB − Vxixt+1idτB + Vci(1− τB)
dbti
dτB

dτB (5.6.4)

where Vvi = u′(cti), Vdi = pβu′(dt+1i), and Vxi = γu′(xt+1i(1 − τB)). Note that xt+1i and
sti are also functions in τB and in τL, but their derivatives w.r.t. τB and τL have been
eliminated from dVi thanks to the Envelope theorem, because they allow us to maximize Vi
and dVi

dxt+1i
= dVi

dsti
= 0.
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Since eB =
dby
by

1−τB
d(1−τB) , we have dby = −eBby dτB

1−τB , and:

dbti = dbyziyt = −eBby
dτB

1− τB
ziyt = −eB

dτB
1− τB

bti

Thus:
dVi = −VciyLtidτL − Vxixt+1idτB − Vci(1 + eB)btidτB (5.6.5)

The FOCs of Vi w.r.t xt+1i and sti write:{
u′(cti) = pβu′(dt+1i)(1 + r)

γu′((xt+1i(1− τB))(1− τB) = pβu′(dt+1i)(n+ 1)

which is equivalent to: {
Vdi(1 + r) = Vci

Vxi = n+1
1−τB Vdi

Thus we obtain the relationship between Vci and Vxi:

Vxi =
(n+ 1)Vci

(1 + r)(1− τB)

Replacing Vxi by Vci using this relationship, equation (5.6.5) can be written as:

dVi = −VciyLtidτL − Vci
xt+1i(n+ 1)

(1 + r)(1− τB)
dτB − Vci(1 + eB)btidτB

Plugging dτL = −dτBby
1−α (1− τBeB

1−τB ), we have:

dVi = VcidτB[yLti
by

1− α
1− τ(1 + eB)

1− τB
− xt+1i(n+ 1)

(1 + r)(1− τB)
− (1 + eB)bti]

Then it is useful to write bti and xt+1i as functions of yLti. By definition:

bti = byytzi = byzi
yLti

(1− α)hi

And for xt+1i:

xt+1i = x̃(yLti(1− τL) + bti(1− τB)) = x̃(yLti(1− τL) + by
yLti

(1− α)hi
zi(1− τB))

Thus, we obtain:

dVi = VciyLtidτB[
by

1− α
1− τB(1 + eB)

1− τB
− x̃(n+ 1)

(1 + r)(1− τB)
(1−τL+by

zi(1− τB)

(1− α)hi
)−(1+eB)by

zi
(1− α)hi

]
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Since yLti = yLthi, it is equivalent to write:

dV i = VciyLtdτB[
by

1− α
1− τB(1 + eB)

1− τB
hi −

x̃(n+ 1)

1 + r
(
1− τL
1− τB

hi +
byzi

1− α
)− (1 + eB)

byzi
(1− α)

]

Replacing τL by its expression in τB by keeping the budget balance 1− τL =
1−α−τ+τBby

1−α and
using yLt = yt(1− α), we obtain:

dVi =
VciytdτB
(1− τB)

[by(1−τB(1+eB))hi−
x̃(n+ 1)

1 + r
(1−α−τ+τBby)hi−(

x̃(n+ 1)

1 + r
+1+eB)byzi(1−τB)]

(5.6.6)

Summing up (5.6.6) over the joint distribution Φ(z, h) to obtain the marginal change in the
social welfare of the tax reform:

dSWF =
ytdτB
1− τB

[by(1− τB(1 + eB))E(hiVci)−
x̃(n+ 1)

1 + r
(1− α− τ + τBby)E(hiVci)

− (
x̃(n+ 1)

1 + r
+ 1 + eB)by(1− τB)E(ziVci)] (5.6.7)

Remind that we aim to obtain the optimal tax rate τ∗B as a function of observable variable
by and other variables that one can estimate from empirical data: x̃, eB, E(hiVci), E(ziVci),
thus we consider SWF as a function of τB only through explicit channels, meaning that we
consider these mentioned variables as given by empirical statistics. Therefore, the second order
condition can be verified:

From (5.6.6), the first order derivative of individual indirect utility w.r.t. τB writes:

dVi
dτB

=
Vciyt

(1− τB)
[by(1−τB(1+eB))hi−

x̃(n+ 1)

1 + r
(1−α−τ+τBby)hi−(

x̃(n+ 1)

1 + r
+1+eB)byzi(1−τB)]

(5.6.6′)

And the second order derivative can be rearranged as:

d2Vi
dτ2
B

=
Vciyt

(1− τB)2
[−byeBhi −

x̃(1 + n)

(1 + r)
(1− α− τ + τBby)hi −

x̃(1 + n)

(1 + r)
byhi(1− τB)] (5.6.8)

The government budget constraint τBby + (1− α)τL = τ , along with Assumption 5.4.1, gives
1−α− τ + τBby > 0. Knowing that Vci and eB are both positive, the second order derivative
w.r.t. τB is thus negative, meaning that Vi is concave in τB, so is SWF since it is the sum
of concave functions. Thus τB such that dSWF

dτB
= 0 is the tax rate that maximizes the social

welfare instead of minimizing it.

When dSWF
dτB

= 0, the optimal inheritance tax rate writes:

τ∗B =
1− x̃(n+1)

1+r
1−α−τ
by
− ( x̃(n+1)

1+r + 1 + eB)E(ziVci)
E(hiVci)

(1 + eB + x̃(n+1)
1+r )(1− E(ziVci)

E(hiVci)
)

(5.6.9)
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which can be rearranged to equation (5.6.2). QED.

Observations:

• τ∗B is increasing in by: a higher steady state inheritance-output ratio leads to a higher
inheritance tax. A higher by implies that the wealth from the past is relatively more
important compared to the current labor income, possibly as a result of low growth rate
g, which gives a reason for taxing more inheritance to mitigate the inequality.

• τ∗B is decreasing in x̃(n+1)
1+r which measures the share of first-period resources devoted to

intended bequest for all children and thus reflects the willingness of leaving bequest. It
means that the inheritance tax should decrease when parents have a higher preference
for leaving bequest, particularly since x̃(n+1)

1+r is positively correlated with the altruism
degree γ. Otherwise it harms too much their utility derived from joy of giving.

• τ∗B is decreasing in the elasticity of inheritance-output ratio with regard to the net-of-
tax rate eB when τ > 0. It is not a good idea to tax inheritance when the elasticity of
inheritance w.r.t. taxation is high in absolute value, since it will be highly distortionary
and difficult to raise tax revenues. As it is possible for τB to be negative (an inheritance
subsidy), we see that when eB →∞, τ∗B = − Zh

1−Zh .

• The formula of τ∗B is not defined in the case where Zh = E(ziVci)
E(hiVci)

≥ 1, which is in fact
consistent with the basic setting of our model. Recall from the maximization program
(5.3.1) that the individual only values the net-of-tax bequest she leaves to her child, and
the argument of the CIES utility function (logarithmic when σ = 1) must be positive,
as a result we exclude all possibility of obtaining a meaningful τ∗B which is higher than
or equal to 100%. From (5.6.2), when E(ziVci)

E(hiVci)
> 1 we have clearly τ∗B > 1, which goes

against the basic setting of exclusion of more than confiscatory tax.

• For Zh < 1, we can see clearly from (5.6.2) that τ∗B decreases in this ratio, and for a
certain value of it τ∗B turns negative: the government should subsidize the inheritance.
The driving force of change in Zh can be complicated, and hard to illustrate analytically.
In particular, we have an intuition that a higher inequality in the productivity distribution
will induce a higher labor income tax rate and thus a lower inheritance tax rate, by
keeping the government budget balanced. This effect goes through Zh: we use numerical
method to show that a higher standard deviation in labor productivity Sh is correlated
with a higher Zh and thus a lower τ∗B. See Appendix (8.3.1) for a numerical example.

Again, it is worth noting that (5.6.2) is not a proper formula of optimal inheritance tax rate,
in the sense that they are not a function of purely primitive parameters. Some variables on
the RHS also depend on τB, such as by, x̃, the ratio Zh and even eB. A higher τB reduces
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by, which will make τB to be lower to reach the optimal rate; the higher τB also reduces eB,
which implies an even higher τB; it also reduces x̃, meaning τB should still increase. As for
Zh, our numerical simulation suggests that it is increasing in τB which needs τB to decrease
to be really optimal (See Appendix (8.3.1)). These effects in different directions imply that
there may exist an equilibrium where τ∗∗B is the solution to:

τB =
1− x̃(τB)(n+1)

1+r
1−α−τ
by(τB) − ( x̃(τB)(n+1)

1+r + 1 + eB(τB))Zh(τB)

(1 + eB(τB) + x̃(τB)(n+1)
1+r )(1− Zh(τB))

(5.6.10)

For numerical solutions of τ∗∗B with Rawlsian social welfare criterion and general CIES utility
function where σ > 1, see Appendix (8.3.4) where we show that a higher τ∗∗B is highly associated
with higher variance of shocks coming from uncertain lifespan and accidental bequest.

Nevertheless, the advantage of writing τ∗B as these endogenous variables is that they can be
more or less observed or empirically estimated from real data, for example there exist empirical
data of by and eB has been estimated to be around 0.1− 0.2 by Kopczuk and Slemrod(2001)
using US data, therefore they are easier to calibrate. In the following we present a special case
where this issue of endogeneity does not come into play. After that we switch to alternative
social welfare criteria using a numerical method, but we shall take into account the endogeneity
to some extent, meaning that variables such as by, x̃, Zh, eB are determined by an existing tax
rate τB, and to see the relationship between the new optimal τ∗B and different welfare criteria.

A particular case: Logarithmic utility function with Rawlsian social welfare criterion:
Let us come back to the special case of logarithmic utility function in order to have a
look at the effects of surviving rate p on the optimal tax rate. From the steady state
by = x̃(1+(1−p)M)(1−α−τ)

1+g−x̃(1+(1−p)M we see that eB = 0, since x̃,M are both independent of τB when
σ = 1. In this specific case, the optimal inheritance tax rate writes:

τ?B =
1− γ

pβ+γ+1(1−α−τ
by

+ Zh)− Zh
(1 + γ

pβ+γ+1)(1− Zh)
(5.6.11)

In addition, when the social planner adopts a Rawlsian social welfare criterion, meaning
that only the welfare weight of those who receive the minimum value of zi in the long run
distribution z0 is 1, and that of all others is 0. The Rawlsian optimal inheritance tax rate
is obtained by the same procedure, except that we only aggregate over hi and set zi = z0

from (5.6.6) to (5.6.7). From equation (5.5.3’), for an individual i who have a path (ξti)t

where ξti = 1,∀t, and (hti)t where hti = h0. Assume that the lowest productivity is h0 = 0,
thus (5.5.3’) is modified to zt+1i = Qzti, with Q < 1. Therefore, z0 → 0.14 Consequently,

14The expression of z0 by equation (5.5.4) gives z0 = 0 when h0 = 0, because it was calculated by setting
zt+1i = zti. In practical, our model does not give rise to z0 = 0, it can only approach to 0.
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we see that Zh = E(Vcizi|zi=z0)
E(Vcihi|zi=z0) → 0 under some conditions. 15 Hence the Rawlsian optimal

inheritance tax rate with logarithm utility function writes:

τ?B =
1− γ

pβ+γ+1(1−α−τ
by

)

(1 + γ
pβ+γ+1)

(5.6.12)

There are four channels for surviving rate p to influence τB that we can see analytically:

• The ratio γ
pβ+γ+1 , which reflects the share of first-period resources devoted to intended

bequest, decreases when p is higher, because they have a higher preference for the
second-period consumption than leaving bequest. This relative decrease in the taste for
bequeathing makes the optimal inheritance tax rate higher. Hence a higher surviving rate
leads to a higher inheritance tax. This result also allows us to mitigate the concentration
of accidental bequest shown at the end of section (3.1).

• A higher p leads to a lower bequeathing rate, where in by tends to be lower. Thus a
higher p also leads to a lower τB.

• A higher p also means that, for an individual receiving an accidental bequest, the ratio of
accidental bequest over intended bequest she receives is larger, so by tends to be higher,
so as τB.

• A higher surviving rate p means that there are less individuals who receive an accidental
inheritance, so by tends to decrease, so does τB.

Plugging by which is independent with τB, we obtain its formula in terms of pure primitive
parameters:

τ?B = 1− (1 + g)(1 + n)

1 + r

γ(pβ + γ + 1)

(γ + pβ(1− p))(pβ + 2γ + 1)
(5.6.13)

It can be seen that τ?B is a decreasing function in g and n, while an increasing function in r.
The effects of these three parameters all go through by. As we saw in section (5.2), by decreases
in n, g while increases in r, as the current income’s growth reduces by and return to existing
wealth accentuates it. In particular, a higher population growth rate means that there are
more young individuals who work and contribute to output compared with old individuals who
live on their savings at each period, which makes current income more important than existing
wealth, thus τ?B decreases. Alternatively, a higher n means that the given existing wealth is

15When z0 → 0, Vcizi|zi=z0 = (1+γ+pβ)z0
z0byyt(1−τB)+yLti(1−τL)

= 1+γ+pβ

byyt(1−τB)+(
yLthi(1−τL)

z0
)
→ 0, as long as hi of those

who receive z0 cannot be 0. Then E(Vcizi|zi = z0)→ 0, which gives Zh → 0 since E(Vcihi|zi = z0) is positive
when hi > 0 for those who receive z0. This assumption seems to be strong since it is not likely to have hi > 0
for all nearly zero bequest receivers, considering that all their ancestors had h0 = 0 as productivity(which is
already a very rare case), but it seems to be the sole case where Zh becomes exogenous.
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divided up by more inheritors while the per capita output is not affected by a higher number
of workers. It can be shown that, τ?B is first increasing and then decreasing in p, which means
that the first and third channels dominate the second and fourth when p is relatively low, and
then they become dominated when p becomes higher. We can also show that τ?B is at first
decreasing and then increasing in γ, with τ?B → 100% when γ → 0. However, a higher γ does
not always lead to a lower τ?B since it can result in too much inheritance in the economy, and
the benefit from joy of giving is less than that of an enhanced redistribution of inheritance.
For reasonable value of primitive parameters, the Rawlsian optimal inheritance tax rate with
σ = 1 and eB = 0 is approximately 60%. See Appendix (8.3.2) for the numerical example of
p and γ’s effect on τ?B.

Alternative welfare criteria: This Rawlsian social welfare criterion is nevertheless not
highly suitable for our model, since the features of shocks associated with lifespan and productivity
does not lead to a majority of inheritors who receive negligible inheritance. The social
criterion focusing on the inheritors receiving the average normalized inheritance E(z) = 1

is not advisable either, since the top inheritors raises the overall level while the majority
of inheritors receive less than the average level of inheritance, which leads to an enormous
inheritance subsidy16. Intuitively, it is due to the fact that top inheritors tend to have a huge
joy of giving (there is no taste shock in our model, so the amount of bequest they leave is highly
related to their inheritance received), and subsiding inheritance heavily allows to increase the
overall social welfare. Thus, we calculate the optimal inheritance tax rate by focusing on
inheritors of different positions in the long run distribution θ(z). Note that the existing
inheritance tax rate τB plays a role in the level of by, x̃, eB, as well as the transition function
of zti to affect θ(z), implying different level of Zh|zi = z for different existing tax rate τB.
We show that when the rank of inheritors that the social planner cares about increases (from
bottom to top inheritors), the optimal inheritance tax rate τ∗B decreases. Besides, a higher
existing τB means higher optimal τ∗B to implement. For example, with an existing τB = 40%,
if the social planner gives a positive welfare weight to those ranked at 5% of the normalized
inheritance distribution while gives zero weight to all others, the optimal inheritance tax rate
τ∗B to implement is approximately 20%. See Appendix(8.3.3).

6 Conclusion

In this master thesis we used a classic two-period overlapping generations model and incorporated
the death risk in order to study the effect of uncertain lifespan on optimal inheritance taxation.
We illustrated the relationship between the degree of death risk and macro variables such as

16As we show in section (8.3.1), Zh in this case is close to 1 and induces a too large subsidy which breaks up
the budget constraint since τL can be higher than 100% and lead to negative inheritance for some individuals.
We exclude these extreme scenarios since inheritance must be positive in our model.
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capital stock and inheritance-output ratio. We find that the effect of death risk is likely to
be non monotonic since it involves different driving forces that go in opposite directions. We
studied the first-best case where all accidental inheritance is eliminated and the intended
inheritance taxation is a simple tool that induces the golden rule level of capital stock.
The more realistic second-best analysis allowed us to look into the tax problem when the
government can no longer distinguish between intended and accidental bequest. We find that
the twofold shocks in lifespan and productivity give rise to a transition function of inheritance
that corresponds to a Kesten process converging to a limit distribution of inheritance with a
Pareto upper tail. With reasonable parameter values, we showed that a higher inheritance
tax rate can reduce the inverted Pareto coefficient and mitigate the inequality caused by the
top inheritors, when the maximum steady state level of inheritance tends to infinity. The
second-best optimal inheritance taxation we obtained is written in variables whose levels can
be either observed or estimated using empirical data. This gives an advantage in determining
the optimal tax rate for practical policies since the tax formula is clear and tractable for policy
makers. Nevertheless, it gives rise to an issue of endogeneity because some statistics hinge
on the inheritance tax rate. To deal with this endogeneity, we first used exogenous existing
inheritance tax rate to fix the level of these statistics, and they compute the new optimal tax
that is supposed to be implemented. Furthermore, we tried to compute the optimal inheritance
tax rate that incorporates all endogeneity and reaches an equilibrium where the existing tax
rate equals the optimal tax rate. The effects of death risk on the optimal inheritance tax rate
goes through the variance of the shock resulted from it. We found that higher variance is
related to a higher tax rate, as they are both induced by the evolution in surviving rate.

Many papers in the existing literature obviated the complexity from the accumulated effect of
lifespan uncertainty in a dynamic framework, either because of difficulty in obtaining analytical
solution or from preference for short term policy design. To make our model tractable, we adopt
a small open economy setting in the second-best study and focus on the long run distribution of
inheritance to maximize social welfare function. We obtained an optimal inheritance taxation
formula analytically but we need to use numerical methods to study its properties in most
of the case. The contribution of this study is that it incorporates death risk in a two-period
OLG model that allows for accumulative effect of shocks and brings implications in terms of
inequality, which can serve as a continuation for purely analytical papers such as Michel and
Pestieau(2002), even though we changed some model settings to make the problem tractable.

Nevertheless, the limits in this study are also noticeable. For concentrating on the lifespan
shock, we did not take into account the shock in bequeathing tastes, i.e., the heterogeneity in
altruism degree γ. As γ in that case can be zero, it will engender a higher heterogeneity in the
distribution of inheritance at the limit, with a large number of zero bequest receivers. As we
can see, our model does not allow zero bequest receivers, we only have inheritors with negligible
inheritance and they are not the majority in the long run distribution. This compromise in
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terms of shock types leads to the fact that the Rawlsian social welfare criterion may not be
the most convenient in our case. Therefore, for alternative welfare criteria where the planner
focuses on subgroup of inheritors with relatively higher inheritance, the optimal tax rate tends
to be lower or even negative. Another reason for obtaining relatively lower inheritance tax
is that the elasticity of inheritance with regard to tax is endogenous and takes substantial
values in our model, especially if the tax rate is not too high, implying more distortion from
inheritance tax increase. For future study, it would be useful to incorporate more shocks to
make it more realistic and comprehensive, in order to achieve a long run distribution that
corresponds better to the real data. Also, we need to consider how to improve the model in
order to obtain a value of elasticity which matches empirical estimates that are much lower.

In addition, the tax formula is not defined for Zh > 1, which is associated with a high
productivity heterogeneity and high existing inheritance tax rate. For overcoming this issue,
we may imagine incorporate more tax instruments to reduce the burden of inheritance taxation
and have a more realistic assumption on the distribution of productivity. Moreover, we
could try to implement specific rates for different categories of inheritors, which would give
implications in terms of progressivity of inheritance taxation. Finally, the basic two-period
OLG model facilitates the work but it is not really capable to produce a meaningful tax formula
that can be directly used with real numbers and give concrete policy recommendations. To
do that, it is necessary to incorporate a realistic age structure, ideally using a continuous-time
OLG model, such as in Piketty(2010).

In conclusion, this master thesis illustrates how an uncertain lifespan may have comprehensive
effects on the optimal inheritance taxation, by distinguishing different bequest motives in the
first-best analysis and by focusing on the accumulative process of total inheritance and its
long run distribution in the second-best study. In the end we find the reasonable result that
a higher death risk does affect the optimal inheritance taxation, with τ∗B highly related to the
variances of shock coming from the uncertain lifespan.
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7 Appendix 1: Remarks and proofs

7.1 Confiscatory taxation on accidental inheritance

Intuitively, individuals cannot react to the consequence brought about by a sudden death,
which leads to a “common sense” that tax on the accidental bequest is not distortionary: it
causes no efficiency cost and enhances the equality. However, it depends on the preference of
the individuals. If the individuals take accidental bequest in their utility obtained from joy
of giving, the result might change. Firstly, it is straightforward to show that an accidental
bequest is capable to change the behavior of individuals when their intertemporal elasticity
σ 6= 1, in other words, when their income effect and substitution effect do not cancel each
other entirely, even though the social planner distinguishes perfectly accidental bequest from
intended bequest. We can formulate their preference as follows:

Uit = u(cti) + pβu(dt+1i) + γu(xt+1i(1− τx)) + (1− p)γu(
dt+1i

n+ 1
(1− τA)) (7.1.1)

where τA is the specific tax rate applied to accidental bequest. The last term implies that
individual i has (1− p) to leave an accidental bequest and she values it with the same degree
of altruism γ as with intended bequest. The budget constraints write as usual:{

cti + sti = bti + wthti(1− τL)

dt+1i + (n+ 1)xt+1i = sti(1 + rt+1)
(7.1.2)

where bti is the net-of-tax inheritance which can be written as bti = xti(1−τx)+1t−1i
dti
n+1(1−τA)

with 1t−1i indicates the lifespan of her parent. we obtain the following FOCs: u′(cti) = pβu′(dt+1i)(1 + rt+1) + (1− p)γu′(1−τA
n+1 dt+1i)

1−τA
n+1 (1 + rt+1)

γu′(xt+1i(1− τx))(1− τx) = pβu′(dt+1i)(n+ 1) + (1− p)γu′( (1−τA)
n+1 dt+1i)

1−τA
n+1 (n+ 1)

(7.1.3)

As we can see, for general CIES utility function, τA plays a role in the individual’s decision.
For instance, a higher τA implies a relatively lower dt+1i when the substitution effect dominates
the income effect, and vice versa. Particularly, with a logarithm utility function for accidental
bequest, τA cancel out and it does not affect the agent’s behaviors. Thus, when the agent
values accidental bequest, for joy of giving, or as a compensation for not enjoying the second-
period consumption, an accidental bequest taxation is distortionary except for a logarithm
utility function. Nevertheless, valuing accidental bequest is not a necessary condition for its
efficiency cost. According to Blumkin and Sadka(2004), when agents do not value accidental
bequest but their labor supply is endogenous, a 100% accidental bequest taxation is not always
optimal. The redistribution from a confiscatory accidental bequest will affect the labor supply
decision of the agents. In other words, even if there is no substitution effect, there is an income
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effect when agents’ income is changed by the redistribution. Also, the extent of redistribution
from other tax instruments will be reduced when the redistribution of inheritance is enhance.
Thus, the confiscatory accidental bequest taxation should be considered in a more complex
way with its indirect effects, and to warrant it we need its marginal benefits to outweigh its
costs.

7.2 Inheritance and lifespan history in section 3.1

We can write the transition function of the intended bequest for a certain dynasty i:

xt+1i(n+ 1) =
pβ + γ

1 + pβ + γ
(wthti + bti)

γ

γ + pβ
(1 + rt+1) (7.2.1)

where bti can be written as bti = xti + 1t−1i
dti
n+1 , ∀t ≥ 0. 1t−1i indicates the lifespan of

generation t−1 following a Bernoulli distribution: it is equal to 1 with probability (1−p) and
0 with probability p. Plugging the intratemporal condition dti = xti(n + 1)pβγ , the transition
function (7.2.1) can be written as:

xt+1i(n+ 1) =
γ

1 + pβ + γ
(wthti + (1 + 1t−1i

pβ

γ
)xti)(1 + rt+1) (7.2.2)

And the intended inheritance xt+1i received by generation t+ 1 writes:

xt+1i =
γ(1 + rt+1)

(1 + pβ + γ)(n+ 1)
(1 + 1t−1i

pβ

γ
)xti +

γ(1 + rt+1)

(1 + pβ + γ)(n+ 1)
wthti (7.2.3)

Equation (7.2.3) shows that grandchild’s intended inheritance relies on the lifespan of grandparent
explicitly (and recursively on the lifespan of all other older ancestors): to concentrate on the
random process of lifespan, assume that rt+1 = r, wt = w,∀t, and hti = 1,∀t, i, equation
(7.2.3) can be rewritten as:

xt+1i = (A+ 1t−1iB)xti + C

where A = γ(1+r)
(1+pβ+γ)(n+1) , B = pβ(1+r)

(1+pβ+γ)(n+1) , and C = γ(1+r)w
(1+pβ+γ)(n+1) . Obviously, A,B,C are

all positive. Denote Ωt−1i = A+ 1t−1iB, which can take randomly two values, depending on
the lifespan of the generation t− 1:

Ωt−1i =

{
A+B with probability (1-p)

A with probability (p)
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Hence, we have the expression of xt+1i relating to the lifespan history until that of generation
t− 1:

xt+1i = x0i(Ωt−1iΩt−2iΩt−3i . . .Ω−1i)+C(1+Ωt−1i+Ωt−1iΩt−2i+· · ·+Ωt−1iΩt−2iΩt−3i . . .Ω−1i)

(7.2.4)

It can be seen that, if t→ +∞, by the law of large number, the coefficient of x0i converges to
a certain value for every dynasty:

Ωt−1iΩt−2iΩt−3i . . .Ω−1i|t→+∞ = Ap(t+1)(A+B)(1−p)(t+1)

However, the coefficient of C shows that, even though after an unlimited number of generations,
this coefficient does not converge.

7.3 Transition function of capital in section 3.2

From equation (3.2.2), the capital market equilibrium writes:

(1 + n)kt+1 = s̄t (7.3.1)

where s̄t is the average saving in period t. This can be written as follows:

s̄t = pE(sti|P ) + (1− p)E(sti|O) (7.3.2)

where E(sti|P ) is the average of saving of individuals whose parent lived for two periods (P
for “parented”); E(sti|O) is the average of saving of individuals whose parent lived for only
one period (O for “orphan”). The first term can be further written as:

E(sti|P ) = E((wthti + xti)
pβ+γ

1+pβ+γ |P )

= pβ+γ
1+pβ+γ (wtE(hti|P ) + E(xti|P ))

= pβ+γ
1+pβ+γ (wt + x̄t)

(7.3.3)

wt and x̄t are average wage and intended inheritance for generation t respectively. They are
independent of whether their parent of generation t− 1 survives: neither the productivity nor
the intended inheritance depends on the parent’s lifespan. As we showed before, xti depends
on the lifespan history until that of the grandparent from generation t− 2.
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Similarly, the second term can be developed as:

E(sti|O) = E((wthti + xti + dti
n+1) pβ+γ

1+pβ+γ |O)

= pβ+γ
1+pβ+γ (wtE(hti|O) + E(xti|O) + E( dti

n+1 |O))

= pβ+γ
1+pβ+γ (wt + x̄t + d̄t

n+1)

(7.3.4)

where d̄t is the average second-period consumption of generation t − 1. Note that dti is the
planned second-period consumption, realized or not, its amount does not depend on whether
this person survives: if she survives, then it is realized in her second life-period; otherwise it
becomes the accidental bequest.

Hence we have for the average saving at period t:

s̄t =
pβ + γ

1 + pβ + γ
(wt + x̄t) + (1− p) pβ + γ

1 + pβ + γ

d̄t
n+ 1

(7.3.5)

In case “P ” where generation t do not receive accidental inheritance, the relationship between
xt+1i and xti is:

xt+1i = (wthti + xti)
γ

1 + pβ + γ
(1 + rt+1)

1

n+ 1

Aggregating on all parented individuals at t:

E(xt+1i|P ) = (wt + x̄t)
γ

1 + pβ + γ
(1 + rt+1)

1

n+ 1
(7.3.6)

In case “O” where generation t receives an accidental part of inheritance, the relationship is:

xt+1i = (wthti + xti +
dti

1 + n
)

γ

1 + pβ + γ
(1 + rt+1)

1

n+ 1

Aggregating on all orphans at t:

E(xt+1i|O) = (wt + x̄t +
d̄t

1 + n
)

γ

1 + pβ + γ
(1 + rt+1)

1

n+ 1
(7.3.7)

Then the average intended bequest writes:

¯xt+1 = pE(xt+1i|P ) + (1− p)E(xt+1i|O)

= (1 + rt+1) γ
γ+pβ

1
n+1 (

pβ + γ

1 + pβ + γ
(wt + x̄t + (1− p) d̄t

n+ 1
))︸ ︷︷ ︸

s̄t

= (1 + rt+1) γ
γ+pβkt+1
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Thus we have:
x̄t = (1 + rt)

γ

γ + pβ
kt =

γ

γ + pβ
f ′(kt)kt (7.3.8)

The same applies to dt. In case “P ′” when the grandparent lived two periods:

E(dti|P ′) = ( ¯xt−1 + wt−1)(1 + rt)
pβ

1 + pβ + γ
(7.3.9)

In case “O′” when the grandparent lived one period:

E(dti|O′) = ( ¯xt−1 + wt−1 +
¯dt−1

1 + n
)(1 + rt)

pβ

1 + pβ + γ
(7.3.10)

because the intended inheritance xt−1i and productivity ht−1i of the parent does not depend
on the lifespan of the grandparent, and the planned second-period consumption dt−1i of the
grandparent do not rely on the lifespan of the grandparent. Then the average planned second-
period consumption d̄t of generation t− 1 is:

d̄t = pE(dti|P ′) + (1− p)E(dti|O′)

= (1 + rt)
pβ

γ+pβ (
pβ + γ

1 + pβ + γ
(wt−1 + ¯xt−1 + (1− p)

¯dt−1

n+ 1
))︸ ︷︷ ︸

¯st−1

= pβ
γ+pβ f

′(kt)kt(n+ 1)

(7.3.11)

Thus the transition function of kt writes:

(n+ 1)kt+1 = s̄t = pβ+γ
1+pβ+γ (wt + x̄t) + (1− p) pβ+γ

1+pβ+γ
d̄t
n+1

= pβ+γ
1+pβ+γ (f(kt)− f ′(kt)kt + γ

γ+pβ f
′(kt)kt) + (1− p) pβ+γ

1+pβ+γ f
′(kt)kt

pβ
γ+pβ

= 1
1+pβ+γ [(pβ + γ)f(kt)− p2βf ′(kt)kt]

(7.3.12)

which is equivalent to equation (3.3.2.1).QED.

We can make a comparison with the result of Michel and Pestieau(2002), section 2.3, where the
authors modeled the death risk in an alternative way: individuals live for a random fraction
θi of the second period of life. It can be shown that their transition function (1 + n)kt+1 =

s̃(f ′(kt+1))[f(kt)−δθ̄ktf ′(kt)] is in fact a general expression of (3.3.2.1), with θ̄ as the expected
second-period lifespan which plays the same role as the surviving rate p in our model, and δ
the share of saving devoted for the second-period consumption which is equivalent to pβ

pβ+γ

with our logarithm utility function.
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7.4 Exclusion of bequest in section 4.1

If the social planner includes bequest in the first-best social welfare function, the SWF writes:

SWF = pqu(cLH) + p(1− q)u(cLL) + βpqu(dLH) + βp(1− q)u(dLL)

+ (1− p)qu(cSH) + (1− p)(1− q)u(cSL) + γpqu(xLH) + γp(1− q)u(xLL)

+ γ(1− p)qu(sSH) + γ(1− p)(1− q)u(xSL) (7.4.1)

Subject to the same resource constraint (4.1.2), because it is formed by the fact that output
is equal to consumption and investment in this model. Bequest is a pure transfer without
any real counterpart. The FOCs w.r.t. intended bequest give that u′(x) = 0 ⇐⇒ x → ∞,
∀x ∈ {xLH , xLL, xSL, xSH}. It means that the individuals can just transfer wealth to each
other and increase the social welfare, which is not a reasonable result. In virtue of the debate
concerning bequest in the SWF, Michel and Pestieau(2004) defined the utility from leaving
bequest as v(x) and they had a term for bequest in the SWF εv(x), with ε ∈ [0, 1] measuring
the degree of laundering out of joy of giving in the social welfare function: ε = 1 means
no laundering out while ε = 0 implies full laundering out. They assumed that v(x) satisfies
v′(x∗) = 0 with x∗ the optimal level of intended bequest, which averted the infinite bequest
in our logarithm preference.

As for the second-best, since we focus on the indirect utility of the agents, we naturally need
to incorporate the joy of giving in the social welfare function. Nevertheless, this incorporation
may bring about a lower bequest tax rate because of double counting of the bequest in utility
of parent and child.

7.5 Pareto upper tail in section 5.5

7.5.1 Proof for Champernowne’s equation

For the normalized inheritance zti whose stationary distribution θ(z) has a upper tail following
a Pareto distribution, we have Pr(zti > z) = 1 − F (z) = C0z

−a for a large z, where C0 is a
parameter and a the Pareto coefficient. Thus for zt+1i we have:

Pr(zt+1i > z) = Pr(ξtiQzti + ξti(
1

1+(1−p)M −Q)hti > z)

= Pr(zti >
z−ξti( 1

(1+(1−p)M−Q)hti

ξtiQ
)

= CoE((
z−ξtihti( 1

1+(1−p)M−Q)

ξtiQ
)−a)

(7.5.1.1)
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When z is very large, the term ξtihti(
1

(1+(1−p)M −Q) becomes negligible and:

Pr(zt+1i > z) = CoE(( z
ξtiQ

)−a)

= C0E(z−a(ξtiQ)a)

= C0z
−aE((ξtiQ)a)

(7.5.1.2)

Therefore, the only way that the distribution θ(z) is stationary is that E((ξtiQ)a) = 1. QED.

7.5.2 Proof for Van der Wijk’s law

As long as the biggest value of the random coefficient of zti is superior to 1, ((1 + M)Q > 1

in our case), the Champernowne’s equation determines a unique a > 1, which can be used to
calculate b = a

a−1 . The average inheritance of those whose inheritance is at least z times the
average inheritance level of the economy E(zi) = 1 writes:

E(zti|zti ≥ z) =

∫
zti≥z

ztif(zti)dzti∫
zti≥z

f(zti)dzti

=

∫
zti>z

z−ati dzti∫
zti>z

z−a−1
ti dzti

=
1

1−a [z1−ati ]∞z
−1
a

[z−ati ]∞z
= a

a−1z = bz

(7.5.2.1)

where f(zti) = F ′(zti) = C0az
−a−1
ti . Thus, for any given z at the Pareto upper tail, the

average normalized inheritance equals to the subgroup’s minimum level z multiplied by the
inverted Pareto coefficient b. This is called Van der Wijk’s law. (See Dickinson(1940), Van
der Wijk(1939)).

8 Appendix 2: Numerical examples

8.1 Basic relationships

Calibration for primitives: To begin with, note that the interest rate r, per capita output
growth rate g, discount factor β, population growth rate n are per generation rates. By setting
the annual interest rate at 4%, annual per capita output growth rate at 2%, yearly discount
factor at 0.98, annual population growth rate at 0.5%, and length of a generation equal to
35 years, it is straightforward to obtain the generational value of these parameters written in
table 2. The value of γ, β are calibrated according to Nishiyama(2000) when σ = 2. Besides,
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Primitive Value
r 3.0552
g 1.0138
β 0.4931
n 0.1912
α 0.36
γ 0.50
σ 2.00
τ 0.30

Table 2: Primitives’ values

the surviving rate p is 0.8 to fix the idea when we concentrate on the effect of other variables,
such as τB. Similarly, τB is set as given values when we deal with the effect of surviving rate.

In this section, we will present the simulated results concerning the endogeneity of by, eB, as
well as the relationship between by and p.

8.1.1 Inheritance-output ratio and inheritance tax rate

Figure 8.1.1.1: Relationship between by and τB when τB ∈ [0, 1).
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by(τB) is computed using (5.3.3), (5.3.4) and (5.4.5). Note that τB must be strictly inferior to
one, otherwise the ratio between accidental inheritance and intended inheritance for accidental
bequest receivers M is not defined and by cannot be computed. We see clearly that by is
decreasing in τB, and with a quasi confiscatory inheritance tax, by can be reduced to a very
low level of 5%. The reason for not having by → 0 is that M → ∞ when τB → 1, which
avoids the disappearance of by, but in this case the inheritance distribution will be highly
concentrated.

8.1.2 Elasticity and inheritance tax rate

Figure 8.1.2.1: Relationship between eB and τB.

The elasticity of inheritance-output ratio by w.r.t. the net-of-tax rate 1− τB is always positive
since σ > 1. Higher τB induces lower elasticity. Intuitively, a higher τB induces lower net-of-
tax inheritance in the economy, since individuals’ marginal utility from joy of giving is high in
this case, they will not reduce a lot their bequest. The point here is that there is no reason to
have an eB →∞, and thus it is possible to have an optimal inheritance tax which is positive.
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8.1.3 Inheritance-output ratio and surviving rate

Figure 8.1.3.1: Relationship between by and p, for different τB.

We see again that higher τB leads to lower by. The effect of p on by is not monotonic: it increases
and then decreases according to a threshold p∗ which is specific to the given inheritance tax
rate. Also, higher τB induces higher p∗. Intuitively, a higher τB enhances the positive effect
on by of a higher p via a higher M . See Proposition 5.2.1 that illustrates different driving
forces with a logarithm utility function.

8.2 Dynamic of normalized inheritance

8.2.1 Convergence of the distribution

We set the initial distribution θ0(z) to be uniform, with 0 < z0i < 2, N = 100000 as the
number of dynasties, and T = 1000 as the number of generations. The productivity values are
taken from a normal distribution φ(h) with mean E(h) = 1 and standard deviation Sh equal
to 0.4 for the moment: h ∼ N (1, 0.4). We set the maximum and minimum of productivity
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to be h0 = 0 and h1 = 2 to avoid negative values and keep the average at 1(In the strict
sense this operation makes that hi’s no longer follow a normal distribution). To focus on the
dynamic of normalized inheritance, we firstly assume that τB = 0 which makes sure that the
bigger coefficient (1 + M)Q > 1 and there is no upper bound for the maximum steady state
value z1.

Figure 8.2.1.1: Inheritors ranked from bottom to top according to their inheritance.

The initial uniform distribution evolves very quickly to a stationary distribution, we can see
that the first three periods’ distributions have been moving towards a thick tail: the inheritance
received by the top inheritors have increased enormously. The last three curves coincide with
each other, and they display a very high normalized inheritance for a very tiny group of
inheritors. However, the normalized inheritance of the bottom have also increased through
the transition path. It seems that the biggest losers are those in the upper-middle “class” of
inheritors. The convergence of distribution θt(z)→ θ(z) is also shown by Figure 8.2.2.
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Figure 8.2.1.2: Convergence of θt(z) through generations.

It can be seen that more and more individuals receive an inheritance lower than the average
E(z) = 1, and the number of top inheritors is negligible in the long run (but their inheritance
is enormous). The distributions at T/2, T − 100, T coincide, thus the convergence has been
accomplished much before T .

8.2.2 On the Pareto upper tail

Our model does not always ensure a Q(1 + M) superior to 1: from reasonable calibration,
only for tiny inheritance tax rate τB ≤ 0.7% leads to Q(1 +M) > 1 and uniqueness of a that
satisfies the Champernowne’s equation:

(Q(1 +M))a(1− p) +Qap = 1 (8.2.2.1)

For different τB such that Q(1 + M) > 1, we can have a look at their effect on the Pareto
coefficient and inverted Pareto coefficient.
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Figure 8.2.2.1: Inheritance tax rate and inheritance concentration.

Clearly, a higher inheritance tax rate induces a lower inverted Pareto coefficient, and confirms
the role of inheritance taxation in mitigating inequality. Nevertheless, since a slightly higher
τB decreases the maximum value that the shock can take, meaning that the solution of (8.2.2.1)
cannot uniquely determine the Pareto coefficient, this result cannot be verified for larger τB(see
Nirei(2009)).

8.3 Optimal inheritance tax rate computation

8.3.1 Productivity heterogeneity and optimal tax rate

As said in section (5.6), a higher Zh induces a lower τ∗B, and it is useful to investigate the
relationship between Zh and the dispersion in labor productivity, since intuitively a higher
inequality in labor productivity should bring about a higher τ∗L and a lower τ∗B. Since Zh in
fact hinges on τB, we can see the relationship between productivity’s standard deviation Sh
and Zh to verify this intuition, for different existing inheritance tax rate.
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Figure 8.3.1.1: The relationship between Zh and productivity heterogeneity.

Thus, the simulated result verifies the intuition that a higher productivity dispersion leads to
a lower τ∗B since τ∗B is decreasing in Zh. Note that this simulation takes into account that by,
M ,x̃ are all functions in the existing tax rate τB. Nevertheless, it is worth stressing that for
high existing tax rate, it is likely to have Zh ≥ 1 when the standard deviation of productivity
increases, which leads to τ∗B > 1 which is not defined in our model. We see that when the
social planner gives a same welfare weight for every individual,i.e., Zh = E(Vcizi)

E(Vcihi)
, its value is in

the neighborhood of 1, which makes τ∗B likely to be a subsidy and increases the risk of having
Zh ≥ 1. When the social planner focus on a certain subgroup of inheritors, for example in the
Rawlsian welfare criterion where zi = z0, the value of Zh|zi=z will considerably decrease.

8.3.2 Optimal tax rate with Rawlsian welfare criterion

Firstly, when we assume logarithm utility function, eB = 0 and Zh = 0(if those receive z0 → 0

do not have a productivity hi = 0). With the calibration for primitives in section (8.1) except
for σ = 1 for this particular case, we obtain τ?B = 0.5958 from the formula (5.6.13). The effect
of p and γ are visualized in figure (8.3.2.1) and (8.3.2.2).
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Figure 8.3.2.1: Rawlsian τ?B and surviving rate p with σ = 1.

Figure 8.3.2.2: Rawlsian τ?B and altruism γ with σ = 1.
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8.3.3 Optimal inheritance with alternative welfare criteria

Using the population equal to 10000, standard deviation of productivity Sh = 0.2, we simulate
the optimal inheritance tax rate τ∗B for alternative social welfare criteria that focus on different
subgroups of inheritors. Since by, x̃, eB,M,Zh|zi=z are all functions in the level of τB that
already exists in the economy, even if we do not consider their change in response to the new
tax rate τ∗B, we should use the existing tax rate to calculate their corresponding level and then
determine the new tax rate τ∗B.

Figure 8.3.3.1: Optimal inheritance tax rate to implement for alternative welfare criteria,
with different existing inheritance tax rate. The rank of inheritors is from bottom to top.

We see that a higher existing τB is associated with higher optimal rate τ∗B to implement. As we
saw in section (8.1.2), higher tax is related to lower elasticity, thus it creates more opportunity
for a high τ∗B to apply without bringing about too much distortion. When the social planner
switches gradually her attention from inheritors at the bottom towards those in the middle
class, τ∗B decreases and it turns negative when she gives positive welfare weight for inheritors
ranked at about 15% from the bottom, when by, eB and other variables’ level is determined by
an existing τB = 40%. The apparently low level of τ∗B and large likelihood to have inheritance
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subsidies is due to the fact that the elasticity eB in our model is endogenous and quite large
when τB is not too high.

8.3.4 An example of optimal tax rate at equilibrium

We show in this section an example of τ∗∗B that satisfies equation (5.6.10). Note that we do
not necessarily have meaningful solution for (5.6.10), meaning that we must have τ∗∗B < 1

and τ∗L < 1. Since the inheritance subsidies in many welfare criteria implies a too high labor
income tax, we need to exclude those cases. Also, the effect of τB on the endogenous variables
are in different directions, thus it is possible to see a higher existing τB increases the optimal
tax rate τ∗B, and τ

∗
B changes the endogenous variables in such a way that they induce an even

higher τ∗∗B , and so on, which makes that τ∗∗B does not exist. Nonetheless, we find that τ∗∗B
exists for a Rawlsian social welfare criterion, and it gives reasonable result.

The method for solving (5.6.10) is to calculate optimal inheritance tax rate τ∗B for a large
number of existing tax rate τB. Then we choose τB that has the slightest difference with its
corresponding τ∗∗B . The result gives τ∗∗B = 31.32%. Note that it is only the half of the Rawlsian
optimal tax rate when we use logarithm utility function (σ = 1). The reason is that logarithm
utility function made the elasticity eB = 0, so the inheritance tax rate could be much higher
than in the case of σ = 2. This result can also be seen in Figure 8.3.3.1, when the existing
τB is between 0.2 and 0.4, the optimal τ∗B is also in this interval. To show the relationship
between p and τ∗∗B , we do the same for different levels of p: see Figure 8.3.4.1.

It is straightforward to write the standard deviation of the shock in inheritance associated
death risk as MQ(p(1− p))

1
2 (which comes from the transition function (5.5.3’)). We can see

the relationship between p and this standard deviation in Figure 8.3.4.2. By comparing the two
figures, we see that the dispersion in the shocks induced by death risk has a similar relationship
with p compared with the optimal inheritance tax rate. Thus, when the surviving rate leads
to higher variance of shock, the associated optimal inheritance tax rate should increase, and
vice versa.
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Figure 8.3.4.1: The relationship between surviving rate and the Rawlsian optimal inheritance
tax rate, when taking into account all endogeneities with σ = 2.

Figure 8.3.4.2: The relationship between surviving rate and the standard deviation of the
shock, when taking into account all endogeneities with σ = 2.
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